Download citation
Download citation
link to html
The 1,5-benzodiazepine ring system exhibits a puckered boat-like conformation for all four title compounds [4-(2-hydroxy­phen­yl)-2-phenyl-2,3-dihydro-1H-1,5-benzodiazepine, C21H18N2O, (I), 2-(2,3-dimethoxy­phen­yl)-4-(2-hydroxy­phen­yl)-2,3-dihydro-1H-1,5-benzodiazepine, C23H22N2O3, (II), 2-(3,4-dimeth­oxy­phen­yl)-4-(2-hydroxy­phen­yl)-2,3-dihydro-1H-1,5-benzodiazepine, C23H22N2O3, (III), and 2-(2,5-dimethoxy­phen­yl)-4-(2-hydroxy­phen­yl)-2,3-dihydro-1H-1,5-benzo­diaze­pine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo-equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3-dimeth­oxy­phenyl group) and (III) (the 3,4-dimethoxy­phenyl group), while for (IV) (the 2,5-dimethoxy­phenyl group) the system is pseudo-axial–equatorial. An intra­molecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six-membered ring, whose geometry is constant across the series. Although the mol­ecular structures are similar, the supra­molecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of inter­molecular inter­actions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107024420/gg3095sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107024420/gg3095Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107024420/gg3095IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107024420/gg3095IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107024420/gg3095IVsup5.hkl
Contains datablock IV

CCDC references: 655513; 655514; 655515; 655516

Comment top

Continuing with our search of supramolecular synthons of importance in the crystal engineering of substituted aromatic compounds (Donoso-Tauda et al., 2006), our group has focused considerable interest on the crystalline properties of benzodiazepines, particularly in their packing by intermolecular hydrogen bonding. Benzodiazepines are well studied because of their pharmacological properties, with their antifungal, antibacterial, analgesic, tranquilizing and anticonvulsant activities well established (Di Braccio et al., 2001, Michaelifou & Hadjipavlou-Litida or?? Michaelidou & Hadjipavlou-Litina, 2005). Additionally, the chemistry and structure of 1,5-benzodiazepines have become increasingly interesting, owing to their potential as cocrystals in supramolecular chemistry, showing ladder or brick superstructures formed via hydrogen-bonding networks (Thakuria et al., 2006).

The structures of the title compounds, (I)–(IV) (Fig. 1), are constructed around a central benzodiazepine C5N2 seven-membered ring, which is fused with a benzene ring at atoms C10 and C11. The heterocycle is substituted in all cases at position 4 with an o-hydroxyphenyl group, and also with a phenyl [for (I)] or a dimethoxyphenyl [for (II)–(IV)] ring at position 2, as summarized in the scheme. The least-squares plane defined by the aromatic ring (C6–C11) plus atoms N1 and N5 defines an acute angle with the plane defined by C2, C3 and C4 [85.0 (1)° for (I), 78.7 (2)° for (II), 89.3 (3)° for (III) and 87.0 (1)° for (IV)]; the benzodiazepine ring system has a puckered boat–like conformation for all four compounds. This has also been noted in two related benzodiazepines, 2,4-bis(2,5-dipropoxyphenyl)-2,3-dihydro-1H-1,5-benzodiazepine (Hormaza et al., 2004) and 2-methyl-4-p-tolyl-2,3-dihydro-1,5-benzodiazepine (Qi or??? Ci et al., 1985). Bond distances are similar for all four compounds and comparable with literature values (Qi or??? Ci et al., 1985; Braun et al., 2000). Although some significant differences are observed in torsion angles for the benzodiazepine ring, i.e. N1—C2—C3—C4 ranges from 44.7 (4)° in (III) to 76.0 (4)° for (II), the boat-like conformation of the heterocycle is conserved across the series. The substituted phenyl rings occupying positions 2 and 4 in the 1,5-benzodiazepine moiety display, respectively, a pseudo- equatorial–equatorial correlation for compounds (I), (II) and (III), (i.e. Hormaza et al., 2004), while (IV) presents a pseudo-axial–equatorial correlation. The dihedral angle between the phenyl (C18–C23) least-squares plane and the o-hydroxyphenyl plane (C12–C17) is 46.8 (1), 66.1 (1), 37.4 (2) and 4.0 (1)° for (I)–(IV), respectively.

The hydroxyl H atom on the 4-(o–hydroxyphenyl) substituent (H1) forms an intramolecular O—H···N hydrogen bond with atom N5 for (I)–(IV), with O···N distances of 2.514 (3) Å for (I), 2.514 (4) Å for (II), 2.494 (5) Å for (III) and 2.544 (1) Å for (IV). The intramolecular hydrogen bond is rather insensitive to the remainder of the molecule or the different packing modes. This intramolecular bond has been also been described in the synthetic precursor 2–hydroxy chalcone (Srivastava & Verma, 1990). An important consequence of this hydrogen bond is that the six-membered ring N5/C4/C12/C13/O1/H1 is significantly planar in all cases. This planarity is reflected in the low value measured for the N5—C4—C12—C13 torsion angle [-2.2 (3)°, -7.7 (5)°, -1.5 (6)° and -4.5 (2)° for (I)–(IV), respectively].

Despite the close structural similarity between the compounds, their packing modes, arising from N—H···O, N—H···π(arene) or C—H···π(arene) interactions, differ considerably. As in Fig. 2(a), the C—H···π(arene) interactions gives a supramolecular chain along the b axis. Molecules of (II) and (III) form supramolecular dimers by means of N—H···π(arene) and C—H···O—CH3 interactions, respectively, as depicted in Figs. 2(b) and 2(c), respectively. In the case of (III), the dimers are also connected by means of N—H···O hydrogen bonds, leading to a two-dimensional supra-structure. The amine NH group in (IV) interacts with a methoxy substituent in a vecinal molecule, leading to a chain along the c axis (Fig. 2d).

As previously stated (Desiraju, 2002), the relative magnitude of intramolecular interactions could be listed as C—H···π(arene) weaker than N—H···π(arene) and both still weaker than the N—H···O interaction. In this context, the relatively low melting point measured for (I) (379–382 K) could be understood in terms of the weak C—H···π(arene) interaction stabilizing the packing. Conversely, in (III) (with the highest melting point, 440–441 K), stronger N—H···O interactions are present in addition to the C—H···π(arene) interactions. In the same way, (II) and (IV) exhibit intermediate melting points (around 429 K).

Related literature top

For related literature, see: Braun et al. (2000); Ci et al. (1985); Desiraju (2002); Di Braccio, Grossi, Roma, Vargiu, Mura & Marongiu (2001); Donoso-Tauda, Escobar, Araya-Maturana & Vega (2006); Hormaza et al. (2004); Michaelidou & Hadjipavlou-Litina (2005); Sheldrick (1997); Srivastava & Verma (1990); Thakuria et al. (2006).

Experimental top

A solution of the corresponding 3-(dimethoxyphenyl)-1-(2-hydroxyphenyl)-2-propenone (0.704 mmol) and 1,2-diaminobenzene (1.056 mmol) in methanol (40 ml) was heated to reflux temperatures for 24 h. Concentration in vacuo followed by column chromatographic purification (silica gel 60, ethyl acetate:hexane 1:10) of the reaction mixture afforded a yellow solid that under recrystallization in methanol gave yellow crystals of (I)–(IV) [(I), yield 60%, m.p. 379–382 K. (II), yield 15%, m.p. 427–428 K. (III), yield 21%, m.p. 439.5–440.7 K. (IV) yield 21%, m.p. 429–430 K.

Centroids: Cg1: [C6, C7, C8, C9, C10 and C11]; Cg2: [C12, C13, C14, C15, C16 and C17]; Cg3: [C18, C19, C20, C21, C22 and C23].

Refinement top

H atoms attached to C atoms were included at calculated positions and treated as riding atoms in (I)–(III) using SHELXL97 (Sheldrick, 1997) default values [should this software be listed for these compounds in the following paragraph?]; in (IV), these were refined with the C—H distance restrained to be 0.93 (s.u.?) Å for aromatic and 0.99 (s.u.?) Å for aliphatic H atoms. In all four compounds, hydroxy atom H1 was treated as a riding atom, and amino atom H1N was refined with isotropic displacement parameters. Analysis of the diffraction pattern suggests that the rather high R factor obtained for (III) could be attributed to poor crystal quality.

Computing details top

Data collection: SMART-NT (Bruker, 2001) for (I), (II), (III); SMART (reference?) for (IV). Cell refinement: SAINT-NT (Bruker, 1999) for (I), (II), (III); SAINT (reference?) for (IV). Data reduction: SAINT-NT for (I), (II), (III); SAINT for (IV). Program(s) used to solve structure: SHELXTL-NT (Bruker, 1999 or??2000) for (I), (II), (III); SHELXS97 (Sheldrick, 1997) for (IV). Program(s) used to refine structure: SHELXTL-NT for (I), (II), (III); SHELXL97 (Sheldrick, 1997) for (IV). Molecular graphics: SHELXTL-NT for (I), (II), (III); ORTEP-3 (Farrugia, 1997) for (IV). Software used to prepare material for publication: SHELXTL-NT for (I), (II); SHELXTL-NT) for (III); WinGX (Farrugia, 1999) for (IV).

Figures top
[Figure 1] Fig. 1. Figure 1. The molecular structures of (a) (I), (b) (II), (c) (III) and (d) (IV), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Figure 2. The molecular packing for (a) (I) [symmetry codes: (A) x, y + 1, z; (B) x, y - 1, z], (b) (II) [symmetry code: (A) -x,-y + 1, -z + 2], (c) (III) [symmetry code: (A) -x + 1, -y + 2, -z; (B) x - 1/2,-y + 3/2, z - 1/2] and (d) (IV) [symmetry code: (A) x, -y + 1/2, z - 1/2; (D) x,-y + 1/2, z + 1/2]. Some of the H atoms have been omitted for clarity.
(I) 4-(2-hydroxyphenyl)-2-phenyl-2,3-dihydro-1H-1,5-benzodiazepine top
Crystal data top
C21H18N2OF(000) = 1328
Mr = 314.37Dx = 1.283 Mg m3
Monoclinic, C2/cMelting point: 380 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 24.855 (4) ÅCell parameters from 1020 reflections
b = 7.6825 (11) Åθ = 2.2–18.3°
c = 19.455 (3) ŵ = 0.08 mm1
β = 118.824 (2)°T = 298 K
V = 3254.7 (9) Å3Parallelepiped, yellow
Z = 80.30 × 0.27 × 0.21 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
h = 2929
Tmin = 0.977, Tmax = 0.983k = 99
9815 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3684P]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C21H18N2OV = 3254.7 (9) Å3
Mr = 314.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.855 (4) ŵ = 0.08 mm1
b = 7.6825 (11) ÅT = 298 K
c = 19.455 (3) Å0.30 × 0.27 × 0.21 mm
β = 118.824 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2893 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
1696 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.055
9815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
2893 reflectionsΔρmin = 0.12 e Å3
222 parameters
Special details top

Experimental. Each frame was mesured during 10 s, using 0.3 /% between frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.0880 (0.0508) x + 5.8114 (0.0147) y + 12.1106 (0.0319) z = 2.5763 (0.0060)

* 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3 * 0.0000 (0.0000) C4

Rms deviation of fitted atoms = 0.0000

- 9.0494 (0.0165) x + 4.8738 (0.0038) y - 8.2077 (0.0115) z = 0.2682 (0.0028)

Angle to previous plane (with approximate e.s.d.) = 85.00 (0.12)

* 0.0055 (0.0020) C6 * -0.0102 (0.0021) C7 * -0.0260 (0.0021) C8 * 0.0034 (0.0020) C9 * 0.0510 (0.0020) C10 * 0.0402 (0.0020) C11 * -0.0307 (0.0015) N1 * -0.0332 (0.0014) N5

Rms deviation of fitted atoms = 0.0297

19.5301 (0.0166) x - 0.5079 (0.0055) y + 3.1123 (0.0202) z = 1.6494 (0.0032)

* -0.0140 (0.0018) C12 * -0.0049 (0.0021) C13 * -0.0092 (0.0021) C14 * -0.0016 (0.0020) C15 * 0.0105 (0.0022) C16 * 0.0046 (0.0019) C17 * 0.0146 (0.0014) O1

Rms deviation of fitted atoms = 0.0097

24.3581 (0.0063) x - 0.9586 (0.0081) y - 11.8349 (0.0172) z = 3.5606 (0.0072)

* 0.0010 (0.0017) C18 * -0.0042 (0.0019) C19 * 0.0034 (0.0020) C20 * 0.0005 (0.0020) C21 * -0.0037 (0.0021) C22 * 0.0029 (0.0019) C23

Rms deviation of fitted atoms = 0.0029

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18248 (11)0.3724 (3)0.00900 (13)0.0643 (6)
H1N0.2102 (11)0.382 (3)0.0237 (13)0.058 (8)*
C20.15942 (11)0.5501 (3)0.01057 (14)0.0597 (7)
H20.15780.61130.05570.072*
C30.09438 (10)0.5396 (3)0.02214 (14)0.0590 (7)
H3A0.08140.65520.01620.071*
H3B0.06700.50090.07520.071*
C40.08842 (10)0.4186 (3)0.03442 (14)0.0555 (6)
N50.08771 (9)0.2526 (2)0.02463 (12)0.0603 (6)
C60.06048 (12)0.0401 (3)0.07624 (16)0.0694 (7)
H60.03040.00150.06440.083*
C70.06808 (14)0.0445 (3)0.13295 (16)0.0768 (8)
H70.04270.13740.16010.092*
C80.11330 (14)0.0084 (4)0.14943 (15)0.0762 (8)
H80.11940.04980.18700.091*
C90.14970 (12)0.1487 (3)0.10984 (15)0.0670 (7)
H90.18040.18390.12120.080*
C100.14182 (11)0.2385 (3)0.05366 (14)0.0575 (7)
C110.09635 (11)0.1814 (3)0.03608 (14)0.0573 (7)
C120.08040 (10)0.4826 (3)0.09969 (14)0.0572 (6)
C130.07015 (11)0.3679 (4)0.14824 (16)0.0644 (7)
O10.06828 (9)0.1949 (2)0.13799 (13)0.0870 (6)
H10.07520.17200.10180.101 (12)*
C140.06189 (12)0.4302 (4)0.20885 (17)0.0778 (8)
H140.05450.35240.24000.093*
C150.06440 (13)0.6039 (4)0.22389 (18)0.0829 (9)
H150.05870.64400.26510.100*
C160.07536 (13)0.7203 (4)0.17803 (18)0.0843 (9)
H160.07740.83910.18830.101*
C170.08313 (12)0.6598 (3)0.11745 (16)0.0760 (8)
H170.09050.73930.08690.091*
C180.20220 (11)0.6489 (3)0.06266 (14)0.0565 (6)
C190.23408 (12)0.5711 (4)0.13502 (16)0.0734 (8)
H190.23140.45140.13980.088*
C200.27023 (13)0.6706 (5)0.20071 (17)0.0866 (9)
H200.29200.61700.24940.104*
C210.27412 (14)0.8462 (5)0.1947 (2)0.0898 (10)
H210.29830.91230.23910.108*
C220.24217 (15)0.9251 (4)0.1230 (2)0.0890 (9)
H220.24441.04510.11850.107*
C230.20673 (13)0.8262 (3)0.05746 (17)0.0749 (8)
H230.18550.88040.00880.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0590 (14)0.0560 (14)0.0791 (16)0.0052 (11)0.0343 (13)0.0057 (12)
C20.0626 (17)0.0502 (15)0.0636 (16)0.0017 (12)0.0282 (14)0.0029 (12)
C30.0555 (16)0.0543 (15)0.0567 (15)0.0046 (12)0.0187 (13)0.0019 (12)
C40.0451 (15)0.0542 (16)0.0591 (15)0.0002 (11)0.0188 (13)0.0014 (13)
N50.0608 (13)0.0487 (13)0.0703 (14)0.0042 (10)0.0307 (12)0.0048 (11)
C60.0672 (18)0.0591 (16)0.0773 (18)0.0049 (14)0.0312 (16)0.0062 (15)
C70.082 (2)0.0643 (17)0.0697 (18)0.0079 (15)0.0247 (17)0.0115 (15)
C80.095 (2)0.0665 (18)0.0620 (17)0.0044 (17)0.0335 (17)0.0073 (15)
C90.0747 (19)0.0635 (17)0.0642 (17)0.0030 (15)0.0346 (15)0.0022 (15)
C100.0550 (15)0.0492 (15)0.0579 (16)0.0037 (12)0.0191 (13)0.0043 (13)
C110.0556 (16)0.0486 (15)0.0599 (16)0.0006 (12)0.0216 (14)0.0022 (13)
C120.0478 (15)0.0578 (16)0.0607 (15)0.0012 (12)0.0221 (13)0.0014 (13)
C130.0541 (16)0.0649 (18)0.0708 (18)0.0061 (13)0.0273 (14)0.0026 (15)
O10.1097 (16)0.0708 (14)0.0949 (15)0.0204 (11)0.0608 (14)0.0042 (11)
C140.0701 (19)0.096 (2)0.0694 (19)0.0133 (17)0.0355 (17)0.0084 (17)
C150.074 (2)0.105 (3)0.0727 (19)0.0056 (18)0.0372 (17)0.022 (2)
C160.094 (2)0.076 (2)0.083 (2)0.0084 (17)0.0425 (19)0.0128 (18)
C170.089 (2)0.0632 (18)0.077 (2)0.0047 (15)0.0414 (17)0.0016 (15)
C180.0538 (15)0.0541 (16)0.0604 (16)0.0063 (12)0.0265 (13)0.0032 (13)
C190.0737 (19)0.0722 (18)0.0696 (19)0.0037 (15)0.0307 (17)0.0058 (16)
C200.073 (2)0.114 (3)0.0584 (18)0.0016 (19)0.0203 (16)0.0067 (19)
C210.078 (2)0.108 (3)0.080 (2)0.026 (2)0.0361 (19)0.036 (2)
C220.099 (2)0.072 (2)0.095 (2)0.0252 (18)0.047 (2)0.0218 (19)
C230.082 (2)0.0628 (18)0.0752 (19)0.0140 (15)0.0338 (17)0.0059 (15)
Geometric parameters (Å, º) top
N1—C101.410 (3)C12—C131.402 (3)
N1—C21.475 (3)C13—O11.341 (3)
N1—H1N0.87 (2)C13—C141.377 (3)
C2—C181.509 (3)O1—H10.8200
C2—C31.523 (3)C14—C151.361 (3)
C2—H20.9800C14—H140.9300
C3—C41.501 (3)C15—C161.380 (4)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.365 (4)
C4—N51.288 (3)C16—H160.9300
C4—C121.462 (3)C17—H170.9300
N5—C111.409 (3)C18—C231.374 (3)
C6—C71.370 (4)C18—C191.375 (3)
C6—C111.383 (3)C19—C201.385 (4)
C6—H60.9300C19—H190.9300
C7—C81.371 (4)C20—C211.361 (4)
C7—H70.9300C20—H200.9300
C8—C91.379 (3)C21—C221.371 (4)
C8—H80.9300C21—H210.9300
C9—C101.384 (3)C22—C231.376 (4)
C9—H90.9300C22—H220.9300
C10—C111.400 (3)C23—H230.9300
C12—C171.398 (3)
C10—N1—C2120.4 (2)C17—C12—C13116.7 (2)
C10—N1—H1N107.6 (15)C17—C12—C4122.1 (2)
C2—N1—H1N106.3 (15)C13—C12—C4121.2 (2)
N1—C2—C18110.9 (2)O1—C13—C14117.6 (3)
N1—C2—C3109.2 (2)O1—C13—C12121.8 (2)
C18—C2—C3112.4 (2)C14—C13—C12120.6 (3)
N1—C2—H2108.1C13—O1—H1109.5
C18—C2—H2108.1C15—C14—C13121.0 (3)
C3—C2—H2108.1C15—C14—H14119.5
C4—C3—C2113.39 (19)C13—C14—H14119.5
C4—C3—H3A108.9C14—C15—C16120.0 (3)
C2—C3—H3A108.9C14—C15—H15120.0
C4—C3—H3B108.9C16—C15—H15120.0
C2—C3—H3B108.9C17—C16—C15119.5 (3)
H3A—C3—H3B107.7C17—C16—H16120.3
N5—C4—C12117.6 (2)C15—C16—H16120.3
N5—C4—C3120.3 (2)C16—C17—C12122.3 (3)
C12—C4—C3122.1 (2)C16—C17—H17118.8
C4—N5—C11120.7 (2)C12—C17—H17118.8
C7—C6—C11121.7 (3)C23—C18—C19118.6 (2)
C7—C6—H6119.1C23—C18—C2118.4 (2)
C11—C6—H6119.1C19—C18—C2122.9 (2)
C6—C7—C8119.6 (3)C18—C19—C20120.1 (3)
C6—C7—H7120.2C18—C19—H19119.9
C8—C7—H7120.2C20—C19—H19119.9
C7—C8—C9119.5 (3)C21—C20—C19120.6 (3)
C7—C8—H8120.2C21—C20—H20119.7
C9—C8—H8120.2C19—C20—H20119.7
C8—C9—C10121.7 (3)C20—C21—C22119.7 (3)
C8—C9—H9119.1C20—C21—H21120.2
C10—C9—H9119.1C22—C21—H21120.2
C9—C10—C11118.4 (2)C21—C22—C23119.8 (3)
C9—C10—N1121.2 (2)C21—C22—H22120.1
C11—C10—N1120.1 (2)C23—C22—H22120.1
C6—C11—C10119.0 (2)C18—C23—C22121.1 (3)
C6—C11—N5117.4 (2)C18—C23—H23119.4
C10—C11—N5123.4 (2)C22—C23—H23119.4
C10—N1—C2—C18156.4 (2)N5—C4—C12—C132.2 (3)
C10—N1—C2—C332.0 (3)C3—C4—C12—C13175.0 (2)
N1—C2—C3—C451.1 (3)C17—C12—C13—O1178.2 (2)
C18—C2—C3—C472.3 (3)C4—C12—C13—O11.2 (4)
C2—C3—C4—N576.3 (3)C17—C12—C13—C141.5 (4)
C2—C3—C4—C12106.6 (2)C4—C12—C13—C14179.2 (2)
C12—C4—N5—C11178.8 (2)O1—C13—C14—C15178.7 (2)
C3—C4—N5—C114.0 (3)C12—C13—C14—C151.0 (4)
C11—C6—C7—C81.7 (4)C13—C14—C15—C160.0 (4)
C6—C7—C8—C91.4 (4)C14—C15—C16—C170.5 (4)
C7—C8—C9—C100.1 (4)C15—C16—C17—C120.0 (4)
C8—C9—C10—C111.4 (4)C13—C12—C17—C161.0 (4)
C8—C9—C10—N1174.7 (2)C4—C12—C17—C16179.6 (2)
C2—N1—C10—C9121.4 (3)N1—C2—C18—C23149.0 (2)
C2—N1—C10—C1165.4 (3)C3—C2—C18—C2388.5 (3)
C7—C6—C11—C100.4 (4)N1—C2—C18—C1934.9 (3)
C7—C6—C11—N5176.0 (2)C3—C2—C18—C1987.7 (3)
C9—C10—C11—C61.1 (3)C23—C18—C19—C200.5 (4)
N1—C10—C11—C6174.5 (2)C2—C18—C19—C20176.7 (2)
C9—C10—C11—N5174.2 (2)C18—C19—C20—C210.8 (4)
N1—C10—C11—N50.8 (3)C19—C20—C21—C220.3 (4)
C4—N5—C11—C6140.0 (2)C20—C21—C22—C230.4 (4)
C4—N5—C11—C1044.6 (3)C19—C18—C23—C220.2 (4)
N5—C4—C12—C17177.2 (2)C2—C18—C23—C22176.2 (2)
C3—C4—C12—C175.7 (3)C21—C22—C23—C180.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.792.514 (3)147
C23—H23···Cg1i0.932.623.480 (2)155
Symmetry code: (i) x, y+1, z.
(II) 2-(2,3-dimethoxyphenyl)-4-(2-hydroxyphenyl)-2,3-dihydro-1H-1,5- benzodiazepine top
Crystal data top
C23H22N2O3Z = 2
Mr = 374.43F(000) = 396
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Melting point: 427 K
a = 8.250 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.889 (3) ÅCell parameters from 590 reflections
c = 12.272 (3) Åθ = 2.2–20.5°
α = 108.697 (4)°µ = 0.09 mm1
β = 90.973 (5)°T = 298 K
γ = 90.594 (5)°Rhombohedral, yellow
V = 948.1 (4) Å30.30 × 0.18 × 0.11 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3329 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
h = 99
Tmin = 0.974, Tmax = 0.990k = 1111
5882 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H22N2O3γ = 90.594 (5)°
Mr = 374.43V = 948.1 (4) Å3
Triclinic, P1Z = 2
a = 8.250 (2) ÅMo Kα radiation
b = 9.889 (3) ŵ = 0.09 mm1
c = 12.272 (3) ÅT = 298 K
α = 108.697 (4)°0.30 × 0.18 × 0.11 mm
β = 90.973 (5)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3329 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
1625 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.040
5882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.16 e Å3
3329 reflectionsΔρmin = 0.20 e Å3
259 parameters
Special details top

Experimental. Each frame was mesured during 10 s, using 0.3 /% between frames

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.2454 (0.0103) x + 7.1291 (0.0089) y + 4.6739 (0.0145) z = 5.2452 (0.0142)

* -0.0055 (0.0021) C18 * 0.0111 (0.0022) C19 * -0.0076 (0.0023) C20 * -0.0016 (0.0024) C21 * 0.0073 (0.0024) C22 * -0.0037 (0.0023) C23

Rms deviation of fitted atoms = 0.0068

1.6961 (0.0080) x - 2.1072 (0.0146) y + 11.8939 (0.0043) z = 8.6201 (0.0052)

* 0.0030 (0.0026) C12 * 0.0077 (0.0031) C13 * 0.0029 (0.0030) C14 * -0.0026 (0.0031) C15 * -0.0006 (0.0032) C16 * -0.0032 (0.0026) C17 * -0.0072 (0.0021) O1

Rms deviation of fitted atoms = 0.0046

4.2072 (0.0072) x - 3.4921 (0.0097) y + 10.4063 (0.0071) z = 9.3483 (0.0052)

Angle to previous plane (with approximate e.s.d.) = 78.74 (0.21)

* 0.0181 (0.0030) C6 * 0.0258 (0.0033) C7 * -0.0039 (0.0034) C8 * -0.0258 (0.0032) C9 * -0.0263 (0.0030) C10 * -0.0275 (0.0030) C11 * 0.0459 (0.0023) N1 * -0.0063 (0.0022) N5

Rms deviation of fitted atoms = 0.0257

- 5.3883 (0.0286) x - 6.3941 (0.0205) y + 7.1566 (0.0422) z = 1.0500 (0.0400)

Angle to previous plane (with approximate e.s.d.) = 78.74 (0.21)

* 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3 * 0.0000 (0.0000) C4

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6001 (4)0.4398 (3)0.8077 (3)0.0686 (9)
H1N0.584 (4)0.533 (4)0.842 (3)0.094 (14)*
C20.4586 (4)0.3520 (3)0.8064 (3)0.0557 (9)
H20.36470.41470.81850.067*
C30.4344 (4)0.2398 (4)0.6881 (3)0.0603 (9)
H3A0.32430.20240.68110.072*
H3B0.44800.28540.62950.072*
C40.5492 (5)0.1186 (4)0.6662 (3)0.0565 (9)
N50.7035 (4)0.1382 (3)0.6597 (2)0.0602 (8)
C60.9247 (4)0.2576 (4)0.6127 (3)0.0704 (11)
H60.95870.16660.57100.084*
C71.0197 (5)0.3708 (5)0.6130 (4)0.0891 (13)
H71.11550.35800.57230.107*
C80.9692 (5)0.5050 (5)0.6756 (4)0.0935 (14)
H81.03110.58460.67670.112*
C90.8284 (5)0.5225 (4)0.7363 (3)0.0765 (11)
H90.79740.61440.77820.092*
C100.7304 (4)0.4076 (4)0.7373 (3)0.0568 (9)
C110.7800 (4)0.2698 (4)0.6709 (3)0.0570 (9)
C120.4926 (5)0.0272 (4)0.6499 (3)0.0623 (10)
C130.5973 (6)0.1432 (4)0.6149 (3)0.0738 (11)
O10.7540 (3)0.1257 (3)0.5944 (2)0.0862 (9)
H10.77470.04040.60850.129*
C140.5399 (7)0.2817 (4)0.5981 (3)0.0900 (14)
H140.61010.35810.57460.108*
C150.3815 (8)0.3052 (5)0.6161 (4)0.1051 (17)
H150.34410.39790.60450.126*
C160.2760 (6)0.1942 (6)0.6509 (4)0.0960 (14)
H160.16800.21100.66360.115*
C170.3316 (5)0.0590 (4)0.6667 (3)0.0783 (12)
H170.25890.01560.68980.094*
C180.4614 (4)0.2881 (3)0.9032 (3)0.0502 (8)
C190.3215 (4)0.2287 (3)0.9302 (3)0.0518 (8)
O20.1821 (3)0.2256 (2)0.86454 (19)0.0645 (7)
C240.0645 (4)0.3256 (4)0.9221 (4)0.0871 (13)
H24A0.01760.29590.98190.131*
H24B0.01890.33080.86810.131*
H24C0.11530.41790.95510.131*
C200.3182 (4)0.1679 (3)1.0174 (3)0.0576 (9)
O30.1732 (3)0.1093 (3)1.0322 (2)0.0759 (8)
C250.1575 (5)0.0587 (4)1.1285 (3)0.0844 (12)
H25A0.23510.01471.12330.127*
H25B0.05000.02051.12850.127*
H25C0.17690.13621.19850.127*
C210.4580 (5)0.1706 (4)1.0816 (3)0.0651 (10)
H210.45850.13151.14120.078*
C220.5964 (4)0.2320 (4)1.0564 (3)0.0668 (10)
H220.69000.23471.10030.080*
C230.6012 (4)0.2891 (4)0.9692 (3)0.0605 (9)
H230.69730.32870.95370.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.074 (2)0.049 (2)0.077 (2)0.0023 (17)0.0261 (17)0.0110 (17)
C20.055 (2)0.054 (2)0.057 (2)0.0020 (17)0.0124 (17)0.0153 (18)
C30.073 (2)0.062 (2)0.050 (2)0.0006 (19)0.0054 (18)0.0229 (18)
C40.076 (3)0.054 (2)0.0384 (19)0.005 (2)0.0085 (17)0.0129 (16)
N50.068 (2)0.060 (2)0.0497 (18)0.0032 (16)0.0096 (15)0.0141 (14)
C60.065 (2)0.078 (3)0.066 (3)0.009 (2)0.010 (2)0.020 (2)
C70.069 (3)0.094 (3)0.104 (4)0.002 (3)0.029 (2)0.029 (3)
C80.089 (3)0.079 (3)0.118 (4)0.010 (2)0.030 (3)0.039 (3)
C90.085 (3)0.059 (2)0.087 (3)0.004 (2)0.024 (2)0.025 (2)
C100.063 (2)0.054 (2)0.055 (2)0.0016 (18)0.0075 (18)0.0195 (18)
C110.062 (2)0.060 (2)0.050 (2)0.0015 (18)0.0052 (17)0.0178 (18)
C120.084 (3)0.057 (2)0.041 (2)0.006 (2)0.0044 (18)0.0094 (17)
C130.112 (3)0.061 (3)0.044 (2)0.002 (2)0.016 (2)0.0098 (19)
O10.115 (2)0.0631 (18)0.0755 (19)0.0185 (15)0.0253 (17)0.0133 (14)
C140.155 (5)0.058 (3)0.051 (2)0.003 (3)0.013 (3)0.009 (2)
C150.170 (5)0.074 (3)0.065 (3)0.036 (4)0.014 (3)0.015 (2)
C160.118 (4)0.086 (4)0.075 (3)0.030 (3)0.002 (3)0.014 (3)
C170.098 (3)0.068 (3)0.065 (3)0.020 (2)0.001 (2)0.016 (2)
C180.052 (2)0.050 (2)0.046 (2)0.0061 (16)0.0125 (16)0.0115 (16)
C190.055 (2)0.054 (2)0.046 (2)0.0070 (17)0.0006 (17)0.0150 (17)
O20.0513 (15)0.0825 (18)0.0585 (15)0.0036 (12)0.0013 (12)0.0211 (13)
C240.061 (2)0.112 (3)0.090 (3)0.023 (2)0.008 (2)0.034 (3)
C200.063 (2)0.053 (2)0.056 (2)0.0058 (18)0.0079 (19)0.0147 (18)
O30.0771 (18)0.0916 (19)0.0681 (17)0.0176 (14)0.0043 (13)0.0386 (15)
C250.107 (3)0.082 (3)0.071 (3)0.013 (2)0.016 (2)0.036 (2)
C210.078 (3)0.068 (3)0.051 (2)0.016 (2)0.005 (2)0.0214 (19)
C220.058 (2)0.085 (3)0.054 (2)0.013 (2)0.0015 (19)0.018 (2)
C230.052 (2)0.065 (2)0.059 (2)0.0036 (18)0.0057 (18)0.0119 (19)
Geometric parameters (Å, º) top
N1—C101.366 (4)C14—C151.359 (6)
N1—C21.445 (4)C14—H140.9300
N1—H1N0.90 (4)C15—C161.370 (6)
C2—C181.514 (4)C15—H150.9300
C2—C31.527 (4)C16—C171.361 (5)
C2—H20.9800C16—H160.9300
C3—C41.493 (4)C17—H170.9300
C3—H3A0.9700C18—C191.383 (4)
C3—H3B0.9700C18—C231.396 (4)
C4—N51.294 (4)C19—C201.385 (4)
C4—C121.462 (5)C19—O21.388 (3)
N5—C111.405 (4)O2—C241.419 (4)
C6—C71.358 (5)C24—H24A0.9600
C6—C111.388 (4)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C7—C81.376 (5)C20—O31.363 (4)
C7—H70.9300C20—C211.381 (4)
C8—C91.374 (5)O3—C251.432 (4)
C8—H80.9300C25—H25A0.9600
C9—C101.391 (4)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—C111.415 (4)C21—C221.373 (4)
C12—C171.396 (5)C21—H210.9300
C12—C131.401 (5)C22—C231.361 (4)
C13—O11.341 (4)C22—H220.9300
C13—C141.395 (5)C23—H230.9300
O1—H10.8200
C10—N1—C2128.1 (3)C15—C14—C13120.1 (4)
C10—N1—H1N115 (2)C15—C14—H14120.0
C2—N1—H1N114 (2)C13—C14—H14120.0
N1—C2—C18112.8 (3)C14—C15—C16120.9 (4)
N1—C2—C3110.3 (3)C14—C15—H15119.5
C18—C2—C3112.9 (3)C16—C15—H15119.5
N1—C2—H2106.8C17—C16—C15119.1 (5)
C18—C2—H2106.8C17—C16—H16120.4
C3—C2—H2106.8C15—C16—H16120.4
C4—C3—C2113.5 (3)C16—C17—C12123.0 (4)
C4—C3—H3A108.9C16—C17—H17118.5
C2—C3—H3A108.9C12—C17—H17118.5
C4—C3—H3B108.9C19—C18—C23117.8 (3)
C2—C3—H3B108.9C19—C18—C2120.0 (3)
H3A—C3—H3B107.7C23—C18—C2122.2 (3)
N5—C4—C12117.0 (3)C18—C19—C20122.1 (3)
N5—C4—C3121.2 (3)C18—C19—O2118.4 (3)
C12—C4—C3121.8 (3)C20—C19—O2119.4 (3)
C4—N5—C11125.2 (3)C19—O2—C24113.7 (3)
C7—C6—C11123.9 (4)O2—C24—H24A109.5
C7—C6—H6118.1O2—C24—H24B109.5
C11—C6—H6118.1H24A—C24—H24B109.5
C6—C7—C8117.7 (4)O2—C24—H24C109.5
C6—C7—H7121.1H24A—C24—H24C109.5
C8—C7—H7121.1H24B—C24—H24C109.5
C9—C8—C7120.6 (4)O3—C20—C21125.3 (3)
C9—C8—H8119.7O3—C20—C19115.8 (3)
C7—C8—H8119.7C21—C20—C19118.9 (3)
C8—C9—C10122.3 (4)C20—O3—C25118.3 (3)
C8—C9—H9118.8O3—C25—H25A109.5
C10—C9—H9118.8O3—C25—H25B109.5
N1—C10—C9116.0 (3)H25A—C25—H25B109.5
N1—C10—C11126.7 (3)O3—C25—H25C109.5
C9—C10—C11117.2 (3)H25A—C25—H25C109.5
C6—C11—N5113.9 (3)H25B—C25—H25C109.5
C6—C11—C10118.3 (3)C22—C21—C20119.1 (3)
N5—C11—C10127.7 (3)C22—C21—H21120.5
C17—C12—C13116.4 (4)C20—C21—H21120.5
C17—C12—C4122.1 (4)C23—C22—C21122.3 (3)
C13—C12—C4121.5 (4)C23—C22—H22118.9
O1—C13—C14117.9 (4)C21—C22—H22118.9
O1—C13—C12121.6 (4)C22—C23—C18119.8 (3)
C14—C13—C12120.5 (4)C22—C23—H23120.1
C13—O1—H1109.5C18—C23—H23120.1
C10—N1—C2—C18104.5 (4)C4—C12—C13—C14178.9 (3)
C10—N1—C2—C322.7 (5)O1—C13—C14—C15179.0 (4)
N1—C2—C3—C476.0 (4)C12—C13—C14—C150.2 (6)
C18—C2—C3—C451.1 (4)C13—C14—C15—C160.1 (7)
C2—C3—C4—N565.1 (4)C14—C15—C16—C170.5 (7)
C2—C3—C4—C12115.5 (3)C15—C16—C17—C120.5 (6)
C12—C4—N5—C11178.8 (3)C13—C12—C17—C160.2 (5)
C3—C4—N5—C110.6 (5)C4—C12—C17—C16179.3 (3)
C11—C6—C7—C80.5 (6)N1—C2—C18—C19165.5 (3)
C6—C7—C8—C90.7 (7)C3—C2—C18—C1968.7 (4)
C7—C8—C9—C100.4 (7)N1—C2—C18—C2313.2 (4)
C2—N1—C10—C9163.6 (4)C3—C2—C18—C23112.6 (3)
C2—N1—C10—C1120.1 (6)C23—C18—C19—C201.8 (5)
C8—C9—C10—N1175.6 (4)C2—C18—C19—C20179.4 (3)
C8—C9—C10—C111.1 (6)C23—C18—C19—O2179.3 (3)
C7—C6—C11—N5179.1 (4)C2—C18—C19—O21.9 (4)
C7—C6—C11—C101.9 (6)C18—C19—O2—C24106.6 (3)
C4—N5—C11—C6152.7 (3)C20—C19—O2—C2475.9 (4)
C4—N5—C11—C1030.5 (5)C18—C19—C20—O3178.0 (3)
N1—C10—C11—C6174.1 (3)O2—C19—C20—O30.5 (4)
C9—C10—C11—C62.2 (5)C18—C19—C20—C212.0 (5)
N1—C10—C11—N52.6 (6)O2—C19—C20—C21179.5 (3)
C9—C10—C11—N5178.9 (3)C21—C20—O3—C256.6 (5)
N5—C4—C12—C17173.2 (3)C19—C20—O3—C25173.4 (3)
C3—C4—C12—C177.4 (5)O3—C20—C21—C22179.3 (3)
N5—C4—C12—C137.7 (5)C19—C20—C21—C220.7 (5)
C3—C4—C12—C13171.7 (3)C20—C21—C22—C230.7 (5)
C17—C12—C13—O1178.9 (3)C21—C22—C23—C180.9 (5)
C4—C12—C13—O10.1 (5)C19—C18—C23—C220.3 (5)
C17—C12—C13—C140.2 (5)C2—C18—C23—C22179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.782.514 (4)147
N1—H1N···Cg2i0.90 (4)2.60 (4)3.445 (4)159 (3)
Symmetry code: (i) x, y+1, z+2.
(III) 2-(3,4-dimethoxyphenyl)-4-(2-hydroxyphenyl)-2,3-dihydro-1H-1,5- benzodiazepine top
Crystal data top
C23H22N2O3F(000) = 792
Mr = 374.43Dx = 1.300 Mg m3
Monoclinic, P21/nMelting point: 439 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.5372 (8) ÅCell parameters from 590 reflections
b = 23.144 (3) Åθ = 2.2–20.6°
c = 15.131 (2) ŵ = 0.09 mm1
β = 99.520 (3)°T = 300 K
V = 1912.4 (4) Å3Paralellepiped, yellow
Z = 40.37 × 0.07 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3400 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
h = 66
Tmin = 0.969, Tmax = 0.995k = 2727
11881 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2814P]
where P = (Fo2 + 2Fc2)/3
3400 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C23H22N2O3V = 1912.4 (4) Å3
Mr = 374.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5372 (8) ŵ = 0.09 mm1
b = 23.144 (3) ÅT = 300 K
c = 15.131 (2) Å0.37 × 0.07 × 0.06 mm
β = 99.520 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3400 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
1703 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.995Rint = 0.105
11881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
3400 reflectionsΔρmin = 0.16 e Å3
259 parameters
Special details top

Experimental. Each frame was mesured during 10 s, using 0.3 /% between frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.1081 (0.0075) x + 5.2479 (0.0357) y - 13.2822 (0.0120) z = 3.3701 (0.0319)

* 0.0009 (0.0028) C18 * -0.0080 (0.0027) C19 * 0.0073 (0.0027) C20 * 0.0002 (0.0028) C21 * -0.0070 (0.0030) C22 * 0.0065 (0.0030) C23

Rms deviation of fitted atoms = 0.0059

- 3.1166 (0.0059) x + 9.5144 (0.0332) y + 12.1093 (0.0164) z = 5.9998 (0.0294)

* -0.0022 (0.0032) C12 * 0.0004 (0.0037) C13 * -0.0040 (0.0038) C14 * 0.0018 (0.0037) C15 * 0.0014 (0.0039) C16 * 0.0002 (0.0033) C17 * 0.0026 (0.0026) O1

Rms deviation of fitted atoms = 0.0022

- 5.0661 (0.0023) x + 9.2071 (0.0203) y + 3.3077 (0.0176) z = 5.5180 (0.0139)

* -0.0291 (0.0033) C6 * 0.0073 (0.0038) C7 * 0.0384 (0.0036) C8 * 0.0215 (0.0032) C9 * -0.0642 (0.0033) C10 * -0.0584 (0.0033) C11 * 0.0126 (0.0024) N1 * 0.0718 (0.0024) N5

Rms deviation of fitted atoms = 0.0443

2.2890 (0.0289) x + 21.0095 (0.0529) y + 0.0250 (0.0463) z = 16.9498 (0.0263)

Angle to previous plane (with approximate e.s.d.) = 89.30 (0.29)

* 0.0000 (0.0001) C2 * 0.0000 (0.0000) C3 * 0.0000 (0.0000) C4

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3384 (6)0.72297 (14)0.1780 (2)0.0520 (10)
H1N0.335 (7)0.7169 (15)0.237 (2)0.062*
C20.5888 (7)0.74241 (16)0.1711 (3)0.0488 (11)
H20.70500.71600.20650.059*
C30.6256 (6)0.73852 (16)0.0735 (3)0.0525 (11)
H3A0.77220.75980.06670.063*
H3B0.65190.69840.05920.063*
C40.4141 (8)0.76164 (18)0.0077 (3)0.0522 (11)
N50.2173 (6)0.73136 (15)0.0129 (2)0.0550 (9)
C60.0602 (8)0.6347 (2)0.0151 (3)0.0703 (14)
H60.02480.63700.07720.084*
C70.0072 (8)0.5863 (2)0.0273 (4)0.0828 (16)
H70.08500.55590.00610.099*
C80.0405 (8)0.5830 (2)0.1190 (4)0.0844 (16)
H80.00620.55040.14800.101*
C90.1575 (7)0.62790 (19)0.1682 (3)0.0671 (13)
H90.18500.62580.23040.081*
C100.2349 (7)0.67606 (17)0.1267 (3)0.0511 (11)
C110.1798 (7)0.68001 (17)0.0331 (3)0.0524 (11)
C120.4250 (8)0.81744 (19)0.0376 (3)0.0536 (11)
C130.2287 (8)0.8360 (2)0.1025 (3)0.0636 (12)
O10.0290 (6)0.80266 (13)0.1275 (2)0.0757 (9)
H10.04170.77300.09760.114*
C140.2341 (10)0.8893 (2)0.1434 (3)0.0793 (15)
H140.10380.90100.18660.095*
C150.4313 (10)0.9249 (2)0.1201 (3)0.0840 (16)
H150.43380.96090.14730.101*
C160.6252 (10)0.9082 (2)0.0571 (4)0.0843 (16)
H160.75910.93260.04170.101*
C170.6203 (8)0.8553 (2)0.0169 (3)0.0713 (14)
H170.75280.84440.02590.086*
C180.6308 (7)0.80232 (17)0.2108 (3)0.0469 (10)
C190.4598 (7)0.84580 (17)0.1886 (3)0.0496 (11)
H190.31190.83740.15200.060*
C200.5049 (7)0.90070 (17)0.2197 (3)0.0468 (10)
O20.3493 (5)0.94661 (12)0.1998 (2)0.0656 (8)
C240.1547 (8)0.94006 (18)0.1259 (3)0.0722 (14)
H24A0.04630.91000.13890.108*
H24B0.22110.93010.07320.108*
H24C0.06580.97570.11590.108*
C210.7246 (7)0.91336 (18)0.2767 (3)0.0528 (11)
O30.7498 (5)0.96936 (12)0.3045 (2)0.0738 (9)
C250.9687 (8)0.9844 (2)0.3635 (3)0.0964 (18)
H25A1.10800.97410.33660.145*
H25B0.97510.96400.41910.145*
H25C0.97051.02530.37460.145*
C220.8923 (7)0.87055 (19)0.2996 (3)0.0607 (12)
H221.03800.87840.33780.073*
C230.8456 (7)0.81499 (18)0.2657 (3)0.0580 (12)
H230.96230.78620.28060.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.059 (2)0.049 (2)0.049 (2)0.0061 (18)0.013 (2)0.0009 (19)
C20.045 (2)0.047 (3)0.053 (3)0.007 (2)0.006 (2)0.004 (2)
C30.042 (2)0.046 (3)0.070 (3)0.001 (2)0.012 (2)0.011 (2)
C40.057 (3)0.056 (3)0.047 (3)0.002 (2)0.019 (2)0.007 (2)
N50.056 (2)0.061 (2)0.049 (2)0.0044 (19)0.0127 (18)0.0057 (19)
C60.064 (3)0.069 (3)0.077 (4)0.005 (3)0.010 (3)0.029 (3)
C70.062 (3)0.049 (3)0.133 (5)0.013 (3)0.005 (4)0.023 (4)
C80.060 (3)0.054 (3)0.134 (5)0.007 (3)0.001 (3)0.011 (4)
C90.060 (3)0.050 (3)0.087 (4)0.000 (2)0.002 (3)0.008 (3)
C100.045 (2)0.035 (3)0.074 (3)0.001 (2)0.008 (2)0.001 (2)
C110.044 (2)0.049 (3)0.066 (3)0.001 (2)0.014 (2)0.008 (2)
C120.051 (3)0.071 (3)0.041 (3)0.004 (2)0.015 (2)0.003 (2)
C130.066 (3)0.072 (3)0.054 (3)0.011 (3)0.015 (3)0.005 (3)
O10.082 (2)0.080 (2)0.061 (2)0.0054 (19)0.0023 (18)0.0041 (18)
C140.090 (4)0.082 (4)0.063 (4)0.005 (3)0.004 (3)0.015 (3)
C150.097 (4)0.074 (4)0.083 (4)0.002 (3)0.021 (3)0.016 (3)
C160.083 (4)0.072 (4)0.098 (4)0.020 (3)0.016 (3)0.018 (3)
C170.066 (3)0.078 (4)0.069 (3)0.011 (3)0.012 (3)0.013 (3)
C180.046 (2)0.052 (3)0.044 (3)0.001 (2)0.009 (2)0.001 (2)
C190.045 (2)0.051 (3)0.052 (3)0.001 (2)0.005 (2)0.001 (2)
C200.049 (3)0.040 (3)0.053 (3)0.006 (2)0.014 (2)0.002 (2)
O20.068 (2)0.0488 (18)0.076 (2)0.0064 (15)0.0000 (17)0.0048 (16)
C240.066 (3)0.066 (3)0.077 (4)0.011 (2)0.008 (3)0.008 (3)
C210.052 (3)0.048 (3)0.059 (3)0.009 (2)0.013 (2)0.008 (2)
O30.069 (2)0.057 (2)0.091 (2)0.0083 (16)0.0003 (18)0.0235 (18)
C250.066 (3)0.085 (4)0.132 (5)0.008 (3)0.000 (3)0.048 (4)
C220.047 (3)0.063 (3)0.069 (3)0.001 (2)0.002 (2)0.008 (3)
C230.048 (3)0.055 (3)0.070 (3)0.003 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C101.401 (5)C14—C151.366 (6)
N1—C21.477 (5)C14—H140.9300
N1—H1N0.91 (3)C15—C161.368 (6)
C2—C181.514 (5)C15—H150.9300
C2—C31.526 (5)C16—C171.369 (6)
C2—H20.9800C16—H160.9300
C3—C41.505 (5)C17—H170.9300
C3—H3A0.9700C18—C231.365 (5)
C3—H3B0.9700C18—C191.385 (5)
C4—N51.290 (4)C19—C201.363 (5)
C4—C121.468 (5)C19—H190.9300
N5—C111.410 (5)C20—O21.370 (4)
C6—C71.372 (6)C20—C211.400 (5)
C6—H60.9300O2—C241.427 (4)
C6—C111.382 (5)C24—H24A0.9600
C7—C81.372 (7)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—C91.376 (6)C21—O31.363 (4)
C8—H80.9300C21—C221.363 (5)
C9—C101.381 (5)O3—C251.425 (5)
C9—H90.9300C25—H25A0.9600
C10—C111.402 (5)C25—H25B0.9600
C12—C171.387 (5)C25—H25C0.9600
C12—C131.406 (5)C22—C231.393 (5)
C13—O11.350 (5)C22—H220.9300
O1—H10.8200C23—H230.9300
C13—C141.383 (6)
C10—N1—C2120.0 (3)C15—C14—H14120.0
N1—C2—C18109.6 (3)C14—C13—C12120.9 (4)
N1—C2—C3109.1 (3)C15—C14—C13119.8 (5)
C10—N1—H1N111 (2)C14—C15—C16120.7 (5)
C2—N1—H1N107 (2)C14—C15—H15119.7
C18—C2—C3113.7 (3)C16—C15—H15119.7
C4—C3—C2114.0 (3)C12—C17—H17118.8
N1—C2—H2108.1C16—C17—H17118.8
C18—C2—H2108.1C15—C16—H16120.3
C3—C2—H2108.1C17—C16—H16120.3
N5—C4—C12117.6 (4)C17—C16—C15119.4 (5)
N5—C4—C3120.0 (4)C16—C17—C12122.5 (5)
C12—C4—C3122.3 (4)C23—C18—C19118.9 (4)
C4—N5—C11121.8 (4)C23—C18—C2120.0 (4)
C4—C3—H3A108.8C19—C18—C2121.0 (4)
C2—C3—H3A108.7C20—C19—C18121.0 (4)
C4—C3—H3B108.8C19—C20—O2125.0 (4)
C2—C3—H3B108.7C19—C20—C21119.9 (4)
H3A—C3—H3B107.7O2—C20—C21115.1 (4)
C7—C6—C11121.1 (5)C20—O2—C24117.2 (3)
C6—C7—C8119.8 (5)O2—C24—H24A109.5
C7—C6—H6119.5O2—C24—H24B109.5
C6—C7—H7120.1O2—C24—H24C109.5
C7—C8—C9119.9 (5)H24A—C24—H24B109.5
C7—C8—H8120.0H24A—C24—H24C109.5
C9—C8—H8120.0H24B—C24—H24C109.5
C8—C9—C10121.2 (5)O3—C21—C22125.6 (4)
C8—C7—H7120.1O3—C21—C20115.1 (4)
C8—C9—H9119.5O3—C25—H25A109.5
C10—C9—H9119.5O3—C25—H25B109.5
C9—C10—N1120.2 (4)O3—C25—H25C109.5
C9—C10—C11118.6 (4)H25A—C25—H25B109.5
N1—C10—C11120.7 (4)H25A—C25—H25C109.5
C11—C6—H6119.5H25B—C25—H25C109.5
C6—C11—C10119.2 (4)C22—C21—C20119.4 (4)
C6—C11—N5118.4 (4)C21—O3—C25117.4 (3)
C10—C11—N5121.9 (4)C21—C22—C23120.0 (4)
C17—C12—C13116.6 (4)C18—C23—C22120.8 (4)
C17—C12—C4122.8 (4)C18—C19—H19119.5
C13—C12—C4120.5 (4)C20—C19—H19119.5
C13—O1—H1109.5C21—C22—H22120.0
O1—C13—C14117.5 (5)C23—C22—H22120.0
O1—C13—C12121.6 (4)C18—C23—H23119.6
C13—C14—H14120.0C22—C23—H23119.6
C10—N1—C2—C18163.9 (3)C4—C12—C13—C14177.9 (4)
C10—N1—C2—C338.8 (5)O1—C13—C14—C15179.6 (4)
N1—C2—C3—C444.7 (4)C12—C13—C14—C150.6 (7)
C18—C2—C3—C478.0 (4)C13—C14—C15—C160.5 (8)
C2—C3—C4—N576.8 (5)C14—C15—C16—C170.2 (8)
C2—C3—C4—C12105.4 (4)C15—C16—C17—C120.1 (8)
C12—C4—N5—C11173.7 (3)C13—C12—C17—C160.2 (7)
C3—C4—N5—C118.4 (6)C4—C12—C17—C16177.6 (4)
C11—C6—C7—C81.1 (7)N1—C2—C18—C23136.1 (4)
C6—C7—C8—C90.6 (8)C3—C2—C18—C23101.5 (4)
C7—C8—C9—C101.8 (7)N1—C2—C18—C1947.4 (5)
C8—C9—C10—N1175.6 (4)C3—C2—C18—C1975.0 (5)
C8—C9—C10—C113.5 (6)C23—C18—C19—C200.9 (6)
C2—N1—C10—C9121.5 (4)C2—C18—C19—C20175.6 (3)
C2—N1—C10—C1166.6 (5)C18—C19—C20—O2178.5 (4)
C7—C6—C11—C100.6 (6)C18—C19—C20—C211.5 (6)
C7—C6—C11—N5172.3 (4)C19—C20—O2—C2415.3 (6)
C9—C10—C11—C62.9 (6)C21—C20—O2—C24164.7 (4)
N1—C10—C11—C6174.9 (3)C19—C20—C21—O3179.3 (3)
C9—C10—C11—N5169.7 (3)O2—C20—C21—O30.7 (5)
N1—C10—C11—N52.3 (6)C19—C20—C21—C220.7 (6)
C4—N5—C11—C6143.5 (4)O2—C20—C21—C22179.3 (4)
C4—N5—C11—C1043.8 (5)C22—C21—O3—C250.8 (6)
N5—C4—C12—C17175.8 (4)C20—C21—O3—C25179.2 (4)
C3—C4—C12—C176.3 (6)O3—C21—C22—C23179.3 (4)
N5—C4—C12—C131.5 (6)C20—C21—C22—C230.7 (6)
C3—C4—C12—C13176.4 (4)C19—C18—C23—C220.5 (6)
C17—C12—C13—O1179.8 (4)C2—C18—C23—C22177.1 (4)
C4—C12—C13—O12.3 (6)C21—C22—C23—C181.3 (7)
C17—C12—C13—C140.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.762.494 (5)148
N1—H1N···O1i0.91 (3)2.20 (3)3.017 (4)150 (3)
C8—H8···O3ii0.932.483.385 (6)163
C15—H15···O2iii0.932.643.501 (5)154
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+2, z.
(IV) 2-(2,5-dimethoxyphenyl)-4-(2-hydroxyphenyl)-2,3-dihydro-1H-1,5- benzodiazepine top
Crystal data top
C23H22N2O3F(000) = 792
Mr = 374.43Dx = 1.362 Mg m3
Monoclinic, P21/cMelting point: 429 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.5071 (3) ÅCell parameters from 4712 reflections
b = 20.3901 (6) Åθ = 2.2–27.5°
c = 8.7280 (3) ŵ = 0.09 mm1
β = 102.390 (2)°T = 296 K
V = 1826.34 (10) Å3Block, yellow
Z = 40.50 × 0.50 × 0.35 mm
Data collection top
Bruker APEX II
diffractometer
4181 independent reflections
Radiation source: fine-focus sealed tube3367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.0°
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
h = 1313
Tmin = 0.956, Tmax = 0.969k = 2426
12443 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.174P]
where P = (Fo2 + 2Fc2)/3
4181 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.30 e Å3
20 restraintsΔρmin = 0.31 e Å3
Crystal data top
C23H22N2O3V = 1826.34 (10) Å3
Mr = 374.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5071 (3) ŵ = 0.09 mm1
b = 20.3901 (6) ÅT = 296 K
c = 8.7280 (3) Å0.50 × 0.50 × 0.35 mm
β = 102.390 (2)°
Data collection top
Bruker APEX II
diffractometer
4181 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
3367 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.969Rint = 0.033
12443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03920 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.30 e Å3
4181 reflectionsΔρmin = 0.31 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.3280 (0.0034) x + 7.0500 (0.0097) y - 5.7656 (0.0033) z = 4.3073 (0.0061)

* 0.0153 (0.0009) C18 * -0.0129 (0.0009) C19 * 0.0021 (0.0009) C20 * 0.0066 (0.0009) C21 * -0.0042 (0.0009) C22 * -0.0068 (0.0009) C23

Rms deviation of fitted atoms = 0.0092

7.9149 (0.0027) x + 8.0430 (0.0078) y - 5.8970 (0.0034) z = 2.6491 (0.0025)

* -0.0094 (0.0009) C12 * -0.0016 (0.0011) C13 * -0.0024 (0.0010) C14 * -0.0039 (0.0010) C15 * 0.0066 (0.0010) C16 * 0.0037 (0.0009) C17 * 0.0071 (0.0007) O1

Rms deviation of fitted atoms = 0.0056

- 1.9131 (0.0040) x - 6.3113 (0.0067) y + 8.2971 (0.0010) z = 2.0337 (0.0034)

* 0.0234 (0.0011) C6 * -0.0088 (0.0010) C7 * -0.0414 (0.0010) C8 * -0.0039 (0.0011) C9 * 0.0573 (0.0011) C10 * 0.0563 (0.0011) C11 * -0.0215 (0.0008) N1 * -0.0614 (0.0008) N5

Rms deviation of fitted atoms = 0.0404

4.2130 (0.0092) x - 18.3764 (0.0124) y - 2.1513 (0.0148) z = 0.2915 (0.0070)

Angle to previous plane (with approximate e.s.d.) = 86.98 (0.10)

* 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3 * 0.0000 (0.0000) C4

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85059 (10)0.17394 (5)0.57094 (13)0.0175 (2)
H1N0.9215 (15)0.1991 (8)0.5834 (19)0.024 (4)*
C20.88111 (12)0.11011 (6)0.64944 (15)0.0162 (3)
H20.9185 (12)0.0820 (5)0.5768 (13)0.014 (3)*
C30.75515 (12)0.07834 (6)0.67415 (15)0.0170 (3)
H3A0.7167 (12)0.1069 (6)0.7451 (13)0.017 (4)*
H3B0.7738 (13)0.0345 (3)0.7244 (15)0.018 (3)*
C40.65657 (11)0.07360 (6)0.52160 (16)0.0168 (3)
N50.58515 (10)0.12372 (5)0.46674 (13)0.0175 (2)
C60.50620 (12)0.22762 (6)0.53779 (16)0.0195 (3)
H60.4187 (6)0.2100 (7)0.5092 (18)0.026 (4)*
C70.52363 (13)0.29193 (7)0.58684 (16)0.0209 (3)
H70.4497 (9)0.3199 (6)0.5897 (19)0.024 (4)*
C80.64978 (13)0.31677 (6)0.63090 (17)0.0214 (3)
H80.6617 (14)0.3616 (3)0.6677 (17)0.023 (4)*
C90.75553 (12)0.27690 (6)0.62947 (16)0.0193 (3)
H90.8437 (5)0.2937 (7)0.6582 (17)0.023 (4)*
C100.74020 (12)0.21091 (6)0.58311 (15)0.0166 (3)
C110.61195 (12)0.18629 (6)0.53470 (15)0.0172 (3)
C120.64109 (12)0.01251 (6)0.42990 (15)0.0167 (3)
C130.54351 (12)0.00694 (6)0.29001 (15)0.0176 (3)
O10.45796 (8)0.05582 (5)0.24037 (11)0.0220 (2)
H10.47640.08760.29830.056 (6)*
C140.53434 (13)0.05007 (7)0.20008 (16)0.0214 (3)
H140.4681 (11)0.0525 (7)0.1040 (10)0.023 (4)*
C150.62021 (14)0.10123 (7)0.24581 (17)0.0232 (3)
H150.6114 (15)0.1404 (4)0.1814 (15)0.025 (4)*
C160.71797 (13)0.09652 (7)0.38167 (17)0.0222 (3)
H160.7782 (11)0.1324 (5)0.4139 (18)0.022 (4)*
C170.72755 (12)0.04024 (6)0.47178 (16)0.0191 (3)
H170.7956 (10)0.0382 (7)0.5662 (9)0.019 (4)*
C180.97989 (12)0.11386 (6)0.80489 (15)0.0163 (3)
C191.05836 (12)0.05875 (6)0.85574 (15)0.0166 (3)
O21.03426 (9)0.00484 (4)0.75911 (11)0.0205 (2)
C241.11871 (14)0.05011 (7)0.80086 (17)0.0228 (3)
H24A1.0908 (15)0.0829 (6)0.7157 (13)0.031 (4)*
H24B1.1117 (14)0.0691 (7)0.9039 (8)0.024 (4)*
H24C1.2106 (5)0.0364 (7)0.8068 (18)0.024 (4)*
C201.15266 (12)0.06164 (6)0.99289 (16)0.0188 (3)
H201.2113 (11)0.0252 (5)1.0262 (17)0.022 (4)*
C211.16866 (12)0.11826 (7)1.08444 (16)0.0187 (3)
H211.2365 (11)0.1203 (7)1.1791 (10)0.023 (4)*
C221.08938 (12)0.17202 (6)1.03753 (15)0.0172 (3)
O31.09831 (9)0.23092 (4)1.11742 (11)0.0212 (2)
C251.20231 (13)0.23626 (7)1.25281 (17)0.0230 (3)
H25A1.1910 (15)0.2043 (6)1.3351 (14)0.033 (4)*
H25B1.1959 (14)0.2818 (3)1.2919 (18)0.027 (4)*
H25C1.2894 (7)0.2289 (7)1.2280 (19)0.029 (4)*
C230.99466 (11)0.16943 (6)0.89802 (15)0.0171 (3)
H230.9400 (11)0.2077 (4)0.8693 (17)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0144 (5)0.0160 (5)0.0210 (6)0.0012 (4)0.0012 (4)0.0040 (4)
C20.0168 (6)0.0143 (6)0.0168 (6)0.0006 (5)0.0019 (5)0.0023 (5)
C30.0174 (6)0.0148 (6)0.0176 (6)0.0016 (5)0.0010 (5)0.0021 (5)
C40.0143 (6)0.0174 (6)0.0185 (6)0.0023 (5)0.0033 (5)0.0026 (5)
N50.0164 (5)0.0160 (5)0.0188 (6)0.0015 (4)0.0011 (4)0.0017 (4)
C60.0160 (6)0.0202 (7)0.0209 (7)0.0004 (5)0.0005 (5)0.0026 (5)
C70.0204 (6)0.0207 (7)0.0219 (7)0.0030 (5)0.0048 (5)0.0023 (5)
C80.0252 (7)0.0155 (6)0.0234 (7)0.0015 (5)0.0049 (5)0.0006 (5)
C90.0186 (6)0.0181 (6)0.0203 (7)0.0034 (5)0.0019 (5)0.0011 (5)
C100.0167 (6)0.0173 (6)0.0149 (6)0.0014 (5)0.0014 (5)0.0044 (5)
C110.0196 (6)0.0152 (6)0.0152 (6)0.0009 (5)0.0001 (5)0.0030 (5)
C120.0153 (6)0.0167 (6)0.0179 (6)0.0038 (5)0.0030 (5)0.0018 (5)
C130.0158 (6)0.0185 (6)0.0184 (6)0.0024 (5)0.0036 (5)0.0024 (5)
O10.0196 (5)0.0215 (5)0.0218 (5)0.0006 (4)0.0028 (4)0.0005 (4)
C140.0193 (6)0.0259 (7)0.0186 (7)0.0053 (5)0.0034 (5)0.0014 (5)
C150.0274 (7)0.0190 (6)0.0243 (7)0.0032 (5)0.0078 (6)0.0048 (5)
C160.0236 (7)0.0173 (6)0.0265 (7)0.0008 (5)0.0068 (6)0.0013 (5)
C170.0183 (6)0.0188 (6)0.0193 (7)0.0020 (5)0.0020 (5)0.0022 (5)
C180.0132 (6)0.0182 (6)0.0176 (6)0.0004 (5)0.0032 (5)0.0022 (5)
C190.0157 (6)0.0162 (6)0.0186 (6)0.0000 (5)0.0052 (5)0.0012 (5)
O20.0219 (5)0.0151 (4)0.0232 (5)0.0036 (4)0.0020 (4)0.0005 (4)
C240.0249 (7)0.0178 (6)0.0266 (7)0.0069 (5)0.0076 (6)0.0031 (5)
C200.0151 (6)0.0195 (6)0.0216 (7)0.0033 (5)0.0038 (5)0.0061 (5)
C210.0138 (6)0.0244 (7)0.0168 (6)0.0003 (5)0.0006 (5)0.0036 (5)
C220.0160 (6)0.0185 (6)0.0174 (6)0.0014 (5)0.0045 (5)0.0003 (5)
O30.0197 (5)0.0210 (5)0.0198 (5)0.0015 (4)0.0026 (4)0.0042 (4)
C250.0184 (6)0.0292 (7)0.0193 (7)0.0002 (6)0.0008 (5)0.0037 (6)
C230.0133 (6)0.0179 (6)0.0193 (7)0.0016 (5)0.0017 (5)0.0030 (5)
Geometric parameters (Å, º) top
N1—C101.4064 (16)C14—C151.3810 (19)
N1—C21.4736 (15)C14—H140.969 (10)
N1—H1N0.891 (16)C15—C161.396 (2)
C2—C181.5231 (17)C15—H150.970 (10)
C2—C31.5298 (17)C16—C171.3827 (19)
C2—H20.996 (11)C16—H160.969 (11)
C3—C41.5044 (17)C17—H170.969 (9)
C3—H3A0.997 (12)C18—C231.3837 (18)
C3—H3B0.997 (8)C18—C191.4080 (17)
C4—N51.2972 (16)C19—O21.3754 (15)
C4—C121.4707 (17)C19—C201.3817 (18)
N5—C111.4097 (16)O2—C241.4272 (16)
C6—C71.3794 (18)C24—H24A0.996 (12)
C6—C111.3994 (17)C24—H24B0.996 (9)
C6—H60.969 (9)C24—H24C0.996 (7)
C7—C81.3937 (18)C20—C211.3935 (19)
C7—H70.968 (11)C20—H200.969 (11)
C8—C91.3790 (18)C21—C221.3845 (18)
C8—H80.968 (8)C21—H210.969 (10)
C9—C101.4043 (18)C22—O31.3818 (15)
C9—H90.969 (9)C22—C231.3985 (17)
C10—C111.4149 (17)O3—C251.4312 (16)
C12—C171.4046 (18)C25—H25A0.996 (12)
C12—C131.4205 (17)C25—H25B0.997 (8)
C13—O11.3497 (15)C25—H25C0.996 (9)
C13—C141.3943 (18)C23—H230.969 (10)
O1—H10.8200
C10—N1—C2122.62 (10)C15—C14—C13120.35 (12)
C10—N1—H1N111.3 (10)C15—C14—H14121.0 (9)
C2—N1—H1N111.0 (10)C13—C14—H14118.7 (9)
N1—C2—C18114.12 (10)C14—C15—C16120.64 (12)
N1—C2—C3109.33 (10)C14—C15—H15118.7 (9)
C18—C2—C3109.90 (10)C16—C15—H15120.7 (9)
N1—C2—H2106.8 (8)C17—C16—C15119.40 (12)
C18—C2—H2108.0 (8)C17—C16—H16119.9 (9)
C3—C2—H2108.5 (8)C15—C16—H16120.7 (9)
C4—C3—C2110.77 (10)C16—C17—C12121.57 (12)
C4—C3—H3A107.1 (8)C16—C17—H17118.1 (9)
C2—C3—H3A108.6 (8)C12—C17—H17120.4 (9)
C4—C3—H3B111.4 (8)C23—C18—C19118.96 (11)
C2—C3—H3B110.3 (8)C23—C18—C2122.24 (11)
H3A—C3—H3B108.5 (12)C19—C18—C2118.80 (11)
N5—C4—C12118.61 (11)O2—C19—C20124.67 (11)
N5—C4—C3120.66 (11)O2—C19—C18115.22 (11)
C12—C4—C3120.72 (11)C20—C19—C18120.10 (12)
C4—N5—C11120.68 (10)C19—O2—C24116.63 (10)
C7—C6—C11121.69 (12)O2—C24—H24A105.6 (9)
C7—C6—H6119.2 (9)O2—C24—H24B111.9 (9)
C11—C6—H6119.0 (9)H24A—C24—H24B110.2 (13)
C6—C7—C8119.08 (12)O2—C24—H24C109.6 (9)
C6—C7—H7121.0 (9)H24A—C24—H24C110.8 (14)
C8—C7—H7120.0 (9)H24B—C24—H24C108.7 (13)
C9—C8—C7120.25 (12)C19—C20—C21120.53 (11)
C9—C8—H8120.8 (9)C19—C20—H20121.3 (9)
C7—C8—H8118.8 (9)C21—C20—H20118.2 (9)
C8—C9—C10121.64 (12)C22—C21—C20119.70 (11)
C8—C9—H9121.2 (9)C22—C21—H21120.2 (9)
C10—C9—H9117.2 (9)C20—C21—H21120.0 (9)
C9—C10—N1119.33 (11)O3—C22—C21124.57 (11)
C9—C10—C11117.97 (11)O3—C22—C23115.51 (11)
N1—C10—C11122.37 (11)C21—C22—C23119.89 (12)
C6—C11—N5117.73 (11)C22—O3—C25116.11 (10)
C6—C11—C10119.33 (11)O3—C25—H25A110.9 (9)
N5—C11—C10122.56 (11)O3—C25—H25B105.0 (9)
C17—C12—C13118.02 (11)H25A—C25—H25B109.6 (14)
C17—C12—C4121.14 (11)O3—C25—H25C112.5 (9)
C13—C12—C4120.70 (11)H25A—C25—H25C108.5 (13)
O1—C13—C14118.29 (11)H25B—C25—H25C110.3 (13)
O1—C13—C12121.68 (11)C18—C23—C22120.76 (11)
C14—C13—C12120.03 (11)C18—C23—H23121.4 (9)
C13—O1—H1109.5C22—C23—H23117.8 (9)
C10—N1—C2—C1897.55 (13)C4—C12—C13—C14176.71 (11)
C10—N1—C2—C325.97 (16)O1—C13—C14—C15179.65 (12)
N1—C2—C3—C454.54 (13)C12—C13—C14—C150.3 (2)
C18—C2—C3—C4179.48 (10)C13—C14—C15—C160.5 (2)
C2—C3—C4—N581.63 (15)C14—C15—C16—C170.7 (2)
C2—C3—C4—C1297.06 (13)C15—C16—C17—C120.0 (2)
C12—C4—N5—C11168.57 (11)C13—C12—C17—C160.83 (19)
C3—C4—N5—C1110.16 (18)C4—C12—C17—C16176.53 (12)
C11—C6—C7—C81.5 (2)N1—C2—C18—C2327.89 (17)
C6—C7—C8—C91.8 (2)C3—C2—C18—C2395.32 (14)
C7—C8—C9—C100.5 (2)N1—C2—C18—C19152.40 (11)
C8—C9—C10—N1174.61 (12)C3—C2—C18—C1984.39 (14)
C8—C9—C10—C111.1 (2)C23—C18—C19—O2177.77 (11)
C2—N1—C10—C9127.60 (13)C2—C18—C19—O21.95 (17)
C2—N1—C10—C1159.16 (17)C23—C18—C19—C203.06 (19)
C7—C6—C11—N5173.13 (12)C2—C18—C19—C20177.22 (11)
C7—C6—C11—C100.0 (2)C20—C19—O2—C243.80 (18)
C4—N5—C11—C6145.68 (13)C18—C19—O2—C24175.33 (11)
C4—N5—C11—C1041.39 (18)O2—C19—C20—C21179.08 (12)
C9—C10—C11—C61.32 (18)C18—C19—C20—C211.83 (19)
N1—C10—C11—C6174.65 (12)C19—C20—C21—C220.01 (19)
C9—C10—C11—N5171.50 (12)C20—C21—C22—O3178.70 (11)
N1—C10—C11—N51.83 (19)C20—C21—C22—C230.60 (19)
N5—C4—C12—C17171.07 (12)C21—C22—O3—C253.53 (18)
C3—C4—C12—C177.66 (18)C23—C22—O3—C25174.64 (11)
N5—C4—C12—C134.52 (18)C19—C18—C23—C222.49 (19)
C3—C4—C12—C13176.75 (11)C2—C18—C23—C22177.80 (11)
C17—C12—C13—O1178.99 (11)O3—C22—C23—C18177.59 (11)
C4—C12—C13—O13.26 (18)C21—C22—C23—C180.68 (19)
C17—C12—C13—C140.99 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.812.5443 (14)148
N1—H1N···O3i0.892 (16)2.311 (16)3.201 (2)177
C24—H24B···Cg3ii1.00 (1)2.74 (1)3.5462 (16)140 (1)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC21H18N2OC23H22N2O3C23H22N2O3C23H22N2O3
Mr314.37374.43374.43374.43
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Monoclinic, P21/nMonoclinic, P21/c
Temperature (K)298298300296
a, b, c (Å)24.855 (4), 7.6825 (11), 19.455 (3)8.250 (2), 9.889 (3), 12.272 (3)5.5372 (8), 23.144 (3), 15.131 (2)10.5071 (3), 20.3901 (6), 8.7280 (3)
α, β, γ (°)90, 118.824 (2), 90108.697 (4), 90.973 (5), 90.594 (5)90, 99.520 (3), 9090, 102.390 (2), 90
V3)3254.7 (9)948.1 (4)1912.4 (4)1826.34 (10)
Z8244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.090.090.09
Crystal size (mm)0.30 × 0.27 × 0.210.30 × 0.18 × 0.110.37 × 0.07 × 0.060.50 × 0.50 × 0.35
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Bruker APEX II
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS in SAINT-NT; Bruker, 1999)
Tmin, Tmax0.977, 0.9830.974, 0.9900.969, 0.9950.956, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
9815, 2893, 1696 5882, 3329, 1625 11881, 3400, 1703 12443, 4181, 3367
Rint0.0550.0400.1050.033
(sin θ/λ)max1)0.5970.5960.5970.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.139, 1.02 0.062, 0.179, 0.98 0.086, 0.167, 1.04 0.039, 0.126, 1.10
No. of reflections2893332934004181
No. of parameters222259259338
No. of restraints00020
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.120.16, 0.200.15, 0.160.30, 0.31

Computer programs: SMART-NT (Bruker, 2001), SMART (reference?), SAINT-NT (Bruker, 1999), SAINT (reference?), SAINT-NT, SAINT, SHELXTL-NT (Bruker, 1999 or??2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXTL-NT), WinGX (Farrugia, 1999).

Selected torsion angles (º) for (I) top
C10—N1—C2—C332.0 (3)C3—C4—N5—C114.0 (3)
N1—C2—C3—C451.1 (3)N5—C4—C12—C132.2 (3)
C2—C3—C4—N576.3 (3)N1—C2—C18—C23149.0 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.7852.514 (3)147.3
C23—H23···Cg1i0.932.6153.480 (2)154.8
Symmetry code: (i) x, y+1, z.
Selected torsion angles (º) for (II) top
C10—N1—C2—C322.7 (5)C3—C4—N5—C110.6 (5)
N1—C2—C3—C476.0 (4)N5—C4—C12—C137.7 (5)
C2—C3—C4—N565.1 (4)N1—C2—C18—C2313.2 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.782.514 (4)147
N1—H1N···Cg2i0.90 (4)2.60 (4)3.445 (4)159 (3)
Symmetry code: (i) x, y+1, z+2.
Selected torsion angles (º) for (III) top
C10—N1—C2—C338.8 (5)C3—C4—N5—C118.4 (6)
N1—C2—C3—C444.7 (4)N5—C4—C12—C131.5 (6)
C2—C3—C4—N576.8 (5)N1—C2—C18—C23136.1 (4)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.762.494 (5)148
N1—H1N···O1i0.91 (3)2.20 (3)3.017 (4)150 (3)
C8—H8···O3ii0.932.483.385 (6)163
C15—H15···O2iii0.932.643.501 (5)154
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+2, z.
Selected torsion angles (º) for (IV) top
C10—N1—C2—C325.97 (16)C3—C4—N5—C1110.16 (18)
N1—C2—C3—C454.54 (13)N5—C4—C12—C134.52 (18)
C2—C3—C4—N581.63 (15)N1—C2—C18—C2327.89 (17)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.821.812.5443 (14)148
N1—H1N···O3i0.892 (16)2.311 (16)3.201 (2)177
C24—H24B···Cg3ii0.996 (9)2.744 (13)3.5462 (16)140 (1)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds