Download citation
Download citation
link to html
In each of 6-amino-3-methyl-2-(morpholin-4-yl)-5-nitro­so­py­rimi­din-4(3H)-one, C9H13N5O3, (I), morpholin-4-ium 4-am­ino-2-(morpholin-4-yl)-5-nitroso-6-oxo-1,6-dihydro­pyrimidin-1-ide, C4H10NO+·C8H10N5O3, (II), and 6-amino-2-(mor­pho­l­in-4-yl)-5-nitro­sopyrimidin-4(3H)-one hemihydrate, C8H11N5O3·0.5H2O, (III), the bond distances within the pyrimidine components are consistent with significant electronic polarization, which is most marked in (II) and least marked in (I). Despite the high level of substitution, the pyrimidine rings are all effectively planar, and in each of the pyrimidine components, there are intra­molecular N—H...O hydrogen bonds. In each compound, the organic components are linked by multiple N—H...O hydrogen bonds to form sheets of widely differing construction, and in compound (III) adjacent sheets are linked by the water mol­ecules, so forming a three-dimensional hydrogen-bonded framework. This study also contains the first direct geometric comparison between the electronic polarization in a neutral amino­nitro­sopyrimidine and that in its ring-deprotonated conjugate anion in a metal-free environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108005076/gg3151sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005076/gg3151Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005076/gg3151IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005076/gg3151IIIsup4.hkl
Contains datablock III

CCDC references: 686442; 686443; 686444

Comment top

Substituted 6-amino-5-nitrosopyrimidines often form intramolecular N—H···O hydrogen bonds and hence they are isoelectronic and approximately isosteric with the correspondingly substituted purines. The presence of the 5-nitroso substituent strongly activates nucleophilic displacement of 2-methoxy or 2-methylsulfanyl substituents and this has proven to provide an effective and versatile synthetic route to a wide range of 2-substituted derivatives (Melguizo et al., 2002). The use of 2-methylsulfanyl derivatives as substrates is particular attractive as the low boiling temperature of the methanethiol by-product (ca 279 K at normal pressure) means that this component is readily removed as the reaction proceeds, so driving the substitution to completion.

Thus, reaction of 6-amino-3-methyl-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-one with morpholine gave 6-amino-3-methyl-2-(morpholin-4-yl)-5-nitrosopyrimidin-4(3H)-one, (I) (see reaction scheme below), while a similar reaction using 6-amino-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-one provided 6-amino-2-(morpholin-4-yl)-5-nitrosopyrimidin-4(3H)-one, (IV); recrystallization of (IV) from water gave the hemihydrate (III), while crystallization in the presence of morpholine gave the salt morpholin-4-ium 4-amino-2-(morpholin-4-yl)-5-nitroso-6-oxo-1,6-dihydropyrimidin-1-ide, (II). Accordingly, we have been able to compare the intramolecular metrics of both the neutral pyrimidinone (IV), as it occurs in the hemihydrate (III), and the corresponding conjugate anion, as it occurs in the salt (II).

While the morpholine rings in compounds (I)–(III) (Figs. 1–3) all adopt chair conformations, the pyrimidine rings are, in every case, effectively planar; the maximum deviation from the mean ring planes are 0.033 (2) Å for atom N3 in (I), 0.033 (2) Å for C4 and C5 in (II), and 0.028 (3) Å for N3 in (III). This may be contrasted with the boat conformation found for the pyrimidine ring in the related compound 2-amino-4,6-bis(morpholin-4-yl)-5-nitrosopyrimidine, (V) (Quesada et al., 2004), and the boat (Trilleras et al., 2008) and twist-boat (Quesada et al., 2002, 2003; Melguizo et al., 2003) conformations found in a number of other heavily substituted pyrimidines. In compounds (I)–(III), the three adjacent substituents at positions 4, 5 and 6 are of low steric bulk, and the planarity of the pyrimidine rings in these examples is consistent with our earlier suggestion that the ring puckering in substituted pyrmidines is a direct consequence of steric clashes between bulky substituents in these adjacent positions (Melguizo et al., 2003). The orientation of the nitrosyl substituents, which are all effectively coplanar with the adjacent pyrimidine rings, allowing the formation of intramolecular N—H···O hydrogen bonds (Table 1–3) are almost certainly controlled by the electronic structures discussed below.

The pyrimidine components of compounds (I)–(III) show a number of values (Table 4) which are atypical of their general types (Allen et al., 1987), but which are typical of those commonly observed in related aminonitrosopyrimidines (Low et al., 2000, 2001; Melguizo et al., 2003; Quesada et al., 2002, 2004). The discussion of these distances and their significance is based, to a large extent, on our earlier analysis (Low et al., 2000) of the molecular structures of some nitrosopyrimidinyl derivatives of amino acids, where the analysis of the experimental structures was supported by database and molecular-modelling studies. This analysis showed that the difference between the bond distances C—N and N—O, conveniently denoted as Δ, provides a powerful diagnostic tool for the identification of polarized molecular–electronic structures in such compounds. In simple C-nitroso compounds where there is no possibility of significant electronic delocalization, the difference between the C—N and N—O bond distances usually exceeds 0.20 Å (Talberg, 1977; Schlemper et al., 1986), while the N—O distances rarely exceed 1.25 Å (Davis et al., 1965; Bauer & Andreassen, 1972; Talberg, 1977; Schlemper et al., 1986). However, in each of compounds (I)–(III), the value of Δ is significantly less than 0.10 Å, while the N—O distances always exceed 1.27 Å (Table 4), and the observed values here can be taken as diagnostic of significant electronic delocalization (Low et al., 2000).

In the neutral compound (I), where the polarization is least marked, as judged by the magnitude of Δ, the C6—N6 bond is short for its type (Allen et al., 1987), while the C2—N21 bond distance is fairly typical of its type; in addition, the C4—C5 and C5—C6 distances have very similar lengths, although in the classical representation of (I), these are formally single and double bonds, respectively; on the other hand the N1—C2 bond, which is formally a double bond, is significantly shorter than any other C—N bond within the ring. These observations taken together point to the polarized form (Ia) (see second scheme) as an important contributor to the overall molecular–electronic structure, in addition to the classical unpolarized form (I).

The anionic component of the salt (II) shows the most marked polarization, as indicated by the very small value of Δ. In addition, the C6—N1 and C6—N6 bonds have effectively identical lengths, and the C—O bond is long for its type, while the N3—C4 bond is much shorter in (II) than in (I). The combination of these observations points to the importance of the polarized form (IIa) (see second scheme) as a contributor to the overall molecular–electronic structure. The additional observation that the C2—N1, C2—N3 and C2—N21 bonds have lengths which are identical within experimental uncertainty suggests that form (IIb), where the positive charge is delocalized over four N centres (N1, N3, N6 and N21) in an aminomethyleneguanidinium fragment, may also be significant.

In compound (III), the dimensions of the two independent pyrimidine components are very similar. The values of Δ are intermediate between those in compounds (I) and (II), but the general pattern in the intermolecular distances resembles that in (I). Thus, the Cx4—Cx5 and Cx5—Cx6 distances (x = nil or 1) are identical; the Cx6—Nx6 distances do not differ from the corresponding distance in (I); and the C—O distances are normal, although the Nx3—Cx4 distances are somewhat shorter than the N3—C4 distance in (I), whereas a modest lengthening might have been expected. A polarized structure of the same type as (Ia) is indicated, but with the degree of polarization somewhat enhanced over that in compound (I).

For each of compounds (I)–(III), the supramolecular aggregation is dominated by the formation of hydrogen-bonded sheets. In (I), the sheet is built from just three hydrogen bonds, all of N—H···O type (Table 1). Amino atom N6 in the molecule at (x, y, z) acts as hydrogen-bond donor, via H6A and H6B, respectively, to morpholine atom O24 in the molecule at (1.5 - x, 1/2 + y, 1/2 - z), and ketonic atom O4 in the molecule at (1.5 - x, 1/2 + y, 1.5 - z); the latter of these is, in fact, the longer component of a planar three-centre N—H···(O)2 system (Table 1). These intermolecular interactions, acting independently, generate C(9) and C(6) chains, respectively, both running parallel to the [010] direction, and in combination they generate a sheet lying parallel to (100) containing equal numbers of S(6) and R44(26) (Bernstein et al., 1995) rings (Fig. 4). Two sheets of this type, occupying the domains 0 < x < 1/2, and 0.5 < x < 1.0, respectively, and related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

The formation of the sheet structure of compound (II) is somewhat more complex than that in compound (I); not only are there two independent molecular species present, but the number of hydrogen bonds (Table 2) is also greater. However, the sheet formation is quite easily analysed in terms of a centrosymmetric aggregate containing two ions of each type (Fig. 5). Within the asymmetric unit, ammonium atom N31 acts as hydrogen-bond donor, via H31B, to atom O4 in the anion. The same atom N31 at the cation at (x, y, z) also acts as hydrogen-bond donor, via H31A, to atoms O4 and N5 in the anion at (1.5 - x, 1.5 - y, 1/2 - z), in an effectively planar three-centre N—H···(N,O) system. The resulting centrosymmetric aggregate (Fig. 5), which is centred at (3/4, 3/4, 1/4), contains a central R42(8) ring along with two symmetry-related R12(5) rings and two S(6) rings. In the final hydrogen bond, atom N6 in the anion at (x, y, z) acts as donor to atom O4 in the anion at (-1/2 + x, 1 - y, z), and by this means the aggregate centred at (3/4, 3/4, 1/4) is directly linked to those at (1/4, 1/4, 1/4), (1/4, 1.25, 1/4), (1.25, 1/4, 1/4) and (1.25, 1.25, 1/4), so forming a sheet parallel to (001). This sheet thus contains four types of ring, S(6), R12(5), R42(8) and R88(30), the last two of which are both centrosymmetric (Fig. 6). Two sheets of this type, occupying the domains 0 < z < 1/2, and 0.5 < z < 1.0, respectively, and related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

There are three independent molecular components, all neutral, in compound (III), and they are linked by a large number of hydrogen bonds, encompassing O—H···O, O—H···N and N—H···O types (Table 3), into a three-dimensional framework. The two organic components are linked into sheets built from six independent intermolecular N—H···O hydrogen bonds, and these sheets are linked by the water molecules to form the three-dimensional structure.

Within the asymmetric unit, atoms N6 and N13 act as hydrogen-bond donors to O14 and O5, respectively (Fig. 3). Similarly, atoms N16 and N3 act as donors, respectively, to O4 at (-1/2 + x, 1/2 - y, 1/2 + z) and O155 at (1/2 + x, 1/2 - y, -1/2 + z). This combination of four hydrogen bonds thus generates a chain of rings running parallel to the [101] direction and built from molecules related by the n-glide plane at y = 0.25 (Fig. 7). In addition, atom N6 at (x, y, z) acts as donor to morpholine atom O124 at (1/2 + x, 1/2 - y, 1/2 + z), so generating a second chain of rings, this time running parallel to the [101] direction, but again built from molecules related by the n-glide plane at y = 1/4, while atom N16 at (x, y, z) acts as donor to morpholine atom O24 at (-1 + x, y, z), so generating by translation a third chain of rings, this time running parallel to the [100] direction. The combination of the chains along [100], [101] and [101] then generates a sheet parallel to (010) and containing five independent types of ring, two each of S(6) and R22(6) types, together with one type of R44(24) ring (Fig. 7).

Two such sheets, occupying the domains 0 < y < 1/2, and 0.5 < y < 1.0, respectively, and related to one another by inversion, pass through each unit cell, and adjacent sheets are linked by the water molecules. A combination of O—H···O and O—H···N hydrogen bonds forms a C22(7) chain running parallel to the [010] direction (Fig. 8), which links the sheets into a continuous three-dimensional structure.

In summary, compounds (I)–(III) all show polarized molecular–electronic structures, albeit in differing degrees, and the organic fragments in each compound are linked by hydrogen bonds into sheets of markedly different types, despite the rather small differences in molecular constitution between the pyrimidine fragments involved.

Related literature top

For related literature, see: Allen et al. (1987); Bauer & Andreassen (1972); Davis et al. (1965); Low et al. (2000, 2001); Melguizo et al. (2002, 2003); Quesada et al. (2002, 2004); Schlemper et al. (1986); Talberg (1977); Trilleras et al. (2008).

Experimental top

For the synthesis of compound (I), morpholine (100 mmol) was added dropwise and with magnetic stirring to a suspension of 6-amino-3-methyl-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-one (26.8 mmol) in dry ethanol (80 ml). Stirring was continued for 18 h, when the colour changed from blue to violet as methanethiol was liberated. The resulting solid was collected by filtration and washed with cold ethanol. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in dimethylformamide–ethanol (10:1 v/v). Yield 57%; m.p. 508–509 K; MS (30 eV) m/z (%): 239 (M+, 89), 209 (2), 181 (6), 153 (4), 139 (10), 125 (20), 113 (13), 109 (13), 86 (29), 69 (92), 57 (76), 42 (100). A similar reaction, but using 6-amino-2-methylsulfanyl-5-nitrosopyrimidin-4(3H)-one in place of the 3-methyl analogue gave 6-amino-2-(morpholin-4-yl)-5-nitrosopyrimidin-4(3H)-one, (IV). Yield 99%, m.p. 507–508 K; MS (30 eV) m/z (%): 225 (M+, 72), 208 (94), 195 (2), 139 (2), 113 (49), 113 (49), 95 (24), 86 (21), 69 (100). Recrystallization of this material from a dimethylformamide–ethanol (10:1 v/v) mixture containing a little morpholine gave crystals of compound (II) suitable for single-crystal X-ray diffraction, whereas crystallization from water yielded hemihydrate (III).

Refinement top

For each of (I) and (III), the space group P21/n was uniquely assigned from the systematic absence. For compound (II), the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by the structure solution, but the setting was then transformed to the alternative I2/a. All H atoms were located in difference maps and then treated as riding atoms. H atoms bonded to C or N atoms were allowed to ride in geometrically idealized positions, with C—H = 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.92 Å for the cation in (II) and 0.88 Å otherwise, and with Uiso(H) = kUeq(C,N) where k = 1.5 for the methyl groups and 1.2 otherwise. H atoms bonded to O atoms were permitted to ride at the locations deduced from the difference maps, with Uiso(H) = 1.5Ueq(O), giving O—H distances of 0.89 and 1.19 Å in compound (III).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the intramolecular N—H···O hydrogen bond has been omitted.
[Figure 2] Fig. 2. The independent ionic components of compound (II), showing the atom-labelling scheme and the N—H···O hydrogen bond linking the ions. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the intramolecular N—H···O hydrogen bond in the anion has been omitted.
[Figure 3] Fig. 3. The independent molecular components of compound (III), showing the atom-labelling scheme and the hydrogen bonds linking the components. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the intramolecular N—H···O hydrogen bonds have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet of S(6) and R44(26) rings parallel to (100). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of compound (II), showing the formation of a centrosymmetric aggregate of two cations and two anions. Atoms marked with an asterisk (*) are at the symmetry position (1.5 - x, 1.5 - y, 1/2 - z). For the sake of clarity, H atoms bonded to C atoms and the unit-cell outline have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet parallel to (001) and containing four independent types of ring. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded sheet parallel to (010) and containing five independent types of ring. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C22(7) chain along [010] linking the sheets parallel to (010). For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) 6-amino-3-methyl-2-(morpholin-4-yl)-5-nitrosopyrimidin-4(3H)-one top
Crystal data top
C9H13N5O3F(000) = 504
Mr = 239.24Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2445 reflections
a = 8.9122 (6) Åθ = 3.2–27.5°
b = 11.9051 (7) ŵ = 0.12 mm1
c = 10.4111 (4) ÅT = 120 K
β = 105.649 (3)°Block, violet
V = 1063.68 (10) Å30.41 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2445 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.959, Tmax = 0.972l = 1313
25676 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.8671P]
where P = (Fo2 + 2Fc2)/3
2445 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H13N5O3V = 1063.68 (10) Å3
Mr = 239.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9122 (6) ŵ = 0.12 mm1
b = 11.9051 (7) ÅT = 120 K
c = 10.4111 (4) Å0.41 × 0.28 × 0.25 mm
β = 105.649 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1516 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.068
25676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2445 reflectionsΔρmin = 0.31 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.5236 (2)0.28531 (14)0.73638 (16)0.0274 (4)
O50.7727 (2)0.56211 (15)0.86723 (17)0.0316 (5)
O240.6049 (2)0.21552 (14)0.07493 (16)0.0278 (4)
N10.7099 (2)0.45427 (16)0.47610 (18)0.0220 (5)
N30.5643 (2)0.30250 (16)0.53066 (19)0.0213 (5)
N50.6951 (2)0.47256 (18)0.82890 (19)0.0267 (5)
N60.8104 (2)0.59112 (16)0.6285 (2)0.0255 (5)
N210.6243 (2)0.31120 (16)0.32630 (18)0.0233 (5)
C20.6354 (3)0.3583 (2)0.4473 (2)0.0213 (5)
C30.4453 (3)0.2144 (2)0.4835 (2)0.0259 (6)
C40.5835 (3)0.3391 (2)0.6634 (2)0.0222 (5)
C50.6740 (3)0.4408 (2)0.7000 (2)0.0210 (5)
C60.7298 (3)0.49742 (19)0.6002 (2)0.0217 (5)
C220.6690 (3)0.1928 (2)0.3140 (2)0.0250 (6)
C230.5760 (3)0.1495 (2)0.1796 (2)0.0284 (6)
C250.5671 (3)0.3316 (2)0.0870 (2)0.0264 (6)
C260.6585 (3)0.3795 (2)0.2200 (2)0.0254 (6)
H3A0.40480.21920.38640.039*
H3B0.35990.22530.52500.039*
H3C0.49240.14040.50800.039*
H6A0.84880.62310.56800.031*
H6B0.82600.62180.70790.031*
H22A0.64660.14720.38620.030*
H22B0.78190.18770.32150.030*
H23A0.60490.07040.16890.034*
H23B0.46350.15180.17450.034*
H25A0.45410.33880.07840.032*
H25B0.59090.37510.01380.032*
H26A0.77140.37750.22700.030*
H26B0.62780.45860.22810.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0303 (10)0.0281 (9)0.0263 (9)0.0014 (8)0.0120 (8)0.0044 (7)
O50.0342 (10)0.0344 (11)0.0258 (10)0.0024 (8)0.0076 (8)0.0067 (8)
O240.0336 (10)0.0282 (9)0.0228 (9)0.0014 (8)0.0098 (7)0.0017 (7)
N10.0250 (11)0.0231 (11)0.0179 (10)0.0002 (9)0.0060 (8)0.0004 (8)
N30.0201 (10)0.0237 (11)0.0212 (10)0.0010 (8)0.0075 (8)0.0005 (8)
N50.0277 (11)0.0284 (12)0.0241 (11)0.0024 (9)0.0071 (9)0.0021 (9)
N60.0351 (12)0.0228 (11)0.0196 (10)0.0038 (9)0.0089 (9)0.0009 (8)
N210.0305 (11)0.0223 (11)0.0185 (10)0.0013 (9)0.0091 (8)0.0006 (8)
C20.0198 (12)0.0237 (13)0.0199 (12)0.0014 (10)0.0049 (9)0.0023 (10)
C30.0248 (13)0.0267 (13)0.0262 (13)0.0030 (11)0.0070 (10)0.0006 (10)
C40.0222 (12)0.0246 (13)0.0198 (12)0.0045 (10)0.0060 (10)0.0027 (10)
C50.0207 (12)0.0257 (13)0.0173 (12)0.0030 (10)0.0062 (9)0.0006 (9)
C60.0223 (12)0.0218 (12)0.0211 (12)0.0046 (10)0.0059 (10)0.0025 (10)
C220.0256 (13)0.0248 (13)0.0252 (13)0.0014 (10)0.0080 (10)0.0006 (10)
C230.0346 (14)0.0244 (13)0.0277 (13)0.0036 (11)0.0108 (11)0.0046 (10)
C250.0319 (14)0.0269 (13)0.0211 (13)0.0044 (11)0.0083 (10)0.0009 (10)
C260.0327 (14)0.0240 (13)0.0208 (12)0.0017 (11)0.0095 (10)0.0005 (10)
Geometric parameters (Å, º) top
O24—C231.422 (3)C3—H3A0.98
O24—C251.436 (3)C3—H3B0.98
O4—C41.221 (3)C3—H3C0.98
O5—N51.275 (3)C4—C51.447 (3)
N1—C21.315 (3)C5—C61.435 (3)
N1—C61.357 (3)C22—C231.512 (3)
N3—C21.376 (3)C22—H22A0.99
N3—C41.415 (3)C22—H22B0.99
N3—C31.478 (3)C23—H23A0.99
N5—C51.358 (3)C23—H23B0.99
N6—C61.316 (3)C25—C261.516 (3)
N6—H6A0.88C25—H25A0.99
N6—H6B0.88C25—H25B0.99
N21—C21.358 (3)C26—H26A0.99
N21—C261.470 (3)C26—H26B0.99
N21—C221.480 (3)
C23—O24—C25111.72 (18)N6—C6—N1117.2 (2)
C2—N1—C6118.31 (19)N6—C6—C5120.7 (2)
C2—N3—C4120.8 (2)N1—C6—C5122.0 (2)
C2—N3—C3123.00 (19)N21—C22—C23108.2 (2)
C4—N3—C3115.47 (18)N21—C22—H22A110.1
O5—N5—C5117.5 (2)C23—C22—H22A110.1
C6—N6—H6A120.0N21—C22—H22B110.1
C6—N6—H6B120.0C23—C22—H22B110.1
H6A—N6—H6B120.0H22A—C22—H22B108.4
C2—N21—C26119.48 (19)O24—C23—C22110.7 (2)
C2—N21—C22121.29 (19)O24—C23—H23A109.5
C26—N21—C22110.30 (18)C22—C23—H23A109.5
N1—C2—N21118.4 (2)O24—C23—H23B109.5
N1—C2—N3124.5 (2)C22—C23—H23B109.5
N21—C2—N3117.1 (2)H23A—C23—H23B108.1
N3—C3—H3A109.5O24—C25—C26111.2 (2)
N3—C3—H3B109.5O24—C25—H25A109.4
H3A—C3—H3B109.5C26—C25—H25A109.4
N3—C3—H3C109.5O24—C25—H25B109.4
H3A—C3—H3C109.5C26—C25—H25B109.4
H3B—C3—H3C109.5H25A—C25—H25B108.0
O4—C4—N3119.2 (2)N21—C26—C25108.1 (2)
O4—C4—C5125.5 (2)N21—C26—H26A110.1
N3—C4—C5115.26 (19)C25—C26—H26A110.1
N5—C5—C6127.0 (2)N21—C26—H26B110.1
N5—C5—C4114.3 (2)C25—C26—H26B110.1
C6—C5—C4118.7 (2)H26A—C26—H26B108.4
C6—N1—C2—N21175.7 (2)N3—C4—C5—N5178.07 (19)
C6—N1—C2—N35.7 (3)O4—C4—C5—C6176.8 (2)
C26—N21—C2—N115.5 (3)N3—C4—C5—C62.5 (3)
C22—N21—C2—N1128.6 (2)C2—N1—C6—N6177.2 (2)
C26—N21—C2—N3163.2 (2)C2—N1—C6—C50.8 (3)
C22—N21—C2—N352.7 (3)N5—C5—C6—N60.4 (4)
C4—N3—C2—N18.0 (3)C4—C5—C6—N6178.9 (2)
C3—N3—C2—N1161.9 (2)N5—C5—C6—N1175.9 (2)
C4—N3—C2—N21173.4 (2)C4—C5—C6—N14.8 (3)
C3—N3—C2—N2116.8 (3)C2—N21—C22—C23152.8 (2)
C2—N3—C4—O4177.3 (2)C26—N21—C22—C2360.2 (2)
C3—N3—C4—O412.1 (3)C25—O24—C23—C2258.3 (3)
C2—N3—C4—C53.4 (3)N21—C22—C23—O2458.7 (3)
C3—N3—C4—C5167.2 (2)C23—O24—C25—C2657.8 (3)
O5—N5—C5—C60.0 (3)C2—N21—C26—C25152.9 (2)
O5—N5—C5—C4179.4 (2)C22—N21—C26—C2559.4 (3)
O4—C4—C5—N52.7 (3)O24—C25—C26—N2157.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O24i0.881.982.848 (3)168
N6—H6B···O50.881.982.619 (3)129
N6—H6B···O4ii0.882.352.896 (3)121
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2.
(II) morpholin-4-ium 4-amino-2-(morpholin-4-yl)-5-nitroso-6-oxo-1,6-dihydropyrimidin-1-ide top
Crystal data top
C4H10NO+·C8H10N5O3F(000) = 1328
Mr = 312.34Dx = 1.430 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 3354 reflections
a = 9.4410 (11) Åθ = 3.3–27.5°
b = 16.347 (4) ŵ = 0.11 mm1
c = 18.799 (5) ÅT = 120 K
β = 90.045 (15)°Lath, violet
V = 2901.3 (11) Å30.26 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3354 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2121
Tmin = 0.977, Tmax = 0.989l = 2424
33473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0306P)2 + 5.055P]
where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H10NO+·C8H10N5O3V = 2901.3 (11) Å3
Mr = 312.34Z = 8
Monoclinic, I2/aMo Kα radiation
a = 9.4410 (11) ŵ = 0.11 mm1
b = 16.347 (4) ÅT = 120 K
c = 18.799 (5) Å0.26 × 0.10 × 0.10 mm
β = 90.045 (15)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3354 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2361 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.048
33473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
3354 reflectionsΔρmin = 0.27 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.58426 (14)0.70724 (9)0.26537 (7)0.0239 (3)
O50.57948 (14)0.57129 (9)0.44197 (7)0.0227 (3)
O240.02092 (15)0.55270 (9)0.09133 (7)0.0290 (3)
N10.22162 (16)0.58424 (10)0.31405 (8)0.0188 (3)
N30.36442 (16)0.66628 (10)0.23262 (8)0.0189 (3)
N50.58145 (16)0.61396 (10)0.38319 (8)0.0207 (3)
N60.31265 (16)0.53870 (10)0.41996 (8)0.0206 (3)
N210.14231 (16)0.61936 (10)0.20370 (8)0.0209 (4)
C20.24766 (19)0.62398 (11)0.25230 (10)0.0173 (4)
C40.47342 (19)0.66716 (11)0.27884 (9)0.0176 (4)
C50.46347 (18)0.61945 (11)0.34506 (9)0.0165 (4)
C60.32895 (19)0.58026 (11)0.35985 (9)0.0168 (4)
C220.1527 (2)0.65210 (12)0.13147 (10)0.0236 (4)
C230.1166 (2)0.58570 (13)0.07847 (10)0.0254 (4)
C250.0256 (2)0.51830 (14)0.16095 (11)0.0298 (5)
C260.00630 (19)0.58025 (13)0.21814 (10)0.0222 (4)
O340.51265 (14)0.72728 (9)0.02394 (7)0.0247 (3)
N310.67247 (16)0.78042 (10)0.14380 (8)0.0219 (4)
C320.7156 (2)0.70778 (13)0.10134 (11)0.0244 (4)
C330.5859 (2)0.66997 (12)0.06768 (11)0.0246 (4)
C350.4659 (2)0.79510 (12)0.06570 (11)0.0233 (4)
C360.5901 (2)0.83871 (12)0.09899 (10)0.0224 (4)
H6A0.23170.51420.42910.025*
H6B0.38280.53560.45070.025*
H22A0.25000.67220.12270.028*
H22B0.08650.69860.12580.028*
H23A0.12010.60850.02970.031*
H23B0.18780.54140.08170.031*
H25A0.04400.47310.16400.036*
H25B0.12090.49500.16930.036*
H26A0.06950.62210.21940.027*
H26B0.00950.55280.26510.027*
H31A0.75180.80620.16140.026*
H31B0.61810.76390.18170.026*
H32A0.76290.66730.13250.029*
H32B0.78340.72440.06390.029*
H33A0.61460.62230.03860.029*
H33B0.52150.65020.10550.029*
H35A0.40140.77550.10350.028*
H35B0.41260.83370.03520.028*
H36A0.65180.86140.06130.027*
H36B0.55580.88460.12870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0203 (7)0.0311 (8)0.0203 (7)0.0089 (6)0.0016 (5)0.0041 (6)
O50.0209 (7)0.0293 (8)0.0180 (7)0.0027 (6)0.0023 (5)0.0029 (6)
O240.0320 (8)0.0330 (8)0.0220 (7)0.0090 (6)0.0062 (6)0.0010 (6)
N10.0183 (8)0.0211 (8)0.0170 (8)0.0015 (6)0.0007 (6)0.0007 (6)
N30.0181 (8)0.0204 (8)0.0181 (8)0.0018 (6)0.0019 (6)0.0007 (7)
N50.0195 (8)0.0259 (9)0.0166 (8)0.0001 (7)0.0020 (6)0.0008 (7)
N60.0181 (8)0.0267 (9)0.0170 (8)0.0044 (7)0.0011 (6)0.0024 (7)
N210.0194 (8)0.0239 (9)0.0195 (8)0.0063 (7)0.0040 (6)0.0038 (7)
C20.0180 (9)0.0164 (9)0.0176 (9)0.0006 (7)0.0017 (7)0.0005 (7)
C40.0165 (9)0.0189 (9)0.0174 (9)0.0006 (7)0.0005 (7)0.0028 (7)
C50.0165 (9)0.0173 (9)0.0157 (9)0.0007 (7)0.0006 (7)0.0031 (7)
C60.0178 (9)0.0168 (9)0.0159 (9)0.0011 (7)0.0012 (7)0.0030 (7)
C220.0217 (10)0.0269 (11)0.0222 (10)0.0063 (8)0.0067 (8)0.0102 (8)
C230.0250 (10)0.0318 (11)0.0196 (10)0.0030 (9)0.0025 (8)0.0048 (9)
C250.0328 (12)0.0299 (11)0.0267 (11)0.0107 (9)0.0034 (9)0.0016 (9)
C260.0170 (9)0.0285 (11)0.0211 (9)0.0036 (8)0.0019 (7)0.0007 (8)
O340.0279 (7)0.0241 (7)0.0221 (7)0.0003 (6)0.0091 (6)0.0021 (6)
N310.0174 (8)0.0318 (9)0.0164 (8)0.0064 (7)0.0007 (6)0.0008 (7)
C320.0223 (10)0.0305 (11)0.0206 (10)0.0047 (8)0.0026 (8)0.0002 (8)
C330.0270 (10)0.0194 (10)0.0272 (11)0.0004 (8)0.0048 (8)0.0011 (8)
C350.0225 (9)0.0212 (10)0.0262 (10)0.0015 (8)0.0022 (8)0.0046 (8)
C360.0258 (10)0.0201 (10)0.0212 (9)0.0032 (8)0.0019 (8)0.0011 (8)
Geometric parameters (Å, º) top
O4—C41.260 (2)C25—C261.507 (3)
O5—N51.307 (2)C25—H25A0.99
O24—C251.425 (2)C25—H25B0.99
O24—C231.426 (2)C26—H26A0.99
N1—C61.331 (2)C26—H26B0.99
N1—C21.353 (2)O34—C331.425 (2)
N3—C41.346 (2)O34—C351.429 (2)
N3—C21.353 (2)N31—C321.488 (3)
N5—C51.327 (2)N31—C361.490 (2)
N6—C61.328 (2)N31—H31A0.92
N6—H6A0.88N31—H31B0.92
N6—H6B0.88C32—C331.511 (3)
N21—C21.352 (2)C32—H32A0.99
N21—C261.460 (2)C32—H32B0.99
N21—C221.463 (2)C33—H33A0.99
C4—C51.472 (3)C33—H33B0.99
C5—C61.450 (2)C35—C361.508 (3)
C22—C231.512 (3)C35—H35A0.99
C22—H22A0.99C35—H35B0.99
C22—H22B0.99C36—H36A0.99
C23—H23A0.99C36—H36B0.99
C23—H23B0.99
C25—O24—C23109.51 (15)H25A—C25—H25B107.8
C6—N1—C2116.09 (16)N21—C26—C25109.69 (16)
C4—N3—C2116.84 (16)N21—C26—H26A109.7
O5—N5—C5118.70 (15)C25—C26—H26A109.7
C6—N6—H6A120.0N21—C26—H26B109.7
C6—N6—H6B120.0C25—C26—H26B109.7
H6A—N6—H6B120.0H26A—C26—H26B108.2
C2—N21—C26123.06 (16)C33—O34—C35110.06 (14)
C2—N21—C22123.84 (16)C32—N31—C36110.48 (15)
C26—N21—C22113.10 (15)C32—N31—H31A109.6
N21—C2—N1114.76 (16)C36—N31—H31A109.6
N21—C2—N3116.29 (16)C32—N31—H31B109.6
N1—C2—N3128.94 (16)C36—N31—H31B109.6
O4—C4—N3120.68 (17)H31A—N31—H31B108.1
O4—C4—C5119.92 (16)N31—C32—C33109.21 (16)
N3—C4—C5119.39 (16)N31—C32—H32A109.8
N5—C5—C6126.99 (17)C33—C32—H32A109.8
N5—C5—C4116.01 (16)N31—C32—H32B109.8
C6—C5—C4116.92 (15)C33—C32—H32B109.8
N6—C6—N1119.14 (16)H32A—C32—H32B108.3
N6—C6—C5119.44 (16)O34—C33—C32111.43 (16)
N1—C6—C5121.41 (16)O34—C33—H33A109.3
N21—C22—C23109.49 (16)C32—C33—H33A109.3
N21—C22—H22A109.8O34—C33—H33B109.3
C23—C22—H22A109.8C32—C33—H33B109.3
N21—C22—H22B109.8H33A—C33—H33B108.0
C23—C22—H22B109.8O34—C35—C36110.76 (16)
H22A—C22—H22B108.2O34—C35—H35A109.5
O24—C23—C22111.38 (16)C36—C35—H35A109.5
O24—C23—H23A109.4O34—C35—H35B109.5
C22—C23—H23A109.4C36—C35—H35B109.5
O24—C23—H23B109.4H35A—C35—H35B108.1
C22—C23—H23B109.4N31—C36—C35109.73 (16)
H23A—C23—H23B108.0N31—C36—H36A109.7
O24—C25—C26112.56 (17)C35—C36—H36A109.7
O24—C25—H25A109.1N31—C36—H36B109.7
C26—C25—H25A109.1C35—C36—H36B109.7
O24—C25—H25B109.1H36A—C36—H36B108.2
C26—C25—H25B109.1
C26—N21—C2—N14.6 (3)N5—C5—C6—N65.6 (3)
C22—N21—C2—N1174.86 (17)C4—C5—C6—N6177.80 (16)
C26—N21—C2—N3176.23 (17)N5—C5—C6—N1173.64 (18)
C22—N21—C2—N34.3 (3)C4—C5—C6—N13.0 (3)
C6—N1—C2—N21173.07 (17)C2—N21—C22—C23126.43 (19)
C6—N1—C2—N36.0 (3)C26—N21—C22—C2353.1 (2)
C4—N3—C2—N21176.11 (17)C25—O24—C23—C2260.2 (2)
C4—N3—C2—N12.9 (3)N21—C22—C23—O2456.9 (2)
C2—N3—C4—O4177.84 (17)C23—O24—C25—C2659.4 (2)
C2—N3—C4—C53.3 (2)C2—N21—C26—C25127.7 (2)
O5—N5—C5—C62.3 (3)C22—N21—C26—C2551.8 (2)
O5—N5—C5—C4178.96 (15)O24—C25—C26—N2154.8 (2)
O4—C4—C5—N57.9 (3)C36—N31—C32—C3354.6 (2)
N3—C4—C5—N5170.98 (17)C35—O34—C33—C3261.1 (2)
O4—C4—C5—C6175.16 (17)N31—C32—C33—O3457.8 (2)
N3—C4—C5—C66.0 (2)C33—O34—C35—C3660.9 (2)
C2—N1—C6—N6176.74 (17)C32—N31—C36—C3555.1 (2)
C2—N1—C6—C52.5 (3)O34—C35—C36—N3158.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O5i0.882.022.872 (2)163
N6—H6B···O50.881.952.608 (2)130
N31—H31A···O4ii0.922.082.868 (2)143
N31—H31A···N5ii0.922.212.939 (2)136
N31—H31B···O40.921.852.711 (2)154
Symmetry codes: (i) x1/2, y+1, z; (ii) x+3/2, y+3/2, z+1/2.
(III) 6-amino-2-(morpholin-4-yl)-5-nitrosopyrimidin-4(3H)-one hemihydrate top
Crystal data top
C8H11N5O3·0.5H2OF(000) = 984
Mr = 234.23Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4646 reflections
a = 16.421 (2) Åθ = 3.0–27.5°
b = 7.3671 (12) ŵ = 0.12 mm1
c = 17.205 (4) ÅT = 120 K
β = 104.794 (12)°Block, purple
V = 2012.4 (6) Å30.44 × 0.34 × 0.21 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4646 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.953, Tmax = 0.975l = 2222
47024 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0672P)2 + 1.619P]
where P = (Fo2 + 2Fc2)/3
4646 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H11N5O3·0.5H2OV = 2012.4 (6) Å3
Mr = 234.23Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.421 (2) ŵ = 0.12 mm1
b = 7.3671 (12) ÅT = 120 K
c = 17.205 (4) Å0.44 × 0.34 × 0.21 mm
β = 104.794 (12)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2535 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.975Rint = 0.098
47024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
4646 reflectionsΔρmin = 0.41 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.43256 (12)0.1500 (3)0.26365 (11)0.0230 (5)
O50.29659 (11)0.0472 (3)0.42316 (12)0.0242 (5)
O240.82727 (11)0.4401 (3)0.51666 (12)0.0239 (5)
N10.53493 (14)0.2730 (3)0.49908 (14)0.0189 (5)
N30.54131 (14)0.2458 (3)0.36435 (13)0.0197 (5)
N50.33894 (14)0.0758 (3)0.37107 (14)0.0204 (5)
N60.42037 (14)0.1755 (3)0.53801 (14)0.0201 (5)
N210.65296 (14)0.3651 (3)0.46270 (14)0.0222 (6)
C20.57578 (16)0.2949 (4)0.44264 (16)0.0181 (6)
C40.46065 (17)0.1777 (4)0.33577 (17)0.0183 (6)
C50.41619 (16)0.1458 (4)0.39736 (16)0.0168 (6)
C60.45776 (16)0.1982 (4)0.47945 (16)0.0174 (6)
C220.70206 (17)0.4150 (4)0.40547 (17)0.0235 (7)
C230.79284 (17)0.3612 (4)0.43935 (18)0.0245 (7)
C250.78156 (17)0.3764 (4)0.57213 (18)0.0253 (7)
C260.68964 (17)0.4318 (4)0.54463 (17)0.0231 (7)
O140.26393 (12)0.1139 (3)0.58789 (11)0.0239 (5)
O150.11595 (12)0.2754 (3)0.73012 (12)0.0275 (5)
O1240.01980 (12)0.1750 (3)0.19404 (12)0.0271 (5)
N110.01877 (14)0.2418 (3)0.48437 (14)0.0208 (6)
N130.15311 (14)0.1339 (3)0.47926 (13)0.0195 (5)
N150.16550 (15)0.2226 (3)0.68759 (14)0.0232 (6)
N160.00794 (14)0.3182 (3)0.60244 (14)0.0231 (6)
N1210.04458 (14)0.1733 (3)0.36273 (13)0.0216 (6)
C120.07195 (16)0.1834 (4)0.44332 (16)0.0179 (6)
C140.18951 (17)0.1515 (4)0.56167 (16)0.0186 (6)
C150.13228 (16)0.2137 (4)0.60790 (16)0.0173 (6)
C160.04671 (17)0.2577 (4)0.56427 (17)0.0178 (6)
C1220.09100 (17)0.0866 (4)0.31082 (17)0.0229 (7)
C1230.06930 (18)0.1744 (4)0.22942 (17)0.0266 (7)
C1250.06061 (18)0.2797 (4)0.24350 (17)0.0232 (7)
C1260.04640 (17)0.1950 (5)0.32512 (17)0.0268 (7)
O10.26335 (14)0.4099 (3)0.27529 (13)0.0413 (6)
H30.57250.25840.33000.024*
H6A0.44600.20890.58730.024*
H6B0.36980.12700.52780.024*
H22A0.69820.54760.39570.028*
H22B0.67900.35250.35360.028*
H23A0.79670.22730.44390.029*
H23B0.82640.40070.40200.029*
H25A0.80680.42760.62610.030*
H25B0.78570.24250.57610.030*
H26A0.65830.38080.58160.028*
H26B0.68500.56570.54570.028*
H130.18400.08870.44890.023*
H16A0.05960.34550.57540.028*
H16B0.00720.33120.65500.028*
H22C0.07670.04410.30530.028*
H22D0.15230.09760.33540.028*
H23C0.09030.30090.23440.032*
H23D0.09780.10830.19370.032*
H25C0.12180.28610.21780.028*
H25D0.03800.40490.24890.028*
H26C0.07180.27240.35970.032*
H26D0.07420.07480.32020.032*
H1A0.22630.42820.22840.062*
H1B0.29930.28130.25800.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0213 (11)0.0324 (12)0.0143 (11)0.0041 (9)0.0029 (8)0.0021 (9)
O50.0160 (10)0.0365 (12)0.0224 (11)0.0029 (9)0.0092 (9)0.0029 (9)
O240.0161 (10)0.0312 (12)0.0250 (12)0.0005 (9)0.0062 (9)0.0003 (9)
N10.0155 (12)0.0231 (13)0.0186 (13)0.0010 (10)0.0054 (10)0.0012 (10)
N30.0157 (12)0.0284 (14)0.0160 (13)0.0037 (10)0.0060 (10)0.0013 (10)
N50.0159 (12)0.0255 (14)0.0214 (13)0.0004 (10)0.0075 (10)0.0023 (11)
N60.0150 (12)0.0301 (14)0.0152 (12)0.0023 (10)0.0038 (10)0.0017 (11)
N210.0162 (12)0.0337 (15)0.0164 (13)0.0048 (10)0.0038 (10)0.0034 (11)
C20.0143 (14)0.0221 (15)0.0173 (15)0.0016 (11)0.0028 (11)0.0016 (12)
C40.0161 (14)0.0191 (15)0.0194 (16)0.0021 (11)0.0039 (12)0.0007 (12)
C50.0141 (13)0.0195 (15)0.0164 (14)0.0020 (11)0.0032 (11)0.0007 (12)
C60.0138 (14)0.0207 (15)0.0184 (15)0.0023 (11)0.0052 (11)0.0007 (12)
C220.0211 (15)0.0280 (17)0.0225 (16)0.0084 (13)0.0075 (12)0.0011 (13)
C230.0221 (16)0.0288 (17)0.0251 (17)0.0014 (13)0.0103 (13)0.0024 (13)
C250.0195 (15)0.0293 (17)0.0254 (17)0.0016 (13)0.0028 (13)0.0008 (13)
C260.0189 (15)0.0348 (18)0.0153 (15)0.0034 (13)0.0038 (12)0.0053 (13)
O140.0156 (10)0.0359 (13)0.0198 (11)0.0027 (9)0.0036 (8)0.0009 (9)
O150.0266 (11)0.0404 (13)0.0174 (11)0.0049 (10)0.0092 (9)0.0011 (9)
O1240.0218 (11)0.0422 (13)0.0172 (11)0.0068 (9)0.0049 (9)0.0006 (9)
N110.0169 (12)0.0299 (14)0.0162 (13)0.0029 (10)0.0051 (10)0.0004 (10)
N130.0186 (12)0.0250 (13)0.0154 (12)0.0029 (10)0.0050 (10)0.0023 (10)
N150.0216 (13)0.0309 (15)0.0175 (13)0.0009 (11)0.0057 (10)0.0024 (11)
N160.0186 (12)0.0354 (15)0.0157 (13)0.0044 (11)0.0050 (10)0.0003 (11)
N1210.0161 (12)0.0342 (15)0.0147 (13)0.0018 (10)0.0043 (10)0.0018 (11)
C120.0132 (13)0.0237 (15)0.0167 (15)0.0007 (11)0.0035 (11)0.0027 (12)
C140.0183 (15)0.0210 (15)0.0165 (15)0.0029 (12)0.0047 (12)0.0017 (12)
C150.0150 (14)0.0221 (15)0.0156 (14)0.0003 (11)0.0057 (11)0.0011 (12)
C160.0184 (14)0.0191 (15)0.0172 (15)0.0013 (11)0.0069 (12)0.0028 (11)
C1220.0210 (15)0.0319 (17)0.0174 (15)0.0034 (13)0.0076 (12)0.0033 (13)
C1230.0215 (15)0.0391 (19)0.0207 (16)0.0049 (14)0.0083 (13)0.0014 (14)
C1250.0183 (14)0.0326 (18)0.0185 (16)0.0029 (13)0.0047 (12)0.0018 (13)
C1260.0137 (14)0.045 (2)0.0208 (16)0.0006 (13)0.0023 (12)0.0022 (14)
O10.0385 (14)0.0480 (16)0.0317 (14)0.0030 (11)0.0015 (11)0.0038 (11)
Geometric parameters (Å, º) top
O4—C41.225 (3)O15—N151.286 (3)
O5—N51.284 (3)O124—C1231.434 (3)
O24—C231.429 (3)O124—C1251.435 (3)
O24—C251.435 (3)N11—C121.327 (3)
N1—C21.323 (3)N11—C161.339 (3)
N1—C61.344 (3)N13—C121.368 (3)
N3—C21.370 (3)N13—C141.397 (3)
N3—C41.384 (3)N13—H130.88
N3—H30.88N15—C151.341 (3)
N5—C51.337 (3)N16—C161.318 (3)
N6—C61.317 (3)N16—H16A0.88
N6—H6A0.88N16—H16B0.88
N6—H6B0.88N121—C121.346 (3)
N21—C21.330 (3)N121—C1221.461 (3)
N21—C261.469 (3)N121—C1261.477 (3)
N21—C221.470 (3)C14—C151.452 (4)
C4—C51.451 (4)C15—C161.451 (4)
C5—C61.455 (4)C122—C1231.501 (4)
C22—C231.508 (4)C122—H22C0.99
C22—H22A0.99C122—H22D0.99
C22—H22B0.99C123—H23C0.99
C23—H23A0.99C123—H23D0.99
C23—H23B0.99C125—C1261.499 (4)
C25—C261.518 (4)C125—H25C0.99
C25—H25A0.99C125—H25D0.99
C25—H25B0.99C126—H26C0.99
C26—H26A0.99C126—H26D0.99
C26—H26B0.99O1—H1A0.89
O14—C141.222 (3)O1—H1B1.19
C23—O24—C25109.6 (2)C12—N11—C16118.4 (2)
C2—N1—C6119.2 (2)C12—N13—C14123.3 (2)
C2—N3—C4124.2 (2)C12—N13—H13118.3
C2—N3—H3117.9C14—N13—H13118.3
C4—N3—H3117.9O15—N15—C15116.4 (2)
O5—N5—C5117.6 (2)C16—N16—H16A120.0
C6—N6—H6A120.0C16—N16—H16B120.0
C6—N6—H6B120.0H16A—N16—H16B120.0
H6A—N6—H6B120.0C12—N121—C122124.4 (2)
C2—N21—C26120.6 (2)C12—N121—C126118.7 (2)
C2—N21—C22124.9 (2)C122—N121—C126114.0 (2)
C26—N21—C22113.5 (2)N11—C12—N121118.3 (2)
N1—C2—N21119.0 (3)N11—C12—N13122.9 (2)
N1—C2—N3122.0 (2)N121—C12—N13118.8 (2)
N21—C2—N3119.0 (2)O14—C14—N13118.8 (2)
O4—C4—N3119.9 (2)O14—C14—C15126.6 (3)
O4—C4—C5125.7 (2)N13—C14—C15114.6 (2)
N3—C4—C5114.4 (2)N15—C15—C16127.3 (2)
N5—C5—C4115.2 (2)N15—C15—C14115.1 (2)
N5—C5—C6126.9 (2)C16—C15—C14117.6 (2)
C4—C5—C6117.8 (2)N16—C16—N11116.3 (2)
N6—C6—N1117.0 (2)N16—C16—C15120.7 (2)
N6—C6—C5120.9 (2)N11—C16—C15123.0 (2)
N1—C6—C5122.1 (2)N121—C122—C123110.2 (2)
N21—C22—C23109.4 (2)N121—C122—H22C109.6
N21—C22—H22A109.8C123—C122—H22C109.6
C23—C22—H22A109.8N121—C122—H22D109.6
N21—C22—H22B109.8C123—C122—H22D109.6
C23—C22—H22B109.8H22C—C122—H22D108.1
H22A—C22—H22B108.2O124—C123—C122111.8 (2)
O24—C23—C22111.7 (2)O124—C123—H23C109.3
O24—C23—H23A109.3C122—C123—H23C109.3
C22—C23—H23A109.3O124—C123—H23D109.3
O24—C23—H23B109.3C122—C123—H23D109.3
C22—C23—H23B109.3H23C—C123—H23D107.9
H23A—C23—H23B107.9O124—C125—C126110.3 (2)
O24—C25—C26110.6 (2)O124—C125—H25C109.6
O24—C25—H25A109.5C126—C125—H25C109.6
C26—C25—H25A109.5O124—C125—H25D109.6
O24—C25—H25B109.5C126—C125—H25D109.6
C26—C25—H25B109.5H25C—C125—H25D108.1
H25A—C25—H25B108.1N121—C126—C125110.7 (2)
N21—C26—C25109.9 (2)N121—C126—H26C109.5
N21—C26—H26A109.7C125—C126—H26C109.5
C25—C26—H26A109.7N121—C126—H26D109.5
N21—C26—H26B109.7C125—C126—H26D109.5
C25—C26—H26B109.7H26C—C126—H26D108.1
H26A—C26—H26B108.2H1A—O1—H1B99.4
C123—O124—C125109.3 (2)
C6—N1—C2—N21178.5 (3)C16—N11—C12—N121177.8 (3)
C6—N1—C2—N30.9 (4)C16—N11—C12—N132.0 (4)
C26—N21—C2—N15.2 (4)C122—N121—C12—N11170.3 (3)
C22—N21—C2—N1173.2 (3)C126—N121—C12—N1110.9 (4)
C26—N21—C2—N3175.4 (2)C122—N121—C12—N139.9 (4)
C22—N21—C2—N37.5 (4)C126—N121—C12—N13169.3 (3)
C4—N3—C2—N13.1 (4)C14—N13—C12—N114.5 (4)
C4—N3—C2—N21177.6 (3)C14—N13—C12—N121175.3 (2)
C2—N3—C4—O4174.6 (3)C12—N13—C14—O14175.7 (3)
C2—N3—C4—C55.3 (4)C12—N13—C14—C154.6 (4)
O5—N5—C5—C4179.1 (2)O15—N15—C15—C160.2 (4)
O5—N5—C5—C61.6 (4)O15—N15—C15—C14179.3 (2)
O4—C4—C5—N51.8 (4)O14—C14—C15—N152.8 (4)
N3—C4—C5—N5178.4 (2)N13—C14—C15—N15176.9 (2)
O4—C4—C5—C6176.0 (3)O14—C14—C15—C16177.7 (3)
N3—C4—C5—C63.8 (4)N13—C14—C15—C162.7 (4)
C2—N1—C6—N6178.6 (2)C12—N11—C16—N16179.2 (3)
C2—N1—C6—C52.1 (4)C12—N11—C16—C150.2 (4)
N5—C5—C6—N61.4 (4)N15—C15—C16—N161.8 (4)
C4—C5—C6—N6179.0 (2)C14—C15—C16—N16178.7 (3)
N5—C5—C6—N1177.9 (3)N15—C15—C16—N11178.9 (3)
C4—C5—C6—N10.3 (4)C14—C15—C16—N110.6 (4)
C2—N21—C22—C23139.7 (3)C12—N121—C122—C123151.3 (3)
C26—N21—C22—C2351.6 (3)C126—N121—C122—C12348.5 (3)
C25—O24—C23—C2261.8 (3)C125—O124—C123—C12262.2 (3)
N21—C22—C23—O2456.0 (3)N121—C122—C123—O12454.6 (3)
C23—O24—C25—C2661.2 (3)C123—O124—C125—C12662.3 (3)
C2—N21—C26—C25138.8 (3)C12—N121—C126—C125149.0 (3)
C22—N21—C26—C2552.0 (3)C122—N121—C126—C12549.6 (3)
O24—C25—C26—N2156.0 (3)O124—C125—C126—N12155.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5i0.892.082.916 (3)157
O1—H1B···O41.192.373.423 (3)146
N3—H3···O15ii0.882.042.882 (3)161
N6—H6A···O124iii0.881.972.835 (3)166
N6—H6B···O50.881.982.623 (3)129
N6—H6B···O140.882.242.943 (3)137
N13—H13···O50.882.032.838 (3)152
N16—H16A···O24iv0.882.002.875 (3)173
N16—H16B···O150.881.962.605 (3)129
N16—H16B···O4v0.882.493.176 (3)136
C22—H22B···O15ii0.992.313.300 (4)175
C122—H22D···O50.992.493.447 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H13N5O3C4H10NO+·C8H10N5O3C8H11N5O3·0.5H2O
Mr239.24312.34234.23
Crystal system, space groupMonoclinic, P21/nMonoclinic, I2/aMonoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)8.9122 (6), 11.9051 (7), 10.4111 (4)9.4410 (11), 16.347 (4), 18.799 (5)16.421 (2), 7.3671 (12), 17.205 (4)
β (°) 105.649 (3) 90.045 (15) 104.794 (12)
V3)1063.68 (10)2901.3 (11)2012.4 (6)
Z488
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.110.12
Crystal size (mm)0.41 × 0.28 × 0.250.26 × 0.10 × 0.100.44 × 0.34 × 0.21
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.959, 0.9720.977, 0.9890.953, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
25676, 2445, 1516 33473, 3354, 2361 47024, 4646, 2535
Rint0.0680.0480.098
(sin θ/λ)max1)0.6500.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.06 0.049, 0.109, 1.09 0.058, 0.162, 1.05
No. of reflections244533544646
No. of parameters155199298
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.310.25, 0.270.32, 0.41

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O24i0.881.982.848 (3)168
N6—H6B···O50.881.982.619 (3)129
N6—H6B···O4ii0.882.352.896 (3)121
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O5i0.882.022.872 (2)163
N6—H6B···O50.881.952.608 (2)130
N31—H31A···O4ii0.922.082.868 (2)143
N31—H31A···N5ii0.922.212.939 (2)136
N31—H31B···O40.921.852.711 (2)154
Symmetry codes: (i) x1/2, y+1, z; (ii) x+3/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5i0.892.082.916 (3)157
O1—H1B···O41.192.373.423 (3)146
N3—H3···O15ii0.882.042.882 (3)161
N6—H6A···O124iii0.881.972.835 (3)166
N6—H6B···O50.881.982.623 (3)129
N6—H6B···O140.882.242.943 (3)137
N13—H13···O50.882.032.838 (3)152
N16—H16A···O24iv0.882.002.875 (3)173
N16—H16B···O150.881.962.605 (3)129
N16—H16B···O4v0.882.493.176 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2.
Selected bond distances and angles (Å, °) for compounds (I)–(III) top
Parameter(I)(II)(III), mol 1(III), mol 2
x = nilx = nilx = nilx = 1
Nx1—Cx21.315 (3)1.353 (2)1.323 (3)1.327 (3)
Cx2—Nx31.376 (3)1.353 (2)1.370 (3)1.368 (3)
Nx3—Cx41.415 (3)1.346 (2)1.384 (3)1.397 (3)
Cx4—Cx51.447 (3)1.472 (3)1.451 (4)1.452 (4)
Cx5—Cx61.435 (3)1.450 (2)1.455 (4)1.451 (4)
Cx6—Nx11.357 (3)1.331 (2)1.344 (3)1.339 (3)
Cx2—Nx211.358 (3)1.352 (2)1.330 (3)1.346 (3)
Cx4—Ox41.221 (3)1.260 (2)1.225 (3)1.222 (3)
Cx5—Nx51.358 (3)1.327 (2)1.337 (3)1.341 (3)
Nx5—Ox51.275 (3)1.307 (2)1.284 (3)1.286 (3)
Cx6—Nx61.316 (3)1.328 (2)1.317 (3)1.318 (3)
Δa0.083 (3)0.020 (2)0.053 (3)0.055 (3)
Cx6—Cx5—Nx5—Ox50.0 (3)-2.3 (3)-1.6 (4)0.2 (4)
Notes: (a) Δ is the bond-length difference [d(Cx5—Nx5) - d(Nx5—Ox5)].
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds