Download citation
Download citation
link to html
The unusual title macrocyclic structure, C60H54B2O4, has been isolated from exposure of 3-BF3-1-phenyl­buta-1,3-diene to both air and moisture in an attempt to obtain crystals of the starting butadiene compound. Formation of the macrocycle from six mol­ecules of the starting butadiene material is rationalized and its structural features are compared with those of other B(OR)2-substituted cyclo­hexane and benzene ring containing structures. Mol­ecules reside on crystallographic centers of inversion and there are no inter­molecular inter­actions of note in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107050986/gg3111sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107050986/gg3111Isup2.hkl
Contains datablock I

CCDC reference: 672551

Comment top

We have recently begun to prepare 2-boron- (De & Welker, 2005) and 2-silicon-substituted 1,3-dienes and investigate their Diels–Alder/cross coupling reactions (Pidaparthi et al., 2007). Most recently, we reported the preparation of several halogen-substituted phenylbutadienes and their conversion into boron-substituted dienes (De et al., 2007). To our surprise, when we attempted to grow crystals of a BF3 substituted diene, (I) (3-BF3-1-phenylbuta-1,3-diene), in ethyl acetate/acetone under atmospheric conditions, a symmetrical structure, (II), derived from six molecules of (I), was isolated and characterized (Scheme 1).

We can rationalize the formation of (II) through the reactive units (III) and (IV) in Scheme 2. The rationalization requires protonolysis of some of the B—C bonds in (I) to generate 1-phenylbuta-1,3-diene. The terminal double bond of one 1-phenylbuta-1,3-diene molecule (labeled 1 in the first scheme below) appears to have been oxidized and to have participated in an electrophilic addition reaction with the internal alkene of a second molecule of 1-phenylbuta-1,3-diene (2 in the scheme below). The terminal double bond of this second molecule of 1-phenylbuta-1,3-diene has taken part in a Diels–Alder reaction with a boron-substituted diene (depicted as the boronic acid-substituted diene 3 in the scheme below). This rationalization also requires a hydrolysis of the starting dienyl trifluoroborate (I). Organotrifluoroborates are known to hydrolyze easily in mildly basic acetone/water mixtures (Yuen & Hutton, 2005). We suspect there may still be traces of methoxide present after the preparation of (I), and this catalyzes the hydrolysis required by the production of (II).

The molecular structure of (II) is depicted in Fig. 1 and selected geometric parameters are given in Table 1. Bond lengths and angles in or near the B-atom coordination sphere are normal (Table 1). The B1—C3 bonds in (II) are similar to other B—Csp2 bonds in boronate ester compounds that have been reported recently (Scheme 3), for example, 1.555–1.588 Å in (V) (Coghlan et al., 2005), (VI) (Darwish et al., 2004) and (VII) (Pohl et al., 2004). Likewise the B—O and C—O bond lengths here are in the range of those reported for (V)–(VII) (1.35–1.38 Å and 1.45–1.47 Å). The O—B—O bond angles in (II) and (V)–(VII) are all 113 ± 1°, the C—C—B bond angles are all 119 ± 1° and the C—B—O bond angles are all 123 ± 1°.

There are no accessible voids in the molecular structure of (II). Steric factors seem to dictate the orientation of the styryl (C15—C16—Ph) group. Some nonbonded contacts are notable, involving the styryl C=C H15 atom on C15 with neighboring HC atoms (H15···H18 = 2.21 Å, H15···H2A = 2.65 Å and H15···C30' = 3.01 Å). Any rotation of the coplanar (to within 0.009 Å; C15 displaced by 0.31 Å) C16—Ph group that would elongate the 2.39 Å H16···O1 contact would simultaneously shorten the H15···H18, H15···H2A and H15···C2 contacts or the H15-to-aromatic ring (intramolecular) and H19-to-aromatic ring (intermolecular) contacts depending upon the direction of rotation. The styryl (C15/C16/Ph) group is distorted from planarity by 17° as determined by the angle between normals to the C15/C16/C17 and C17–C22 least-squares mean planes, respectively.

Related literature top

For related literature, see: Coghlan et al. (2005); Darwish et al. (2004); De & Welker (2005); De et al. (2007); Pohl et al. (2004); Yuen & Hutton (2005).

Experimental top

Complex (I) (3-BF3-1-phenylbuta-1,3-diene) was prepared as described previously (De et al., 2007). Crystals of (II) were grown by evaporation of an ethyl acetate/acetone solution of (I) at 298 K with no precautions taken to exclude air or moisture.

Refinement top

Crystals of (II) diffracted poorly and only 54% of the reflections with 2θ < 46.5° were `observed' [I > 2σ(I)]. The final structural model incorporated anisotropic displacement parameters for all non-H atoms and isotropic parameters for all H atoms. H atoms were included in the structural model as idealized atoms (assuming sp2– or sp3-hybridization of the C atoms and C—H bond lengths of 0.95–1.00 Å). The isotropic displacement parameters of all H atoms were fixed at values of 1.2 times the equivalent parameter of the C atom to which they are covalently bonded. H-atom distances/angles not included in CIF data; please provide.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) with non-H atoms depicted with 50% probability displacement ellipsoids. Hydrogen atoms are represented by arbitrarily small spheres. Atoms labeled with a prime (') are related to nonprimed atoms by a crystallographic inversion center.
6,9,16,19-tetraphenyl-5,15-distyryl-3,13,25,26-tetraoxa-2,12- diborapentacyclo[16.2.2.28,11.12,5.112,15]hexacosa-1(20),7,10,17-tetraene top
Crystal data top
C60H54B2O4F(000) = 912
Mr = 860.65Dx = 1.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1350 reflections
a = 13.212 (3) Åθ = 3.8–18.8°
b = 6.0975 (13) ŵ = 0.08 mm1
c = 29.028 (6) ÅT = 193 K
β = 101.764 (3)°Plate, colourless
V = 2289.4 (9) Å30.37 × 0.09 × 0.03 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3260 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 23.3°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996))
h = 1414
Tmin = 0.973, Tmax = 0.998k = 66
13447 measured reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
3260 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C60H54B2O4V = 2289.4 (9) Å3
Mr = 860.65Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.212 (3) ŵ = 0.08 mm1
b = 6.0975 (13) ÅT = 193 K
c = 29.028 (6) Å0.37 × 0.09 × 0.03 mm
β = 101.764 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996))
1769 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.998Rint = 0.082
13447 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.85Δρmax = 0.16 e Å3
3260 reflectionsΔρmin = 0.15 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

A full hemisphere of diffracted intensities (1868 30-second frames) was measured on a a single-domain specimen. X-rays were provided by a fine- focus sealed X-ray tube operated at 50 kV and 30 mA.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02916 (13)0.9165 (3)0.11343 (6)0.0502 (5)
O20.02893 (14)0.5719 (4)0.08287 (6)0.0554 (5)
B10.0560 (2)0.7872 (7)0.07959 (11)0.0458 (9)
C10.0352 (2)0.7881 (5)0.13841 (9)0.0459 (8)
C20.0126 (2)0.5528 (5)0.12540 (10)0.0563 (9)
H2A0.03830.48330.15100.068*
H2B0.07670.46390.11950.068*
C30.1148 (2)0.8724 (5)0.04198 (9)0.0437 (8)
C40.1710 (2)1.0525 (5)0.05104 (9)0.0462 (8)
H40.17251.12270.08040.055*
C50.23293 (19)1.1552 (5)0.01851 (8)0.0428 (7)
H50.21531.31490.01640.051*
C60.20079 (18)1.0614 (5)0.03082 (9)0.0399 (7)
C70.1888 (2)0.8187 (5)0.03085 (9)0.0442 (7)
H7A0.25560.75020.01630.053*
H7B0.16890.76560.06370.053*
C80.1061 (2)0.7512 (5)0.00349 (9)0.0470 (8)
H8A0.03690.77840.02330.056*
H8B0.11220.59190.00310.056*
C90.3491 (2)1.1380 (5)0.03802 (8)0.0401 (7)
C100.4123 (2)1.3111 (5)0.03443 (9)0.0546 (8)
H100.38331.44190.01960.066*
C110.5182 (3)1.3005 (6)0.05202 (10)0.0656 (9)
H110.56101.42280.04920.079*
C120.5598 (2)1.1134 (7)0.07333 (10)0.0635 (9)
H120.63221.10480.08530.076*
C130.4985 (2)0.9381 (6)0.07768 (10)0.0611 (9)
H130.52820.80780.09250.073*
C140.3926 (2)0.9502 (5)0.06038 (9)0.0542 (8)
H140.34980.82870.06390.065*
C150.0009 (2)0.8229 (5)0.19025 (9)0.0523 (8)
H150.03490.73960.21020.063*
C160.0720 (2)0.9580 (5)0.21068 (10)0.0567 (9)
H160.10151.05040.19060.068*
C170.1126 (2)0.9806 (5)0.26172 (10)0.0527 (8)
C180.0972 (2)0.8165 (6)0.29293 (11)0.0682 (10)
H180.06010.68800.28130.082*
C190.1352 (3)0.8385 (7)0.34062 (11)0.0797 (11)
H190.12280.72680.36160.096*
C200.1906 (3)1.0201 (7)0.35771 (12)0.0797 (11)
H200.21791.03430.39050.096*
C210.2066 (3)1.1817 (7)0.32733 (13)0.0875 (12)
H210.24401.30960.33930.105*
C220.1694 (2)1.1616 (6)0.27949 (12)0.0748 (10)
H220.18301.27330.25880.090*
C230.18342 (18)1.1917 (5)0.06795 (9)0.0424 (7)
H230.19471.34350.06150.051*
C240.14816 (19)1.1333 (5)0.11930 (8)0.0454 (8)
H240.14650.96940.12090.054*
C250.2251 (2)1.2078 (5)0.14893 (9)0.0445 (7)
C260.2732 (2)1.4079 (5)0.14383 (10)0.0541 (8)
H260.25711.50900.12150.065*
C270.3450 (2)1.4662 (6)0.17074 (11)0.0630 (9)
H270.37821.60510.16650.076*
C280.3672 (2)1.3225 (7)0.20316 (12)0.0700 (10)
H280.41611.36140.22170.084*
C290.3199 (3)1.1233 (7)0.20916 (11)0.0697 (10)
H290.33571.02340.23180.084*
C300.2482 (2)1.0659 (6)0.18210 (10)0.0573 (8)
H300.21490.92720.18660.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (12)0.0705 (14)0.0352 (11)0.0053 (11)0.0101 (9)0.0040 (11)
O20.0543 (13)0.0691 (15)0.0431 (12)0.0054 (11)0.0102 (10)0.0027 (11)
B10.035 (2)0.060 (3)0.037 (2)0.0030 (19)0.0055 (16)0.000 (2)
C10.0461 (19)0.060 (2)0.0322 (16)0.0059 (16)0.0081 (14)0.0023 (16)
C20.0517 (19)0.073 (2)0.0422 (19)0.0015 (17)0.0045 (15)0.0111 (17)
C30.0353 (17)0.060 (2)0.0333 (17)0.0095 (15)0.0011 (13)0.0021 (15)
C40.0384 (17)0.070 (2)0.0292 (16)0.0107 (17)0.0040 (13)0.0004 (16)
C50.0405 (17)0.055 (2)0.0309 (15)0.0091 (15)0.0031 (13)0.0007 (14)
C60.0315 (16)0.058 (2)0.0291 (16)0.0100 (15)0.0043 (12)0.0019 (16)
C70.0462 (18)0.055 (2)0.0296 (15)0.0054 (15)0.0040 (13)0.0012 (15)
C80.0446 (18)0.055 (2)0.0400 (17)0.0068 (15)0.0060 (14)0.0013 (15)
C90.0392 (17)0.053 (2)0.0262 (15)0.0067 (16)0.0026 (13)0.0047 (15)
C100.054 (2)0.064 (2)0.0441 (18)0.0042 (19)0.0057 (15)0.0044 (17)
C110.050 (2)0.092 (3)0.054 (2)0.008 (2)0.0092 (17)0.006 (2)
C120.0356 (19)0.103 (3)0.050 (2)0.009 (2)0.0049 (16)0.007 (2)
C130.049 (2)0.073 (2)0.056 (2)0.014 (2)0.0020 (17)0.0005 (19)
C140.047 (2)0.067 (2)0.0452 (18)0.0066 (17)0.0002 (15)0.0062 (17)
C150.0421 (19)0.076 (2)0.0366 (17)0.0058 (17)0.0036 (14)0.0003 (17)
C160.0510 (19)0.081 (2)0.0387 (18)0.0022 (18)0.0113 (15)0.0008 (17)
C170.0452 (19)0.073 (2)0.0393 (19)0.0021 (17)0.0080 (15)0.0054 (18)
C180.079 (2)0.078 (3)0.043 (2)0.004 (2)0.0028 (17)0.001 (2)
C190.099 (3)0.093 (3)0.040 (2)0.007 (2)0.0035 (19)0.002 (2)
C200.087 (3)0.103 (3)0.044 (2)0.011 (2)0.0021 (19)0.007 (2)
C210.096 (3)0.108 (3)0.053 (2)0.031 (2)0.003 (2)0.013 (2)
C220.072 (2)0.094 (3)0.057 (2)0.028 (2)0.0115 (18)0.010 (2)
C230.0371 (17)0.056 (2)0.0326 (16)0.0019 (15)0.0031 (13)0.0025 (16)
C240.0423 (18)0.060 (2)0.0318 (16)0.0000 (15)0.0033 (13)0.0014 (15)
C250.0360 (17)0.060 (2)0.0339 (17)0.0016 (16)0.0005 (13)0.0034 (16)
C260.0485 (19)0.067 (2)0.0462 (19)0.0030 (18)0.0074 (15)0.0025 (17)
C270.059 (2)0.075 (3)0.054 (2)0.0067 (19)0.0088 (18)0.010 (2)
C280.054 (2)0.106 (3)0.053 (2)0.012 (2)0.0185 (17)0.010 (2)
C290.066 (2)0.099 (3)0.046 (2)0.001 (2)0.0179 (18)0.005 (2)
C300.055 (2)0.077 (2)0.0413 (18)0.0027 (18)0.0131 (16)0.0058 (18)
Geometric parameters (Å, º) top
O1—B11.361 (4)C25—C261.369 (4)
O1—C11.454 (3)C25—C301.374 (4)
O2—B11.369 (4)C26—C271.393 (4)
O2—C21.455 (3)C27—C281.361 (4)
B1—C31.553 (4)C28—C291.361 (4)
C1—C151.496 (3)C29—C301.392 (4)
C1—C21.528 (4)C2—H2A0.9900
C1—C24i1.558 (3)C2—H2B0.9900
C3—C41.322 (4)C4—H40.9500
C3—C81.496 (3)C5—H51.0000
C4—C51.506 (3)C7—H7A0.9900
C5—C61.520 (3)C7—H7B0.9900
C5—C91.528 (3)C8—H8A0.9900
C6—C231.321 (3)C8—H8B0.9900
C6—C71.488 (4)C10—H100.9500
C7—C81.532 (3)C11—H110.9500
C9—C101.362 (4)C12—H120.9500
C9—C141.382 (4)C13—H130.9500
C10—C111.389 (4)C14—H140.9500
C11—C121.360 (4)C15—H150.9500
C12—C131.362 (4)C16—H160.9500
C13—C141.389 (4)C18—H180.9500
C15—C161.313 (4)C19—H190.9500
C16—C171.476 (4)C20—H200.9500
C17—C221.374 (4)C21—H210.9500
C17—C181.392 (4)C22—H220.9500
C18—C191.380 (4)C23—H230.9500
C19—C201.364 (4)C24—H241.0000
C20—C211.367 (4)C26—H260.9500
C21—C221.381 (4)C27—H270.9500
C23—C241.511 (3)C28—H280.9500
C24—C251.529 (4)C29—H290.9500
C24—C1i1.558 (3)C30—H300.9500
B1—O1—C1108.2 (2)C1—C2—H2B110.7
B1—O2—C2106.6 (2)H2A—C2—H2B108.8
O1—B1—O2113.3 (3)C3—C4—H4117.4
O1—B1—C3123.7 (3)C5—C4—H4117.4
O2—B1—C3123.0 (3)C4—C5—H5107.0
O1—C1—C15109.7 (2)C6—C5—H5107.0
O1—C1—C2102.6 (2)C9—C5—H5107.0
C15—C1—C2110.3 (2)C6—C7—H7A109.5
O1—C1—C24i105.8 (2)C8—C7—H7A109.5
C15—C1—C24i112.8 (2)C6—C7—H7B109.5
C2—C1—C24i115.0 (2)C8—C7—H7B109.5
O2—C2—C1105.1 (2)H7A—C7—H7B108.1
C4—C3—C8121.6 (3)C3—C8—H8A109.0
C4—C3—B1118.6 (3)C7—C8—H8A109.0
C8—C3—B1119.7 (3)C3—C8—H8B109.0
C3—C4—C5125.2 (3)C7—C8—H8B109.0
C4—C5—C6110.5 (2)H8A—C8—H8B107.8
C4—C5—C9111.8 (2)C9—C10—H10119.3
C6—C5—C9113.0 (2)C11—C10—H10119.3
C23—C6—C7126.6 (2)C12—C11—H11120.3
C23—C6—C5120.7 (3)C10—C11—H11120.3
C7—C6—C5112.6 (2)C11—C12—H12119.8
C6—C7—C8110.7 (2)C13—C12—H12119.8
C3—C8—C7113.0 (2)C12—C13—H13120.0
C10—C9—C14118.4 (3)C14—C13—H13120.0
C10—C9—C5120.2 (3)C9—C14—H14119.8
C14—C9—C5121.4 (3)C13—C14—H14119.8
C9—C10—C11121.5 (3)C16—C15—H15117.0
C12—C11—C10119.3 (3)C1—C15—H15117.0
C11—C12—C13120.5 (3)C15—C16—H16116.7
C12—C13—C14120.0 (3)C17—C16—H16116.7
C9—C14—C13120.3 (3)C19—C18—H18119.6
C16—C15—C1126.0 (3)C17—C18—H18119.6
C15—C16—C17126.5 (3)C20—C19—H19119.9
C22—C17—C18118.3 (3)C18—C19—H19119.9
C22—C17—C16120.7 (3)C19—C20—H20120.2
C18—C17—C16121.0 (3)C21—C20—H20120.2
C19—C18—C17120.8 (3)C20—C21—H21119.5
C20—C19—C18120.2 (3)C22—C21—H21119.5
C19—C20—C21119.5 (3)C17—C22—H22119.9
C20—C21—C22121.0 (4)C21—C22—H22119.9
C17—C22—C21120.3 (3)C6—C23—H23115.5
C6—C23—C24129.1 (3)C24—C23—H23115.5
C23—C24—C25112.2 (2)C23—C24—H24106.3
C23—C24—C1i111.0 (2)C25—C24—H24106.3
C25—C24—C1i114.0 (2)C1i—C24—H24106.3
C26—C25—C30118.2 (3)C25—C26—H26119.3
C26—C25—C24123.4 (3)C27—C26—H26119.3
C30—C25—C24118.4 (3)C28—C27—H27120.3
C25—C26—C27121.4 (3)C26—C27—H27120.3
C28—C27—C26119.4 (3)C29—C28—H28119.9
C29—C28—C27120.3 (3)C27—C28—H28119.9
C28—C29—C30120.0 (3)C28—C29—H29120.0
C25—C30—C29120.7 (3)C30—C29—H29120.0
O2—C2—H2A110.7C25—C30—H30119.6
C1—C2—H2A110.7C29—C30—H30119.6
O2—C2—H2B110.7
C1—O1—B1—O28.9 (3)C10—C11—C12—C130.4 (5)
C1—O1—B1—C3173.2 (2)C11—C12—C13—C140.2 (5)
C2—O2—B1—O14.9 (3)C10—C9—C14—C131.4 (4)
C2—O2—B1—C3173.1 (2)C5—C9—C14—C13179.8 (2)
B1—O1—C1—C15135.0 (2)C12—C13—C14—C91.1 (4)
B1—O1—C1—C217.8 (3)O1—C1—C15—C163.8 (4)
B1—O1—C1—C24i103.1 (2)C2—C1—C15—C16116.1 (3)
B1—O2—C2—C115.8 (3)C24i—C1—C15—C16113.8 (3)
O1—C1—C2—O220.2 (3)C1—C15—C16—C17174.5 (3)
C15—C1—C2—O2137.0 (2)C15—C16—C17—C22163.7 (3)
C24i—C1—C2—O294.1 (2)C15—C16—C17—C1818.3 (5)
O1—B1—C3—C423.0 (4)C22—C17—C18—C192.0 (5)
O2—B1—C3—C4154.8 (3)C16—C17—C18—C19179.9 (3)
O1—B1—C3—C8156.5 (2)C17—C18—C19—C201.4 (5)
O2—B1—C3—C825.7 (4)C18—C19—C20—C211.1 (5)
C8—C3—C4—C50.9 (4)C19—C20—C21—C221.3 (6)
B1—C3—C4—C5179.6 (2)C18—C17—C22—C212.2 (5)
C3—C4—C5—C614.8 (4)C16—C17—C22—C21179.7 (3)
C3—C4—C5—C9112.0 (3)C20—C21—C22—C171.9 (5)
C4—C5—C6—C23133.7 (3)C7—C6—C23—C240.4 (4)
C9—C5—C6—C23100.1 (3)C5—C6—C23—C24178.0 (2)
C4—C5—C6—C744.2 (3)C6—C23—C24—C25121.4 (3)
C9—C5—C6—C782.0 (3)C6—C23—C24—C1i109.7 (3)
C23—C6—C7—C8117.8 (3)C23—C24—C25—C2642.7 (4)
C5—C6—C7—C860.0 (3)C1i—C24—C25—C2684.7 (3)
C4—C3—C8—C715.4 (4)C23—C24—C25—C30136.7 (3)
B1—C3—C8—C7165.1 (2)C1i—C24—C25—C3096.0 (3)
C6—C7—C8—C344.1 (3)C30—C25—C26—C271.2 (4)
C4—C5—C9—C10138.7 (3)C24—C25—C26—C27178.1 (2)
C6—C5—C9—C1095.9 (3)C25—C26—C27—C280.7 (4)
C4—C5—C9—C1440.1 (3)C26—C27—C28—C290.2 (5)
C6—C5—C9—C1485.4 (3)C27—C28—C29—C300.1 (5)
C14—C9—C10—C110.9 (4)C26—C25—C30—C291.1 (4)
C5—C9—C10—C11179.7 (2)C24—C25—C30—C29178.3 (3)
C9—C10—C11—C120.0 (4)C28—C29—C30—C250.6 (5)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC60H54B2O4
Mr860.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)13.212 (3), 6.0975 (13), 29.028 (6)
β (°) 101.764 (3)
V3)2289.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.09 × 0.03
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996))
Tmin, Tmax0.973, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
13447, 3260, 1769
Rint0.082
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 0.85
No. of reflections3260
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
O1—B11.361 (4)C3—C81.496 (3)
O1—C11.454 (3)C4—C51.506 (3)
O2—B11.369 (4)C5—C61.520 (3)
O2—C21.455 (3)C5—C91.528 (3)
B1—C31.553 (4)C6—C71.488 (4)
C1—C151.496 (3)C7—C81.532 (3)
C1—C21.528 (4)C23—C241.511 (3)
C1—C24i1.558 (3)C24—C251.529 (4)
C3—C41.322 (4)
B1—O1—C1108.2 (2)O2—B1—C3123.0 (3)
B1—O2—C2106.6 (2)O1—C1—C15109.7 (2)
O1—B1—O2113.3 (3)C4—C3—B1118.6 (3)
O1—B1—C3123.7 (3)C8—C3—B1119.7 (3)
Symmetry code: (i) x, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds