Download citation
Download citation
link to html
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H...O and N—H...N hydrogen bonds in both structures, with 4-­amino-3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one containing a rare bifurcated N—H...N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen-bonding patterns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107009596/gg3068sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107009596/gg3068Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107009596/gg3068IIsup3.hkl
Contains datablock II

CCDC references: 645625; 645626

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

(I) 4-amino-3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one top
Crystal data top
C10H10N4ODx = 1.408 Mg m3
Mr = 202.22Melting point: 442 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 20449 reflections
a = 9.5433 (2) Åθ = 1–27.5°
b = 9.1416 (2) ŵ = 0.10 mm1
c = 21.8652 (4) ÅT = 150 K
V = 1907.54 (7) Å3Prism, colourless
Z = 80.35 × 0.16 × 0.10 mm
F(000) = 848
Data collection top
Nonius KappaCCD
diffractometer
1816 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 3.6°
Detector resolution: 9.091 pixels mm-1h = 012
ω scansk = 011
4037 measured reflectionsl = 2828
2172 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4343P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2172 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
31 constraintsExtinction coefficient: 0.010 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52246 (10)0.33863 (11)0.55975 (4)0.0303 (2)
N20.51372 (11)0.30930 (11)0.49829 (5)0.0327 (3)
N40.73621 (10)0.41068 (10)0.48514 (4)0.0273 (2)
N140.84248 (11)0.45224 (13)0.44339 (5)0.0349 (3)
O150.85921 (9)0.50747 (12)0.56381 (4)0.0450 (3)
C30.61899 (12)0.34511 (12)0.46302 (5)0.0284 (3)
C50.75262 (12)0.44546 (13)0.54638 (5)0.0291 (3)
C60.63274 (11)0.40094 (12)0.58377 (5)0.0262 (3)
C70.63123 (12)0.42502 (12)0.65095 (5)0.0275 (3)
C80.54034 (14)0.34282 (14)0.68712 (6)0.0352 (3)
C90.53178 (15)0.36659 (15)0.74954 (6)0.0408 (3)
C100.61393 (15)0.47204 (15)0.77706 (6)0.0402 (3)
C110.70411 (15)0.55361 (16)0.74189 (6)0.0425 (3)
C120.71363 (13)0.53109 (14)0.67920 (6)0.0369 (3)
C130.61174 (14)0.31096 (15)0.39650 (5)0.0370 (3)
H80.48480.27120.66910.042*
H90.47030.31120.77310.049*
H100.60830.48770.81900.048*
H110.75950.62480.76030.051*
H120.77530.58710.65600.044*
H13A0.52290.26680.38730.056*
H13B0.68570.24450.38590.056*
H13C0.62190.39960.37340.056*
H1410.9004 (18)0.5183 (19)0.4663 (8)0.058 (5)*
H1420.8956 (17)0.368 (2)0.4380 (7)0.059 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (5)0.0341 (5)0.0251 (5)0.0042 (4)0.0005 (4)0.0008 (4)
N20.0361 (6)0.0369 (6)0.0253 (5)0.0059 (4)0.0011 (4)0.0003 (4)
N40.0271 (5)0.0289 (5)0.0257 (5)0.0035 (4)0.0036 (4)0.0044 (4)
N140.0302 (6)0.0431 (6)0.0315 (5)0.0040 (5)0.0086 (4)0.0095 (5)
O150.0326 (5)0.0613 (6)0.0411 (5)0.0158 (4)0.0057 (4)0.0105 (4)
C30.0324 (6)0.0255 (5)0.0273 (6)0.0040 (5)0.0013 (5)0.0026 (4)
C50.0290 (6)0.0285 (6)0.0300 (6)0.0003 (5)0.0014 (5)0.0004 (5)
C60.0264 (6)0.0241 (5)0.0280 (6)0.0020 (4)0.0005 (4)0.0013 (4)
C70.0264 (6)0.0287 (6)0.0273 (6)0.0057 (5)0.0012 (4)0.0004 (4)
C80.0413 (7)0.0350 (6)0.0292 (6)0.0027 (5)0.0002 (5)0.0011 (5)
C90.0530 (8)0.0409 (7)0.0286 (6)0.0009 (6)0.0053 (6)0.0044 (5)
C100.0539 (8)0.0411 (7)0.0257 (6)0.0116 (6)0.0027 (6)0.0020 (5)
C110.0473 (8)0.0460 (8)0.0343 (7)0.0002 (6)0.0064 (6)0.0093 (6)
C120.0364 (7)0.0407 (7)0.0335 (6)0.0035 (6)0.0000 (5)0.0039 (5)
C130.0447 (7)0.0398 (7)0.0265 (6)0.0039 (6)0.0006 (5)0.0004 (5)
Geometric parameters (Å, º) top
N1—C61.3069 (14)C13—H13B0.9600
N1—N21.3729 (13)C13—H13C0.9600
O15—C51.2254 (14)C7—C121.3929 (17)
N4—C31.3582 (15)C7—C81.3937 (17)
N4—C51.3850 (14)C8—C91.3844 (18)
N4—N141.4163 (13)C8—H80.9300
C5—C61.4638 (16)C9—C101.3806 (19)
C6—C71.4854 (15)C9—H90.9300
N2—C31.3081 (15)C10—C111.3741 (19)
N14—H1410.960 (18)C10—H100.9300
N14—H1420.928 (19)C11—C121.3891 (17)
C3—C131.4893 (16)C11—H110.9300
C13—H13A0.9600C12—H120.9300
C6—N1—N2121.83 (9)H13A—C13—H13C109.5
C3—N4—C5122.59 (9)H13B—C13—H13C109.5
C3—N4—N14118.60 (9)C12—C7—C8118.37 (11)
C5—N4—N14118.72 (10)C12—C7—C6122.42 (11)
O15—C5—N4120.05 (10)C8—C7—C6119.16 (10)
O15—C5—C6127.13 (11)C9—C8—C7120.76 (12)
N4—C5—C6112.82 (10)C9—C8—H8119.6
N1—C6—C5121.74 (10)C7—C8—H8119.6
N1—C6—C7117.01 (10)C10—C9—C8120.38 (12)
C5—C6—C7121.25 (10)C10—C9—H9119.8
C3—N2—N1118.78 (10)C8—C9—H9119.8
N4—N14—H141104.1 (10)C11—C10—C9119.38 (12)
N4—N14—H142104.6 (10)C11—C10—H10120.3
H141—N14—H142105.8 (14)C9—C10—H10120.3
N2—C3—N4122.22 (10)C10—C11—C12120.86 (12)
N2—C3—C13119.18 (11)C10—C11—H11119.6
N4—C3—C13118.59 (10)C12—C11—H11119.6
C3—C13—H13A109.5C11—C12—C7120.25 (12)
C3—C13—H13B109.5C11—C12—H12119.9
H13A—C13—H13B109.5C7—C12—H12119.9
C3—C13—H13C109.5
N1—C6—C7—C820.31 (15)C5—C6—C7—C8159.76 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H141···O150.960 (18)2.169 (17)2.6856 (14)112.3 (12)
N14—H141···O15i0.960 (18)2.398 (17)2.8749 (13)110.2 (12)
N14—H142···N1ii0.928 (19)2.245 (19)3.1663 (15)171.3 (14)
N14—H142···N2ii0.928 (19)2.418 (18)3.1643 (15)137.4 (13)
C12—H12···O150.932.292.8883 (16)122
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1.
(II) 4-amino-6-methyl-3-phenyl-1,2,4-triazin-5(4H)-one top
Crystal data top
C10H10N4OF(000) = 424
Mr = 202.22Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7789 reflections
a = 11.6164 (3) Åθ = 1.0–27.5°
b = 7.1361 (2) ŵ = 0.10 mm1
c = 12.0604 (3) ÅT = 150 K
β = 112.8259 (15)°Prism, colourless
V = 921.46 (4) Å30.25 × 0.17 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1803 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 9.091 pixels mm-1h = 015
ω scansk = 09
3998 measured reflectionsl = 1514
2108 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.2548P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2108 reflectionsΔρmax = 0.24 e Å3
146 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
31 constraintsExtinction coefficient: 0.017 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70297 (8)0.04829 (13)0.18989 (8)0.0205 (2)
N20.57868 (8)0.05598 (13)0.17105 (8)0.0184 (2)
C30.54461 (9)0.11683 (15)0.25635 (9)0.0165 (2)
N40.62961 (8)0.17043 (12)0.36646 (8)0.0168 (2)
N140.59296 (9)0.23283 (14)0.45932 (8)0.0202 (2)
H1410.6650 (15)0.283 (2)0.5147 (14)0.035 (4)*
H1420.5383 (14)0.330 (2)0.4286 (13)0.031 (4)*
C50.75730 (10)0.15325 (15)0.39549 (9)0.0190 (3)
O150.83305 (7)0.19110 (12)0.49680 (7)0.0267 (2)
C60.78722 (10)0.09301 (16)0.29451 (10)0.0198 (3)
C130.92131 (10)0.08633 (18)0.31095 (11)0.0280 (3)
H1330.96580.00200.37540.042*
H1320.95690.20940.33000.042*
H1310.92750.04330.23800.042*
C70.40765 (10)0.12484 (15)0.22530 (9)0.0175 (2)
C80.33239 (11)0.18077 (16)0.10838 (10)0.0214 (3)
H80.36870.22100.05610.026*
C90.20355 (11)0.17613 (17)0.07057 (11)0.0270 (3)
H90.15370.21390.00710.032*
C100.14854 (11)0.11585 (17)0.14742 (11)0.0276 (3)
H100.06200.11360.12150.033*
C110.22278 (11)0.05873 (17)0.26330 (11)0.0255 (3)
H110.18580.01710.31480.031*
C120.35242 (10)0.06347 (15)0.30276 (10)0.0205 (3)
H120.40200.02580.38060.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (5)0.0226 (5)0.0212 (5)0.0007 (4)0.0079 (4)0.0018 (4)
N20.0173 (5)0.0210 (5)0.0167 (4)0.0003 (4)0.0065 (4)0.0005 (3)
C30.0187 (5)0.0144 (5)0.0146 (5)0.0006 (4)0.0045 (4)0.0016 (4)
N40.0174 (5)0.0177 (5)0.0145 (4)0.0010 (3)0.0051 (4)0.0006 (3)
N140.0224 (5)0.0233 (5)0.0139 (4)0.0017 (4)0.0061 (4)0.0016 (4)
C50.0183 (5)0.0172 (5)0.0182 (5)0.0012 (4)0.0034 (4)0.0024 (4)
O150.0211 (4)0.0319 (5)0.0202 (4)0.0008 (3)0.0005 (3)0.0025 (3)
C60.0189 (5)0.0189 (5)0.0211 (5)0.0008 (4)0.0071 (4)0.0031 (4)
C130.0196 (6)0.0352 (7)0.0291 (6)0.0003 (5)0.0093 (5)0.0008 (5)
C70.0182 (5)0.0147 (5)0.0192 (5)0.0002 (4)0.0067 (4)0.0016 (4)
C80.0215 (6)0.0217 (6)0.0195 (5)0.0008 (4)0.0062 (4)0.0007 (4)
C90.0214 (6)0.0281 (6)0.0244 (6)0.0030 (5)0.0012 (5)0.0001 (5)
C100.0171 (5)0.0275 (6)0.0360 (7)0.0006 (5)0.0080 (5)0.0051 (5)
C110.0246 (6)0.0239 (6)0.0319 (6)0.0041 (5)0.0152 (5)0.0036 (5)
C120.0219 (6)0.0188 (6)0.0204 (5)0.0010 (4)0.0078 (4)0.0013 (4)
Geometric parameters (Å, º) top
N1—C61.3013 (14)C13—H1320.9600
N1—N21.3729 (12)C13—H1310.9600
N2—C31.3112 (13)C7—C121.3933 (15)
C3—N41.3666 (13)C7—C81.3984 (15)
C3—C71.4874 (14)C8—C91.3855 (17)
N4—C51.3910 (14)C8—H80.9300
N4—N141.4155 (12)C9—C101.3826 (18)
N14—H1410.917 (16)C9—H90.9300
N14—H1420.917 (15)C10—C111.3886 (17)
C5—O151.2271 (13)C10—H100.9300
C5—C61.4551 (15)C11—C121.3926 (16)
C6—C131.4927 (15)C11—H110.9300
C13—H1330.9600C12—H120.9300
C6—N1—N2119.85 (9)H133—C13—H131109.5
C3—N2—N1120.10 (9)H132—C13—H131109.5
N2—C3—N4122.06 (9)C12—C7—C8119.70 (10)
N2—C3—C7115.73 (9)C12—C7—C3123.02 (9)
N4—C3—C7122.21 (9)C8—C7—C3117.00 (9)
C3—N4—C5121.19 (9)C9—C8—C7119.86 (10)
C3—N4—N14122.08 (9)C9—C8—H8120.1
C5—N4—N14116.57 (8)C7—C8—H8120.1
N4—N14—H141103.3 (9)C10—C9—C8120.53 (11)
N4—N14—H142107.0 (9)C10—C9—H9119.7
H141—N14—H142107.0 (13)C8—C9—H9119.7
O15—C5—N4120.93 (10)C9—C10—C11119.86 (11)
O15—C5—C6125.91 (10)C9—C10—H10120.1
N4—C5—C6113.14 (9)C11—C10—H10120.1
N1—C6—C5123.37 (10)C10—C11—C12120.26 (11)
N1—C6—C13118.33 (10)C10—C11—H11119.9
C5—C6—C13118.29 (10)C12—C11—H11119.9
C6—C13—H133109.5C11—C12—C7119.78 (10)
C6—C13—H132109.5C11—C12—H12120.1
H133—C13—H132109.5C7—C12—H12120.1
C6—C13—H131109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H141···O150.917 (16)2.148 (15)2.6633 (13)114.6 (12)
N14—H141···N1i0.917 (16)2.321 (15)3.0081 (13)131.5 (12)
N14—H142···N2ii0.917 (15)2.149 (15)3.0550 (13)169.3 (12)
C12—H12···N140.932.522.9564 (16)109
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Table 3. Selected bond lengths (Å) in (I), (II) and (III) top
Bond(I)Bond(II)Bond(III)
C6—C71.4854 (15)C3—C71.4874 (14)
C6—N11.3069 (14)C3—N21.3112 (13)C1—N21.315 (7)
N1—N21.3729 (13)N1—N21.3729 (12)N1—N21.358 (7)
N2—C31.3081 (15)N1—C61.3013 (14)N1—C31.303 (7)
C3—N41.3582 (15)C3—N41.3666 (13)C1—N31.376 (7)
N4—C51.3850 (14)N4—C51.3910 (14)C2—N31.381 (6)
C5—C61.4638 (16)C5—C61.4551 (15)C2—C31.504 (7)
C3—C131.4893 (16)C6—C131.4927 (15)C3—C51.488 (7)
N4—N141.4163 (13)N4—N141.4155 (12)N3—N41.397 (6)
C5—O151.2254 (14)C5—O151.2270 (13)C2—O11.203 (7)
Table 4. The representative structures containing the motif C—N—N—C with varying order of C—N and N—N bonds and with the corresponding bond lengths (Å). The structures contained no disorder and are not flagged with errors. top
REFCODEC—N bond lengthBond orderN—N bond lengthBond order
AZBENC01a1.44311.2512
AZOBEN12b1.43011.2562
1.43011.2492
AZOBEN13c1.43111.2562
1.43111.2492
BZAZIN11d1.26921.4131
PYRDNA01e1.3361.5
TRIZIN01f1.317.5
(a) cis-Azobenzene (Mostad & Römming, 1971); (b) trans-azobenzene (Harada & Ogawa, 2004); (c) trans-azobenzene (Harada & Ogawa, 2004); (d) benzalazine (Burke-Laing & Laing, 1976); (e) pyridine (Mootz & Wussow, 1981), average values from four independent molecules (the average C—C bond length corresponding to the bond order 1.5 is 1.379 Å); (f) s-triazine (Coppens, 1967). (a), (d), (f) were determined at room temperature, (e) at 153 K, and (b), (c) at 90 K.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds