Download citation
Download citation
link to html
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral mol­ecule of N-phenyl­pyridine-2-carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octa­hedral geometry. The crystal structure is stabilized by inter­molecular N—H...O, C—H...O and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107023414/gg3093sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107023414/gg3093Isup2.hkl
Contains datablock I

CCDC reference: 655485

Comment top

The title complex, (I), assumes a different geometry to those previously reported in the literature with identical and similar ligands. In the CuII complex with the same ligand (Ray et al., 1994), the structure determination showed that the Cu complex is a four-coordinate one with a symmetric N4 coordination environment, with the ligand assuming a cis conformation. A Cu complex with a similar ligand, [N-(2-chloro-6-methylphenyl) pyridine-2-carboxamide] has also been reported (Patra et al., 1999). In this case, the molecular structure determination showed that the Cu centre is five-coordinate in a distorted trigonal–bipyramidal geometry with an N4O coordination environment, with the pyridine and the amide N atoms of each organic ligand providing an axial and an equatorial pyridine and amide N atom and the fifth coordination position occupied by a water molecule.

The N-phenylpyridine-2-carboxamide ligand was obtained by a condensation reaction between 2-pyridinecarboxylic acid and phenylamide in a basic reductive reaction medium following a modification of the procedure described by Barnes et al. (1978) and a similar procedure described by Ray et al. (1994). The ligand, potentially bidentate, reacted with copper(II) acetate forming a five-coordinate complex, (I). The synthesis of the complex was performed in a fashion similar to that reported previously (Ray et al., 1994) but using different reaction conditions. In their synthesis, the ligand (dissolved in ethanol) was allowed to react with an aqueous solution of CuSO4·5H2O, while in the synthesis reported here the ligand was dissolved in methanol and added to a methanol solution of Cu(CH3COO)2·H2O.

A view of the structure of the complex and the coordination environment around Cu, together with its numbering scheme, is shown in Fig. 1. The coordination environment around copper is N3O2-type and is asymmetric. One of the N-phenylpyridine-2-carboxamide molecules (ligand A) provides a pyridine N and an amide O donor atoms. The second molecule (ligand B, labelled X4#, where X is the atom label and # is an integer) provides a pyridine and a deprotonated amide N donor atoms. The remaining donor O atom, O3, is from the acetate anion. Atom O31 of the acetate residue can be considered to be weakly interacting with the CuII ion [Cu1—O31 = 2.789 (2) Å]. In this case, the primary N3O2 five-coordination geometry gives place to an effective asymmetric octahedral elongated geometry (Kiani et al., 2002; Burčák et al., 2005). The primary Cu-atom geometry is a distorted square-based pyramid with a τ value of 0.10 [the structure index is defined as τ = (β - α)/60, where β and α are the largest coordination angles; τ = 0 for square–pyramidal (SP) and τ = 1 for trigonal–bipyramidal (TBP) geometry (Addison et al., 1984)]. Ligand B (providing two N donor atoms), an acetate O atom and the pyridine N atom of ligand A encompass the basal plane of the square pyramid [Cu1—N47(amide) = 1.995 (2) Å, Cu1—N41 and Cu1—N1(pyridine) = 2.013 (5) and 2.042 (2) Å, respectively, Cu1—O3(acetate) = 1.9534 (19) Å], from which the Cu atom is displaced 0.1253 (11) Å towards an apical amide O donor atom [Cu1—O2 = 2.2557 (19) Å]. The apical bond length Cu1—O2 is 0.26 Å longer than the mean distance presented by the basal ones. The bond angles involving the coordinated metal centre and the donor atoms are given in Table 1. The largest distortions from the square-pyramidal geometry are indicated by the N41—Cu1—N1 and O3—Cu1—N47 angles. These deviations can be attributed to steric effects imposed by the conformations assumed by the ligands.

Ligands A and B have different conformations. The presence of the H atom on N27 in ligand A precludes this atom being coordinated to the Cu atom; instead, ligand A is rotated by approximately 180° and the carbonyl atom O2 is the donor to the Cu atom, so that ligands A and B assume different conformations around the C2—C27 and C42—C47 bonds, the N1—C2—C27—N27 torsion angle in ligand A being 171.8 (2)°, and N41—C42—C47—N47, the corresponding torsion angle in ligand B, being 0.1 (3)°. In ligand A, the C27—N27—C21—C22 torsion angle is -174.7 (3)°, while the corresponding angle C47—N47—C421—C422 in ligand B is -96.9 (3)°. The C27—N27 bond [1.346 (3) Å] is significantly longer than the C47—N47 bond [1.323 (3) Å] at a 3σ level. Atom H27 is thus available for hydrogen bonding.

The supramolecular stucture is defined by an N—H···O, three C—H···O and one C—H···π hydrogen bonds, which combine to form a three-dimensional network. Atom N27 acts as a hydrogen-bond donor, via H27, to O4i (symmetry codes are given in Table 2). This is augmented by the C3—H3···O4i and C22—H22···O4i hydrogen bonds. These hydrogen bonds link the molecules into a chain that runs parallel to the c axis (Table 2 and Fig. 2). Atom C5 acts as a hydrogen-bond donor, via H5, to O3ii, thus linking the molecules into a chain that runs parallel to the a axis (Table 2 and Fig. 3). Finally, atom C45 is involved in a C—H···π contact with the pyridine ring containing atom N41iii (Table 2 and Fig. 4).

Related literature top

For related literature, see: Addison et al. (1984); Barnes et al. (1978); Burčák et al. (2005); Flack (1983); Kiani et al. (2002); Patra et al. (1999); Ray et al. (1994).

Experimental top

The ligand N-phenylpyridine-2-carboxamide was synthesized as follows: N-Phenyl-2-pyridynamide was prepared following a modification of the procedure described by Barnes et al. (1978). A solution consisting of a mixture of 2-pyridinecarboxylic acid (picolinic acid, 40 mmol), phenylamide (aniline, 40 mmol) and triphenylphosphite (40 mmol) in 50 ml of pyridine was kept for 3 h in a boiling water bath. The resulting solution was cooled and maintained at room temperature for 48 h. The resulting white fibrous crystals were filtered off and washed with a small amount of a 1:1 mixture of acetone/diethyl ether (78% yield). Analysis found: C 72.9, H 5.10, N 14.01%; C12H10N2O requires: C 72.7, H 5.08, N 14.14%. For the synthesis of (I), a solution of copper(II) acetate monohydrate in methanol (2.5 mmol) was added to a solution of N-phenyl-2-pyridynamide (5.0 mmol) in methanol at 323 K. The resulting solution was left to cool for 24 h, allowing partial evaporation of the solvent. Single crystals were obtained by slow evaporation of the resulting solution at room temperature. They were collected and washed with a 1:1 mixture of acetone/diethyl ether and dried under low pressure. Analysis found: C 60.23, H 4.45, N 10.78%; C26H22CuN4O4 requires: C 60.28, H 4.28, N 10.82%.

Refinement top

Compound (I) crystallized in the orthorhombic system; space groups Pna21 and Pnma were permitted from the systematic absences, and Pna21 was confirmed by the analysis. H atoms were treated as riding atoms, with C—H distances of 0.95 Å (aromatic) and 0.98 Å (methyl), an N—H distance of 0.89 Å, and Uiso(H) values of 1.5 (methyl) or 1.2 times Ueq(C,N). The correct orientation of the structure with respect to the polar axis direction was established by means of the Flack (1983) parameter.

Computing details top

Data collection: Stadi-4 Software (Stoe & Cie, 1996); cell refinement: X-RED (Stoe & Cie, 1996); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the chain parallel to the c axis formed by the action of one N—H···O hydrogen bond augmented by two C—H···O hydrogen bonds, all involving atom O4 as the acceptor. Atoms labelled with an asterisk (*) or a hash (#) are at the symmetry positions (1 - x, 1 - y, -1/2 + z) and (1 - x, 1 - y, 1/2 - z), respectively. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
[Figure 3] Fig. 3. A view of the chain parallel to the a axis formed by a C—H···O hydrogen bond. Atoms labelled with an asterisk (*) or a hash (#) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z), respectively. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
[Figure 4] Fig. 4. A stereoview of the chain formed by a C—H···π interaction. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
Acetato(N-phenylpyridine-2-carboxamidato-κ2N,N)(N- phenylpyridine-2-carboxamideκ2N1,O)copper(II) top
Crystal data top
[Cu(C12H9N2O)(C2H3O2)(C12H10N2O)]F(000) = 1068
Mr = 518.02Dx = 1.417 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5831 reflections
a = 7.9604 (1) Åθ = 1.8–28.0°
b = 23.057 (3) ŵ = 0.94 mm1
c = 13.227 (2) ÅT = 120 K
V = 2427.7 (5) Å3Block, green
Z = 40.25 × 0.10 × 0.10 mm
Data collection top
Stoe Stadi-4
diffractometer
4590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
profile fitted 2θ/w scansh = 1010
Absorption correction: multi-scan
(North et al., 1968)
k = 300
Tmin = 0.799, Tmax = 0.912l = 1717
6079 measured reflections10 standard reflections every 120 min
5831 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.0275P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5831 reflectionsΔρmax = 0.21 e Å3
317 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 2827 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (11)
Crystal data top
[Cu(C12H9N2O)(C2H3O2)(C12H10N2O)]V = 2427.7 (5) Å3
Mr = 518.02Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.9604 (1) ŵ = 0.94 mm1
b = 23.057 (3) ÅT = 120 K
c = 13.227 (2) Å0.25 × 0.10 × 0.10 mm
Data collection top
Stoe Stadi-4
diffractometer
4590 reflections with I > 2σ(I)
Absorption correction: multi-scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.799, Tmax = 0.91210 standard reflections every 120 min
6079 measured reflections intensity decay: none
5831 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.26 e Å3
5831 reflectionsAbsolute structure: Flack (1983), 2827 Friedel pairs
317 parametersAbsolute structure parameter: 0.003 (11)
1 restraint
Special details top

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67223 (3)0.382359 (11)0.29462 (2)0.02485 (8)
O20.7315 (2)0.47709 (8)0.27127 (13)0.0291 (4)
O30.7701 (3)0.35655 (9)0.16688 (14)0.0299 (4)
O40.6360 (3)0.38267 (9)0.60211 (15)0.0365 (5)
O310.6132 (3)0.27856 (10)0.19229 (17)0.0489 (6)
N10.4623 (3)0.41385 (10)0.22490 (16)0.0279 (5)
N270.6053 (3)0.56152 (10)0.22213 (17)0.0294 (5)
N410.8433 (3)0.33925 (9)0.37781 (17)0.0248 (4)
N470.5845 (3)0.40094 (10)0.43216 (16)0.0289 (5)
C20.4465 (3)0.47213 (12)0.21947 (19)0.0272 (5)
C30.2925 (4)0.49801 (14)0.2003 (2)0.0363 (7)
C40.1553 (4)0.46346 (17)0.1800 (3)0.0467 (8)
C50.1741 (4)0.40399 (18)0.1786 (3)0.0453 (8)
C60.3284 (4)0.38047 (14)0.2040 (2)0.0396 (7)
C210.7290 (4)0.60269 (12)0.2509 (2)0.0303 (6)
C220.6914 (4)0.66050 (13)0.2324 (2)0.0381 (7)
C230.8006 (4)0.70367 (13)0.2635 (2)0.0426 (8)
C240.9448 (4)0.69053 (13)0.3141 (2)0.0428 (8)
C250.9849 (5)0.63295 (15)0.3298 (3)0.0510 (9)
C260.8780 (4)0.58888 (12)0.2992 (3)0.0433 (7)
C270.6084 (3)0.50401 (11)0.23922 (18)0.0255 (5)
C310.7137 (4)0.30620 (13)0.1411 (2)0.0339 (6)
C320.7794 (5)0.28252 (16)0.0430 (3)0.0511 (9)
C420.8148 (3)0.34256 (11)0.47805 (19)0.0251 (5)
C430.9150 (4)0.31426 (12)0.5471 (2)0.0332 (6)
C441.0454 (4)0.27985 (14)0.5123 (2)0.0418 (7)
C451.0722 (4)0.27585 (13)0.4094 (2)0.0390 (7)
C460.9688 (4)0.30614 (11)0.3441 (2)0.0300 (6)
C470.6666 (3)0.37792 (10)0.5094 (2)0.0260 (5)
C4210.4515 (4)0.44050 (12)0.4546 (2)0.0291 (6)
C4220.2870 (4)0.42223 (16)0.4569 (3)0.0435 (8)
C4230.1582 (4)0.46208 (18)0.4756 (3)0.0544 (9)
C4240.1948 (4)0.51951 (17)0.4916 (3)0.0487 (9)
C4250.3592 (5)0.53797 (14)0.4894 (2)0.0424 (7)
C4260.4882 (4)0.49894 (13)0.47066 (19)0.0329 (6)
H30.28180.53900.20100.044*
H40.04870.48040.16720.056*
H50.08270.37960.16040.054*
H60.34000.33950.20680.048*
H220.59050.67050.19820.046*
H230.77460.74310.24950.051*
H241.01650.72040.33800.051*
H251.08770.62340.36220.061*
H260.90670.54950.31130.052*
H270.52060.57540.18480.035*
H430.89490.31830.61760.040*
H441.11510.25940.55840.050*
H451.16090.25250.38380.047*
H460.98760.30330.27330.036*
H32A0.90250.28280.04400.077*
H32B0.73920.30660.01310.077*
H32C0.73950.24260.03390.077*
H4220.26090.38250.44590.052*
H4230.04480.44930.47730.065*
H4240.10690.54640.50430.058*
H4250.38450.57770.50070.051*
H4260.60130.51200.46880.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02781 (13)0.02482 (13)0.02193 (12)0.00124 (12)0.00319 (16)0.00028 (15)
O20.0251 (8)0.0278 (9)0.0344 (11)0.0021 (7)0.0034 (7)0.0017 (7)
O30.0341 (10)0.0311 (10)0.0245 (9)0.0013 (9)0.0053 (9)0.0005 (8)
O40.0410 (12)0.0468 (12)0.0218 (10)0.0121 (10)0.0037 (8)0.0039 (9)
O310.0606 (14)0.0487 (13)0.0375 (12)0.0209 (12)0.0108 (11)0.0022 (10)
N10.0268 (11)0.0347 (12)0.0223 (10)0.0052 (9)0.0019 (9)0.0004 (9)
N270.0293 (11)0.0305 (11)0.0285 (11)0.0031 (10)0.0076 (10)0.0023 (9)
N410.0292 (11)0.0204 (10)0.0249 (11)0.0010 (8)0.0027 (9)0.0021 (8)
N470.0311 (13)0.0312 (11)0.0243 (11)0.0092 (10)0.0039 (9)0.0005 (9)
C20.0235 (12)0.0379 (14)0.0202 (11)0.0011 (10)0.0018 (10)0.0027 (10)
C30.0289 (15)0.0461 (17)0.0338 (14)0.0031 (12)0.0025 (12)0.0079 (13)
C40.0275 (16)0.069 (2)0.0439 (19)0.0018 (15)0.0021 (14)0.0142 (17)
C50.0321 (16)0.067 (2)0.0369 (17)0.0174 (16)0.0040 (13)0.0050 (15)
C60.0363 (16)0.0483 (18)0.0343 (15)0.0117 (14)0.0003 (13)0.0001 (13)
C210.0344 (14)0.0306 (14)0.0260 (13)0.0004 (11)0.0016 (12)0.0003 (11)
C220.0407 (17)0.0349 (15)0.0387 (16)0.0067 (12)0.0016 (13)0.0009 (12)
C230.056 (2)0.0269 (14)0.0449 (17)0.0006 (13)0.0019 (14)0.0004 (12)
C240.0551 (19)0.0356 (14)0.038 (2)0.0129 (13)0.0048 (14)0.0016 (12)
C250.0479 (19)0.0432 (18)0.062 (2)0.0084 (15)0.0246 (17)0.0050 (15)
C260.0424 (15)0.0323 (13)0.0551 (18)0.0019 (11)0.023 (2)0.0048 (18)
C270.0266 (12)0.0301 (12)0.0197 (11)0.0024 (11)0.0002 (10)0.0015 (10)
C310.0441 (17)0.0349 (15)0.0226 (13)0.0029 (13)0.0019 (11)0.0010 (11)
C320.070 (2)0.051 (2)0.0322 (16)0.0003 (18)0.0116 (16)0.0100 (15)
C420.0277 (13)0.0207 (11)0.0269 (13)0.0013 (10)0.0022 (10)0.0028 (9)
C430.0408 (16)0.0332 (14)0.0256 (12)0.0076 (13)0.0001 (12)0.0046 (11)
C440.0463 (18)0.0422 (17)0.0370 (16)0.0159 (14)0.0043 (14)0.0010 (13)
C450.0423 (17)0.0361 (15)0.0387 (16)0.0166 (13)0.0051 (13)0.0025 (13)
C460.0341 (14)0.0255 (13)0.0305 (14)0.0002 (11)0.0061 (11)0.0027 (10)
C470.0300 (13)0.0236 (11)0.0245 (12)0.0018 (11)0.0040 (10)0.0018 (10)
C4210.0327 (14)0.0345 (14)0.0200 (11)0.0085 (11)0.0039 (10)0.0016 (11)
C4220.0350 (16)0.0484 (18)0.0471 (18)0.0019 (14)0.0098 (13)0.0001 (16)
C4230.0353 (18)0.064 (2)0.064 (3)0.0077 (17)0.0123 (17)0.0075 (18)
C4240.051 (2)0.057 (2)0.0382 (17)0.0297 (17)0.0088 (15)0.0052 (15)
C4250.062 (2)0.0366 (15)0.0282 (14)0.0167 (15)0.0007 (14)0.0004 (12)
C4260.0386 (15)0.0347 (14)0.0252 (13)0.0059 (12)0.0028 (11)0.0021 (10)
Geometric parameters (Å, º) top
Cu1—O22.2557 (19)O3—C311.291 (3)
Cu1—O31.9534 (19)C31—O311.227 (4)
Cu1—O312.789 (2)C31—C321.502 (4)
Cu1—N12.042 (2)C32—H32A0.98
Cu1—N412.013 (2)C32—H32B0.98
Cu1—N471.995 (2)C32—H32C0.98
N1—C61.343 (4)N41—C461.334 (3)
N1—C21.351 (4)N41—C421.347 (3)
C2—C31.387 (4)C42—C431.377 (4)
C2—C271.506 (4)C42—C471.493 (4)
C27—O21.235 (3)C47—O41.256 (3)
C27—N271.346 (3)C47—N471.323 (3)
N27—C211.419 (4)N47—C4211.428 (3)
N27—H270.89C421—C4221.376 (4)
C21—C261.385 (4)C421—C4261.395 (4)
C21—C221.388 (4)C422—C4231.399 (5)
C22—C231.384 (4)C422—H4220.95
C22—H220.95C423—C4241.372 (6)
C23—C241.362 (5)C423—H4230.95
C23—H230.95C424—C4251.377 (5)
C24—C251.381 (4)C424—H4240.95
C24—H240.95C425—C4261.388 (4)
C25—C261.386 (4)C425—H4250.95
C25—H250.95C426—H4260.95
C26—H260.95C43—C441.385 (4)
C3—C41.378 (4)C43—H430.95
C3—H30.95C44—C451.381 (4)
C4—C51.379 (6)C44—H440.95
C4—H40.95C45—C461.383 (4)
C5—C61.385 (5)C45—H450.95
C5—H50.95C46—H460.95
C6—H60.95
O3—Cu1—N47173.55 (9)C31—O3—Cu1111.34 (17)
O3—Cu1—N4193.02 (9)O31—C31—O3123.2 (3)
N47—Cu1—N4181.05 (9)O31—C31—C32121.0 (3)
O3—Cu1—N192.53 (9)O3—C31—C32115.7 (3)
N47—Cu1—N192.81 (9)C31—C32—H32A109.5
N41—Cu1—N1167.38 (8)C31—C32—H32B109.5
O3—Cu1—O295.35 (7)H32A—C32—H32B109.5
N47—Cu1—O289.43 (8)C31—C32—H32C109.5
N41—Cu1—O2114.30 (8)H32A—C32—H32C109.5
N1—Cu1—O276.41 (8)H32B—C32—H32C109.5
C6—N1—C2119.0 (3)C46—N41—C42119.2 (2)
C6—N1—Cu1122.6 (2)C46—N41—Cu1127.33 (19)
C2—N1—Cu1116.97 (17)C42—N41—Cu1113.34 (18)
N1—C2—C3121.3 (3)N41—C42—C43121.9 (2)
N1—C2—C27113.4 (2)N41—C42—C47115.9 (2)
C3—C2—C27125.3 (3)C43—C42—C47122.2 (2)
O2—C27—N27124.6 (3)O4—C47—N47128.5 (2)
O2—C27—C2119.5 (2)O4—C47—C42118.2 (2)
N27—C27—C2115.9 (2)N47—C47—C42113.3 (2)
C27—O2—Cu1111.58 (17)C47—N47—C421117.5 (2)
C27—N27—C21127.0 (2)C47—N47—Cu1116.39 (17)
C27—N27—H27117.2C421—N47—Cu1125.85 (17)
C21—N27—H27115.6C422—C421—C426119.4 (3)
C26—C21—C22119.1 (3)C422—C421—N47121.0 (3)
C26—C21—N27124.3 (2)C426—C421—N47119.6 (3)
C22—C21—N27116.5 (3)C421—C422—C423120.0 (3)
C23—C22—C21120.2 (3)C421—C422—H422120.0
C23—C22—H22119.9C423—C422—H422120.0
C21—C22—H22119.9C424—C423—C422120.4 (3)
C24—C23—C22121.0 (3)C424—C423—H423119.8
C24—C23—H23119.5C422—C423—H423119.8
C22—C23—H23119.5C423—C424—C425119.8 (3)
C23—C24—C25118.8 (3)C423—C424—H424120.1
C23—C24—H24120.6C425—C424—H424120.1
C25—C24—H24120.6C424—C425—C426120.5 (3)
C24—C25—C26121.3 (3)C424—C425—H425119.8
C24—C25—H25119.4C426—C425—H425119.8
C26—C25—H25119.4C425—C426—C421119.9 (3)
C21—C26—C25119.5 (3)C425—C426—H426120.0
C21—C26—H26120.3C421—C426—H426120.0
C25—C26—H26120.3C42—C43—C44119.0 (3)
C4—C3—C2119.2 (3)C42—C43—H43120.5
C4—C3—H3120.4C44—C43—H43120.5
C2—C3—H3120.4C45—C44—C43118.8 (3)
C3—C4—C5119.4 (3)C45—C44—H44120.6
C3—C4—H4120.3C43—C44—H44120.6
C5—C4—H4120.3C44—C45—C46119.4 (3)
C4—C5—C6118.8 (3)C44—C45—H45120.3
C4—C5—H5120.6C46—C45—H45120.3
C6—C5—H5120.6N41—C46—C45121.7 (3)
N1—C6—C5122.0 (3)N41—C46—H46119.1
N1—C6—H6119.0C45—C46—H46119.1
C5—C6—H6119.0
O3—Cu1—N1—C685.9 (2)O3—Cu1—N41—C460.9 (2)
N47—Cu1—N1—C690.4 (2)N47—Cu1—N41—C46176.6 (2)
N41—Cu1—N1—C630.1 (5)N1—Cu1—N41—C46115.1 (4)
O2—Cu1—N1—C6179.2 (2)O2—Cu1—N41—C4698.1 (2)
O3—Cu1—N1—C2107.92 (19)O3—Cu1—N41—C42176.04 (18)
N47—Cu1—N1—C275.71 (19)N47—Cu1—N41—C421.42 (18)
N41—Cu1—N1—C2136.1 (4)N1—Cu1—N41—C4260.1 (5)
O2—Cu1—N1—C213.02 (17)O2—Cu1—N41—C4286.71 (19)
C6—N1—C2—C34.9 (4)C46—N41—C42—C432.2 (4)
Cu1—N1—C2—C3161.8 (2)Cu1—N41—C42—C43177.8 (2)
C6—N1—C2—C27176.9 (2)C46—N41—C42—C47176.8 (2)
Cu1—N1—C2—C2716.5 (3)Cu1—N41—C42—C471.2 (3)
N1—C2—C27—O29.8 (3)N41—C42—C47—O4179.4 (2)
C3—C2—C27—O2168.4 (3)C43—C42—C47—O41.6 (4)
N1—C2—C27—N27171.8 (2)N41—C42—C47—N470.1 (3)
C3—C2—C27—N2710.0 (4)C43—C42—C47—N47178.9 (2)
N27—C27—O2—Cu1177.3 (2)O4—C47—N47—C4215.9 (4)
C2—C27—O2—Cu11.0 (3)C42—C47—N47—C421173.5 (2)
O3—Cu1—O2—C2798.59 (18)O4—C47—N47—Cu1179.5 (2)
N47—Cu1—O2—C2785.75 (18)C42—C47—N47—Cu11.2 (3)
N41—Cu1—O2—C27165.66 (16)N41—Cu1—N47—C471.45 (19)
N1—Cu1—O2—C277.27 (17)N1—Cu1—N47—C47167.5 (2)
O2—C27—N27—C2110.1 (4)O2—Cu1—N47—C47116.2 (2)
C2—C27—N27—C21168.2 (2)N41—Cu1—N47—C421172.7 (2)
C27—N27—C21—C262.3 (5)N1—Cu1—N47—C42118.3 (2)
C27—N27—C21—C22174.7 (3)O2—Cu1—N47—C42158.0 (2)
C26—C21—C22—C231.1 (5)C47—N47—C421—C42296.9 (3)
N27—C21—C22—C23176.1 (3)Cu1—N47—C421—C42288.9 (3)
C21—C22—C23—C241.1 (5)C47—N47—C421—C42685.4 (3)
C22—C23—C24—C253.0 (5)Cu1—N47—C421—C42688.7 (3)
C23—C24—C25—C262.9 (6)C426—C421—C422—C4230.2 (5)
C22—C21—C26—C251.2 (5)N47—C421—C422—C423177.8 (3)
N27—C21—C26—C25175.8 (3)C421—C422—C423—C4240.0 (6)
C24—C25—C26—C210.8 (6)C422—C423—C424—C4250.1 (6)
N1—C2—C3—C44.1 (4)C423—C424—C425—C4260.2 (5)
C27—C2—C3—C4177.8 (3)C424—C425—C426—C4210.3 (4)
C2—C3—C4—C50.5 (5)C422—C421—C426—C4250.3 (4)
C3—C4—C5—C64.2 (5)N47—C421—C426—C425178.0 (2)
C2—N1—C6—C51.0 (4)N41—C42—C43—C442.2 (4)
Cu1—N1—C6—C5164.9 (2)C47—C42—C43—C44176.8 (3)
C4—C5—C6—N13.5 (5)C42—C43—C44—C451.0 (5)
N41—Cu1—O3—C3184.9 (2)C43—C44—C45—C460.0 (5)
N1—Cu1—O3—C3183.8 (2)C42—N41—C46—C451.1 (4)
O2—Cu1—O3—C31160.38 (19)Cu1—N41—C46—C45176.0 (2)
Cu1—O3—C31—O311.0 (4)C44—C45—C46—N410.0 (5)
Cu1—O3—C31—C32179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N27—H27···O4i0.891.922.805 (3)170
C3—H3···O4i0.952.323.095 (4)138
C5—H5···O3ii0.952.553.401 (4)150
C22—H22···O4i0.952.523.279 (4)137
C45—H45···Cg5iii0.952.783.582 (3)142
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H9N2O)(C2H3O2)(C12H10N2O)]
Mr518.02
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)7.9604 (1), 23.057 (3), 13.227 (2)
V3)2427.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.799, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
6079, 5831, 4590
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.03
No. of reflections5831
No. of parameters317
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26
Absolute structureFlack (1983), 2827 Friedel pairs
Absolute structure parameter0.003 (11)

Computer programs: Stadi-4 Software (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), X-RED, SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond and torsion angles (º) top
O3—Cu1—N47173.55 (9)N41—Cu1—N1167.38 (8)
O3—Cu1—N4193.02 (9)O3—Cu1—O295.35 (7)
N47—Cu1—N4181.05 (9)N47—Cu1—O289.43 (8)
O3—Cu1—N192.53 (9)N41—Cu1—O2114.30 (8)
N47—Cu1—N192.81 (9)N1—Cu1—O276.41 (8)
N1—C2—C27—N27171.8 (2)N41—C42—C47—N470.1 (3)
C27—N27—C21—C22174.7 (3)C47—N47—C421—C42296.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N27—H27···O4i0.891.922.805 (3)170
C3—H3···O4i0.952.323.095 (4)138
C5—H5···O3ii0.952.553.401 (4)150
C22—H22···O4i0.952.523.279 (4)137
C45—H45···Cg5iii0.952.783.582 (3)142
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds