Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H24N2Se3, consists of discrete mol­ecules; owing to the presence of strong intra­molecular N...Se inter­actions [N...Se = 2.671 (4) and 2.873 (4) Å], the chalcogen Se atoms of the angular Se3 chain exhibit different coordination geometries, i.e. the terminal Se atoms are tricoordinated and exhibit a T-shaped environment of the CNSe2 core [N...Se—Se = 173.73 (9) and 172.29 (9)°], while the central Se atom is dicoordinated to the other two Se atoms, with an Se—Se—Se angle of 108.32 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107051591/gg3121sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051591/gg3121Isup2.hkl
Contains datablock I

CCDC reference: 672541

Comment top

Our research interests have focused on the synthesis, structural characterization and chemical reactivity of new RSe and RTe derivatives containing aryl groups with pendant arms, e.g. 2-(Me2NCH2)C6H4, 2-[O(CH2CH2)2NCH2]C6H4– and 2-[MeN(CH2CH2)2NCH2]C6H4– groups (Drake et al., 2001a,b; Deleanu et al., 2002; Kulcsar et al., 2005, 2007). Both organic groups attached to the Se atoms form intramolecular N···Se interactions, resulting in an increase in the coordination number at the Se1 and Se3 atoms to three (Fig. 1). Some diorganotriselenides (R2Se3) of the type R—Se—Se—Se—R [R = But2CH (McKinnon et al., 1978), 2,4-Cl2C6H3 (Hansen et al., 1989), (Me3Si)3C (Jones & Jeske, 2004), 2-(2-phenyl-5,6-dihydro-4H-1,3-oxazinyl) (Kumar et al., 2004), 4-(phenylamino)quinazolin-2-yl (Atanassov et al., 2004), 2,6-(2,4,6-Pri3C6H2)2C6H3 (Krumm et al., 2005), (Me2PhSi)3C (Klapötke et al., 2006) and (Me2PhSi)2ClC (Klapötke et al., 2007)] have already been reported.

In the title compound, (I), the coordination geometry around the central Se atom is pseudo-tetrahedral [Se1—Se2—Se3 = 108.32 (3)°] (Table 1) with two positions occupied by the two lone pairs of electrons, while the other two chalcogen Se atoms have distorted T-shaped coordination geometries [N1···Se1—Se2 = 173.73 (9)° and Se2—Se3···N2 = 172.29 (9)°]. The two N···Se distances are considerably different [N1···Se1 = 2.671 (4) Å and N2···Se3 = 2.873 (4) Å] and larger than the sum of the covalent radii [rcov(Se,N) = 1.87 Å], but significantly shorter than the sum of the corresponding van der Waals radii [rvdW(Se,N) = 3.54 Å] (Emsley, 1993). These distances are in the range 2.61–2.97 Å observed for intramolecular N···Se interactions in R2Se2 {e.g. bis[(2-dimethylaminomethyl)phenyl]diselenide (Kaur et al., 1996), [5-Me-2-(4-MeC6H4N N)C6H3]2Se2 (Jones et al., 1996), bis[8-(dimethylamino)-1-naphthyl]diselenide (Mugesh et al., 2001, 2002), bis[2-(4,4-dimethyl-2-oxazolinyl)phenyl]diselenide, bis[2-(4-ethyl-2-oxazolinyl)phenyl]diselenide (Mugesh et al., 1998, 2001), bis[2-{(4S,5S)-4-hydroxymethyl-5-phenyloxazolin-2-yl}phenyl]δiselenide (Miyake et al., 2002), bis[3-(4,5-dihydro-4,4-dimethyl-1,3-oxazol-2-yl)-4-(3,5-dimethylphenyl)-\2-naphthyl]diselenide (Kandasamy et al., 2004), bis[2-(morfolin-1-ylmethyl)phenyl]diselenide and bis[2-(4-methylpiperazin-1-ylmethyl)phenyl]diselenide (Kulcsar et al., 2007)}. However, they are longer than those in the known R2Se3 [R = 2-(2-phenyl-5,6-dihydro-4H-1,3-oxazinyl)] derivative [N···Se = 2.562 (18) and 2.569 (14) Å; Kumar et al., 2004]. There are two additional C—H···Se2 intramolecular contacts (Table 2), which are ca 0.3° shorter than the sum of the H/Se contact radii (Fig. 2a).

In spite of the asymmetry in the Se···N distances, the Se—Se bond lengths in (I) are only slightly different [Se1—Se2 = 2.3545 (6) Å and Se2—Se3 = 2.3372 (7) Å] and fall in the range found for R2Se2 with aromatic groups with pendant arms, i.e. 2.32–2.38 Å, or the previously mentioned diorganotrichalcogenides R2Se3.

The two (C,N)SeSe cores are distorted as a result of the small bite of the organic ligand [C1—Se1···N1 = 76.58 (14)° and C10—Se3···N2 74.12 (15)°], the values diminished at the expense of the enlarged C—Se—Se angles [C1—Se1—Se2 = 102.65 (12)° and C10—Se3—Se2 = 102.73 (12)°]. The phenyl rings are twisted with a C1—Se1—Se3—C10 torsion angle of -143.65 (18)°. The Se—Se—Se angle [108.32 (3)°] is in the range for reported triselenides [99.68 (6)–111.16 (3)°]. The conformation of the C—Se—Se—C skeleton in diorganodichalcogenides can be discussed in terms of `cisoid' (C—Se—Se—C < 90°) and `transoid' conformations (C—Se—Se—C > 90°). For the reported R2Se2, both conformations were found, i.e. the C—Se—Se—C torsion angle is 80.9° in [2-{O(CH2CH2)2NCH2}C6H4]2Se2 (cisoid) and 114.0° in [2-{MeN(CH2CH2)2NCH2}C6H4]2Se2 (transoid) (Kulcsar et al., 2007). In (I), an overall transoid conformation can be assumed by C1—Se1—Se3—C10 having a torsion angle -143.65 (18)°.

The intramolecular N···Se interactions induce planar chirality in the molecule, since the SeC3N rings are not planar but folded along the Se1···Cmethylene axis, with the N atom lying out of the best plane defined by the residual SeC3 system. Similar behavior was observed in related RSe systems (Kulcsar et al., 2005, 2007). As a consequence, the compound crystallizes as a racemate, i.e. a mixture of RN1RN2 and SN1SN2 isomers [with the aromatic ring and the N atom as chiral plane and pivot atom, respectively (IUPAC, 1979)].

As with the related [2-(Me2NCH2)C6H4]2Se2 derivative, no short intermolecular interactions were found in (I), though the alkyl CH groups interact with a neighbouring aromatic C6 ring at contact distances (Table 2). In the structure of the analogous R2Te2 compound, [2-(Me2NCH2)C6H4]2Te2, contains discrete dimer associations of pairs of RN1SN2- and SN1RN2-[2-(Me2NCH2)C6H4]2Te2 isomers built through π—Te···Ph interactions established between atom Te2 of one molecule and the aromatic ring attached to atom Te1 of the other molecule [Te2···Phcentroid = 3.750 (1) Å; Drake et al., 2001a, 2001b (please specify)].

Related literature top

For related literature, see: Atanassov et al. (2004); Deleanu et al. (2002); Drake et al. (2001a,b); Hansen et al. (1989); Jones & Jeske (2004); Jones & Ramirez de Arellano (1996); Kandasamy et al. (2004); Kaur et al. (1996); Klapötke et al. (2006, 2007); Krumm et al. (2005); Kulcsar et al. (2005, 2007); Kumar et al. (2004); Miyake et al. (2002); Mugesh et al. (1998, 2001, 2002).

Experimental top

A few crystals of the title compound, (I), were isolated as a by-product in the synthesis of [2-(Me2NCH2)C6H4]2Se2, as a result of insertion of some residual elemental Se in the Se—Se bond of the major [2-(Me2NCH2)C6H4]2Se2 product (Scheme 2). Single crystals suitable for X-ray diffraction were obtained from a CHCl3/n-hexane mixture.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model [C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for aryl H]. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : A view of (I), with the atomic numbering scheme at 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. : (a) A view of the two intramolecular C—H···Se2 contacts in (I). (b) A view of the intramolecular and intermolecular contacts between a pair of molecules in (I) (with atoms drawn as their van der Waals spheres).
1,3-Bis[2-(Dimethylaminomethyl)phenyl]triselenide top
Crystal data top
C18H24N2Se3F(000) = 992
Mr = 505.27Dx = 1.683 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3850 reflections
a = 13.5307 (12) Åθ = 2.5–23.5°
b = 9.8246 (9) ŵ = 5.53 mm1
c = 16.0701 (14) ÅT = 297 K
β = 111.013 (2)°Block, colourless
V = 1994.2 (3) Å30.24 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
h = 1616
Tmin = 0.324, Tmax = 0.515k = 1111
18693 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0281P)2 + 1.5451P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C18H24N2Se3V = 1994.2 (3) Å3
Mr = 505.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5307 (12) ŵ = 5.53 mm1
b = 9.8246 (9) ÅT = 297 K
c = 16.0701 (14) Å0.24 × 0.17 × 0.12 mm
β = 111.013 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
2961 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.515Rint = 0.048
18693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.14Δρmax = 0.46 e Å3
3509 reflectionsΔρmin = 0.62 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0222 (3)0.2445 (4)0.0499 (3)0.0385 (10)
C20.0964 (3)0.1431 (4)0.0875 (3)0.0414 (10)
C30.1213 (4)0.1123 (5)0.1766 (3)0.0561 (13)
H30.17170.04570.20280.067*
C40.0732 (4)0.1779 (6)0.2273 (3)0.0687 (15)
H40.08950.15420.28680.082*
C50.0008 (4)0.2788 (6)0.1897 (3)0.0632 (14)
H50.03090.32480.22410.076*
C60.0253 (3)0.3125 (4)0.1007 (3)0.0472 (11)
H60.07460.38070.07530.057*
C70.1447 (3)0.0620 (4)0.0331 (3)0.0509 (12)
H7A0.21030.02170.07240.061*
H7B0.09700.01160.00400.061*
C80.2525 (4)0.2375 (5)0.0035 (3)0.0580 (13)
H8A0.23930.29210.04800.087*
H8B0.25750.29530.04300.087*
H8C0.31760.18860.03020.087*
C90.1841 (4)0.0559 (5)0.1006 (3)0.0659 (14)
H9A0.19800.11190.14420.099*
H9B0.12240.00140.12930.099*
H9C0.24380.00240.07260.099*
C100.3350 (3)0.2091 (4)0.2439 (3)0.0390 (10)
C110.4045 (3)0.0990 (4)0.2674 (3)0.0458 (11)
C120.4233 (4)0.0383 (5)0.3496 (3)0.0653 (14)
H120.47040.03440.36700.078*
C130.3741 (5)0.0829 (6)0.4060 (4)0.0768 (17)
H130.38760.04020.46060.092*
C140.3050 (4)0.1908 (6)0.3816 (3)0.0670 (15)
H140.27130.22110.41940.080*
C150.2860 (4)0.2537 (5)0.3007 (3)0.0506 (12)
H150.23960.32710.28420.061*
C160.4546 (4)0.0460 (5)0.2049 (3)0.0586 (13)
H16A0.50430.02550.23420.070*
H16B0.40040.00670.15310.070*
C170.5271 (5)0.1140 (7)0.0944 (4)0.098 (2)
H17A0.56120.18750.07580.147*
H17B0.46030.09470.04830.147*
H17C0.57120.03450.10540.147*
C180.6074 (4)0.1859 (5)0.2463 (4)0.0729 (16)
H18A0.59360.20780.29930.109*
H18B0.63940.26280.22890.109*
H18C0.65470.10950.25780.109*
N10.1664 (3)0.1419 (4)0.0337 (2)0.0434 (9)
N20.5099 (3)0.1525 (4)0.1759 (3)0.0533 (10)
Se10.01400 (3)0.28240 (4)0.07642 (3)0.04106 (14)
Se20.16148 (4)0.42749 (4)0.10822 (3)0.05104 (15)
Se30.31137 (3)0.29357 (4)0.12962 (3)0.04436 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.041 (2)0.041 (2)0.0099 (18)0.0113 (19)0.0044 (19)
C20.032 (2)0.039 (2)0.052 (3)0.0037 (19)0.013 (2)0.001 (2)
C30.044 (3)0.066 (3)0.051 (3)0.002 (2)0.008 (2)0.011 (3)
C40.064 (4)0.094 (4)0.046 (3)0.009 (3)0.016 (3)0.010 (3)
C50.064 (4)0.082 (4)0.050 (3)0.007 (3)0.029 (3)0.014 (3)
C60.045 (3)0.047 (3)0.053 (3)0.006 (2)0.021 (2)0.011 (2)
C70.037 (3)0.044 (3)0.072 (3)0.004 (2)0.020 (2)0.001 (2)
C80.047 (3)0.061 (3)0.072 (3)0.005 (2)0.030 (3)0.005 (3)
C90.056 (3)0.073 (4)0.070 (4)0.008 (3)0.024 (3)0.019 (3)
C100.034 (2)0.047 (3)0.033 (2)0.0039 (19)0.0085 (19)0.0054 (19)
C110.033 (2)0.048 (3)0.050 (3)0.002 (2)0.007 (2)0.005 (2)
C120.064 (3)0.066 (3)0.059 (3)0.017 (3)0.014 (3)0.015 (3)
C130.074 (4)0.097 (5)0.058 (4)0.011 (3)0.021 (3)0.021 (3)
C140.062 (3)0.096 (4)0.048 (3)0.010 (3)0.025 (3)0.002 (3)
C150.042 (3)0.062 (3)0.048 (3)0.009 (2)0.017 (2)0.000 (2)
C160.041 (3)0.059 (3)0.065 (3)0.008 (2)0.007 (2)0.021 (3)
C170.082 (5)0.147 (6)0.080 (4)0.029 (4)0.047 (4)0.006 (4)
C180.049 (3)0.066 (4)0.091 (4)0.003 (3)0.009 (3)0.002 (3)
N10.032 (2)0.049 (2)0.048 (2)0.0001 (17)0.0141 (17)0.0074 (18)
N20.040 (2)0.066 (3)0.054 (2)0.012 (2)0.0171 (19)0.004 (2)
Se10.0384 (3)0.0439 (3)0.0406 (3)0.00104 (19)0.0138 (2)0.00237 (19)
Se20.0422 (3)0.0376 (3)0.0630 (3)0.0021 (2)0.0062 (2)0.0020 (2)
Se30.0405 (3)0.0500 (3)0.0418 (3)0.0069 (2)0.0140 (2)0.0013 (2)
Geometric parameters (Å, º) top
C1—C61.379 (6)C10—Se31.935 (4)
C1—C21.390 (6)C11—C121.388 (6)
C1—Se11.946 (4)C11—C161.493 (6)
C2—C31.382 (6)C12—C131.374 (7)
C2—C71.496 (6)C12—H120.9300
C3—C41.373 (7)C13—C141.374 (7)
C3—H30.9300C13—H130.9300
C4—C51.372 (7)C14—C151.378 (6)
C4—H40.9300C14—H140.9300
C5—C61.385 (6)C15—H150.9300
C5—H50.9300C16—N21.457 (6)
C6—H60.9300C16—H16A0.9700
C7—N11.443 (5)C16—H16B0.9700
C7—H7A0.9700C17—N21.460 (6)
C7—H7B0.9700C17—H17A0.9600
C8—N11.448 (5)C17—H17B0.9600
C8—H8A0.9600C17—H17C0.9600
C8—H8B0.9600C18—N21.435 (6)
C8—H8C0.9600C18—H18A0.9600
C9—N11.453 (5)C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C9—H9B0.9600Se1—Se22.3545 (6)
C9—H9C0.9600Se2—Se32.3372 (7)
C10—C151.378 (6)Se1—N12.671 (4)
C10—C111.394 (6)Se3—N22.873 (4)
C6—C1—C2120.5 (4)C12—C13—C14120.0 (5)
C6—C1—Se1121.9 (3)C12—C13—H13120.0
C2—C1—Se1117.6 (3)C14—C13—H13120.0
C3—C2—C1118.5 (4)C13—C14—C15119.5 (5)
C3—C2—C7119.7 (4)C13—C14—H14120.3
C1—C2—C7121.8 (4)C15—C14—H14120.3
C4—C3—C2121.4 (5)C10—C15—C14120.7 (4)
C4—C3—H3119.3C10—C15—H15119.6
C2—C3—H3119.3C14—C15—H15119.6
C5—C4—C3119.6 (5)N2—C16—C11112.0 (4)
C5—C4—H4120.2N2—C16—H16A109.2
C3—C4—H4120.2C11—C16—H16A109.2
C4—C5—C6120.4 (5)N2—C16—H16B109.2
C4—C5—H5119.8C11—C16—H16B109.2
C6—C5—H5119.8H16A—C16—H16B107.9
C1—C6—C5119.7 (4)N2—C17—H17A109.5
C1—C6—H6120.2N2—C17—H17B109.5
C5—C6—H6120.2H17A—C17—H17B109.5
N1—C7—C2113.2 (4)N2—C17—H17C109.5
N1—C7—H7A108.9H17A—C17—H17C109.5
C2—C7—H7A108.9H17B—C17—H17C109.5
N1—C7—H7B108.9N2—C18—H18A109.5
C2—C7—H7B108.9N2—C18—H18B109.5
H7A—C7—H7B107.8H18A—C18—H18B109.5
N1—C8—H8A109.5N2—C18—H18C109.5
N1—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
N1—C8—H8C109.5C7—N1—C8113.2 (4)
H8A—C8—H8C109.5C7—N1—C9111.5 (4)
H8B—C8—H8C109.5C8—N1—C9111.2 (4)
N1—C9—H9A109.5C18—N2—C16110.2 (4)
N1—C9—H9B109.5C18—N2—C17111.7 (4)
H9A—C9—H9B109.5C16—N2—C17111.5 (4)
N1—C9—H9C109.5C1—Se1—Se2102.65 (12)
H9A—C9—H9C109.5Se3—Se2—Se1108.32 (2)
H9B—C9—H9C109.5C10—Se3—Se2102.73 (12)
C15—C10—C11120.4 (4)C1—Se1—N176.58 (14)
C15—C10—Se3122.5 (3)C10—Se3—N274.12 (15)
C11—C10—Se3117.1 (3)C7—N1—Se193.5 (2)
C12—C11—C10117.8 (4)C8—N1—Se1107.3 (6)
C12—C11—C16121.2 (4)C9—N1—Se1119.2 (3)
C10—C11—C16120.9 (4)C16—N2—Se383.7 (3)
C13—C12—C11121.6 (5)C17—N2—Se3109.1 (4)
C13—C12—H12119.2C18—N2—Se3127.1 (3)
C11—C12—H12119.2
C6—C1—C2—C30.0 (6)C16—C11—C12—C13177.3 (5)
Se1—C1—C2—C3178.4 (3)C11—C12—C13—C140.5 (9)
C6—C1—C2—C7176.4 (4)C12—C13—C14—C150.3 (9)
Se1—C1—C2—C72.0 (5)C11—C10—C15—C140.2 (7)
C1—C2—C3—C41.1 (7)Se3—C10—C15—C14179.9 (4)
C7—C2—C3—C4175.4 (4)C13—C14—C15—C100.4 (8)
C2—C3—C4—C51.7 (8)C12—C11—C16—N2127.2 (5)
C3—C4—C5—C61.3 (8)C10—C11—C16—N254.5 (6)
C2—C1—C6—C50.4 (6)C2—C7—N1—C870.1 (5)
Se1—C1—C6—C5178.0 (3)C2—C7—N1—C9163.7 (4)
C4—C5—C6—C10.3 (7)C11—C16—N2—C1874.8 (5)
C3—C2—C7—N1145.3 (4)C11—C16—N2—C17160.6 (4)
C1—C2—C7—N138.4 (6)C6—C1—Se1—Se28.6 (4)
C15—C10—C11—C120.9 (6)C2—C1—Se1—Se2169.8 (3)
Se3—C10—C11—C12179.2 (3)C1—Se1—Se2—Se381.14 (12)
C15—C10—C11—C16177.4 (4)C15—C10—Se3—Se214.0 (4)
Se3—C10—C11—C162.5 (5)C11—C10—Se3—Se2165.9 (3)
C10—C11—C12—C131.0 (8)Se1—Se2—Se3—C1072.11 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Se20.932.793.392 (4)123
C15—H15···Se20.932.823.404 (5)122
C7—H7B···C1i0.972.753.713 (4)170
C7—H7B···C2i0.972.813.732 (4)158
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H24N2Se3
Mr505.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)13.5307 (12), 9.8246 (9), 16.0701 (14)
β (°) 111.013 (2)
V3)1994.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.53
Crystal size (mm)0.24 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.324, 0.515
No. of measured, independent and
observed [I > 2σ(I)] reflections
18693, 3509, 2961
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 1.14
No. of reflections3509
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.62

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
C1—Se11.946 (4)Se2—Se32.3372 (7)
C10—Se31.935 (4)Se1—N12.671 (4)
Se1—Se22.3545 (6)Se3—N22.873 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Se20.932.793.392 (4)123
C15—H15···Se20.932.823.404 (5)122
C7—H7B···C1i0.972.753.713 (4)170
C7—H7B···C2i0.972.813.732 (4)158
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds