Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Sb(C10H8NSe)3], has a 3Se+3N distorted octa­hedral geometry at the Sb atom. The structure is stabilized by weak inter­molecular C—H...π(arene) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106053285/gg3054sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106053285/gg3054Isup2.hkl
Contains datablock I

CCDC reference: 638306

Comment top

This work represents a continuation of our systematic investigations of internal complexes of p elements in the partial-valence state (M = AsIII, SbIII or BiIII) with the bidentate ligands 8-hydroxyquinoline (8-Oq), 8-mercaptoquinoline (8-Sq) and 8-hydroselenoquinoline (8-Seq). The coordination polyhedra of the central atoms are different in the molecular structures of 8-mercaptoquinolinates M(8-Sq)3: As is defined as (3S+N) with only one bidentate ligand (Matjuhina et al., 1984), Sb is a (3S+3 N) distorted octahedron (Pech et al., 1973), and Bi is a distorted (3S+3 N) pentagonal pyramid with an apical S atom (Silina et al., 2000).

These molecular structures lead to the suggestion that the unshared metal electron pair (E) is directed between the M—N vectors corresponding to the direction of weak M—N coordination bonds. However, the As (Silina et al., 2004), Sb (Silina et al., 1997) and Bi 2-methyl-8-mercaptoquinolinates M[2-CH3(8-Sq)]3 are isostructural. The central metal atom occurs in a (3S+3 N) octahedral geometry with approximate C3 symmetry. In accordance with the M[2-CH3(8-Sq)]3 geometries and in the context of the M(8-Sq)3 structures, we consider the electrostatic interaction of the unpaired electrons (E) of the As, Sb and Bi atoms with one H atom from each methyl group as the reason for the occurrence of isostructural compounds. Such an interaction is interpreted as a weak branched locking intramolecular hydrogen bond (see scheme). This interaction evidently plays a determining role in the formation of the As[2-CH3(8-Sq)]3 complex, where the As—N bonds are in the range 2.641 (3)–2.719 (4) Å, but can hardly be the reason for the M-containing rings closing in. Diffraction studies of the title complex, Sb[2-CH3(8-Seq)]3, (I), should quantify the effect of changing the ligand atom from S to Se on the molecular and crystal structures of (I) and the analogous complex, Sb[2-CH3(8-Sq)]3, (II).

The molecular structure of (I) is depicted in Fig. 1. The dihedral angle between the 2-methyl-8-hydroselenoquinoline ligand planes L1/L2 is 58.40 (3)°, that between planes L1/L3 is 96.94 (4)°, and that between planes L2/L3 is 96.02 (4)° (where L1–L3 are defined in Fig. 1). The SbIII atom possesses a distorted (3Se+3 N) octahedral coordination geometry with average Sb—Se bond lengths of 2.6097 (7) Å (Table 1), similar to Sb(8-Seq)3, (III), and data from the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002). The Se—Sb—Se angles have an average value of 87.14 (2)°.

The Se and N atoms of the three bidentate ligands form five-membered metal-containing rings. The Se—Sb—N chelate angles [mean 71.4 (1)°] are smaller than the Sb—Se—C angles [mean 104.9 (2)°]. The three chelate rings have dihedral angles between the Se/Sb/N and Se/C/C/N planes of 29.04 (4) (L1), 7.40 (5) (L2) and 0.83 (6)° (L3). The Sb atom deviates from the SeCCN planes by -1.0787 (4) (envelope conformation, L1), 0.2893 (3) (L2) and 0.0294 (4) Å (L3), whereas in (II), the corresponding angles are 4.3, 17.6 and 17.9°. The Se/Sb/N coordination planes in (I) are almost perpendicular to one another, with dihedral angles between these planes in the range 83.44 (2)–90.15 (3)° [84.45 (4)–90.78 (4)° in (II)].

The Sb—N [mean 2.826 (4) Å] are longer than and trans to the Sb—Se bonds, slightly longer than those in (II) and (III), and ca 30% longer than the sum of the covalent radii (ΣCR) of Se and N (Campbell, 1975). The mean value of the N—Sb—N angles is 112.06 (14)°, with N11—Sb1—N12 = 120.75 (14)°, or 13° greater than the other two angles. The equatorial Se—Sb—N interligand angles are close to 90°. In (I), the ligand quinolinyl bond lengths and angles are normal (Allen, 2002).

In (I), the intramolecular Sb···C distances are 3.764 (8) (C1), 3.698 (7) (C2) and 3.667 (7) Å (C3), and these are greater than the Sb···C distances in (II) [mean 3.655 (7) Å]. Therefore, quantitative changes in the geometry of the complex due to the substitution of the ligand atoms from SSe in group VI have resulted in subtle changes in (I) compared with (II).

Differences in the nature of the ligand atoms in (I) and (II) appear in the crystal structure packing in different space groups, with (I) in C2/c and (II) in P21/c. Intermolecular interactions corresponding to ππ interactions cause different bending of the metal-containing rings, and consequently a different spatial disposition of quinoline rings in (I). Quinoline ring L1 partially overlaps ring L1i of a symmetry-related molecule at (1/2, 1/2, 1/2) [Original symop was not clear - please check], with a centroid-to-centroid distance of 3.639 Å. There are four C—H···π(arene) interactions of note and details of these are given in Table 2 and Fig. 2; Cg1, Cg2 and Cg3 are the quinolinyl ring centroids of the rings containing atoms N11, N12 and N13, respectively.

The main result of this study is that the substitution of the group VI ligand atoms SSe does not change the nearest order for the central atom of (I) compared with (II). However, the overall crystal structure of (I) differs from (II).

Related literature top

For related literature, see: Allen (2002); Campbell (1975); Matjuhina et al. (1984); Pech et al. (1973); Silina et al. (1997, 2000, 2004).

Experimental top

2,2'-Dimethyl-8,8'-diquinolyldiselenide (0.1 g) was dissolved in 3 M HCl (1 ml). Ethanol (5 ml) and 50% H3PO4 (0.5 ml) were added, and the mixture was kept for 5 min at room temperature. A saturated Na(O2CCMe) solution (2 ml; Solvent?) and a solution (2 ml; Solvent?) containing K(SbO)C4H4O6 (0.045 g) were added. The resulting pale-yellow amorphous precipitate was filtered off, washed with water and dried in air (yield 0.1 g, 85%). Single crystals of (I) were grown from a solution in CHCl3.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic rings or 0.96 Å for methyl groups, and refined with Uiso(H) = 1.2Ueq(C) for aromatic rings or 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Please provide missing details; software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the ligands and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of compound (I), showing the three shortest C—H···π(arene) interactions (double dashed lines) from Table 1.
Tris(2-methylquinoline-8-selenolato-κ2N,Se)antimony(III) top
Crystal data top
[Sb(C10H8NSe)3]F(000) = 3024
Mr = 785.16Dx = 1.857 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 16654 reflections
a = 40.0004 (7) Åθ = 1.0–30.0°
b = 8.8672 (1) ŵ = 4.90 mm1
c = 16.9706 (4) ÅT = 293 K
β = 111.0625 (8)°Plate, yellow
V = 5617.17 (18) Å30.34 × 0.18 × 0.07 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
5183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
ϕ and ω scansθmax = 30.0°, θmin = 1.1°
Absorption correction: integration
[Gaussian integration based on 12 indexed crystal faces (NUMABS; Coppens, 1970)]
h = 5356
Tmin = 0.287, Tmax = 0.726k = 1012
24753 measured reflectionsl = 2323
8183 independent reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0913P)2]
where P = (Fo2 + 2Fc2)/3
8183 reflections(Δ/σ)max = 0.005
334 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Sb(C10H8NSe)3]V = 5617.17 (18) Å3
Mr = 785.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 40.0004 (7) ŵ = 4.90 mm1
b = 8.8672 (1) ÅT = 293 K
c = 16.9706 (4) Å0.34 × 0.18 × 0.07 mm
β = 111.0625 (8)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
8183 independent reflections
Absorption correction: integration
[Gaussian integration based on 12 indexed crystal faces (NUMABS; Coppens, 1970)]
5183 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.726Rint = 0.074
24753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
8183 reflectionsΔρmin = 0.60 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.124863 (10)0.09695 (4)0.14400 (2)0.03407 (13)
Se10.103039 (18)0.03569 (7)0.01685 (4)0.04314 (17)
Se20.174139 (18)0.27093 (7)0.12569 (5)0.04590 (18)
Se30.088724 (18)0.34946 (7)0.11280 (4)0.04265 (17)
N110.05633 (14)0.0383 (5)0.0943 (3)0.0365 (11)
C210.03653 (17)0.0436 (6)0.1413 (4)0.0396 (13)
C310.00679 (18)0.1401 (8)0.1233 (5)0.0484 (15)
H310.00730.13780.15660.058*
C410.00118 (18)0.2369 (8)0.0569 (5)0.0512 (17)
H410.02050.30230.04490.061*
C510.01401 (19)0.3384 (8)0.0613 (4)0.0519 (17)
H510.00450.40820.07390.062*
C610.0353 (2)0.3337 (8)0.1080 (4)0.0567 (18)
H610.03170.40290.15150.068*
C710.06287 (19)0.2251 (7)0.0916 (4)0.0473 (15)
H710.07690.22290.12480.057*
C810.06914 (17)0.1225 (6)0.0270 (4)0.0384 (13)
C910.04824 (16)0.1305 (6)0.0261 (4)0.0350 (12)
C1010.02008 (16)0.2376 (7)0.0062 (4)0.0416 (14)
C10.0468 (2)0.0572 (8)0.2169 (5)0.0535 (17)
H1A0.06740.11580.21960.080*
H1B0.05250.00280.26700.080*
H1C0.02730.12350.21240.080*
N120.18691 (14)0.0791 (5)0.1589 (3)0.0384 (11)
C220.18793 (17)0.2256 (6)0.1744 (4)0.0428 (14)
C320.2178 (2)0.3150 (8)0.1758 (5)0.0517 (17)
H320.21820.41780.18700.062*
C420.2458 (2)0.2494 (8)0.1608 (5)0.0569 (19)
H420.26560.30710.16350.068*
C520.2726 (2)0.0206 (11)0.1241 (5)0.067 (2)
H520.29270.07460.12590.080*
C620.2701 (2)0.1295 (11)0.1050 (6)0.070 (2)
H620.28840.17740.09300.084*
C720.2399 (2)0.2108 (9)0.1036 (5)0.0562 (18)
H720.23820.31220.08870.067*
C820.21274 (17)0.1461 (7)0.1236 (4)0.0422 (14)
C920.21456 (16)0.0119 (7)0.1423 (4)0.0372 (13)
C1020.24474 (18)0.0941 (8)0.1411 (4)0.0478 (15)
C20.1567 (2)0.2962 (7)0.1902 (5)0.0605 (19)
H2A0.13950.21980.18850.091*
H2B0.16500.34360.24470.091*
H2C0.14580.37050.14750.091*
N130.13749 (13)0.2401 (5)0.2981 (3)0.0351 (10)
C230.15801 (17)0.1797 (7)0.3704 (4)0.0417 (14)
C330.16526 (19)0.2536 (7)0.4484 (4)0.0500 (16)
H330.17950.20760.49850.060*
C430.1512 (2)0.3926 (8)0.4497 (5)0.059 (2)
H430.15660.44410.50050.071*
C530.1120 (3)0.5998 (7)0.3724 (5)0.064 (2)
H530.11680.65470.42190.076*
C630.0890 (2)0.6555 (8)0.2966 (5)0.064 (2)
H630.07760.74740.29520.077*
C730.0827 (2)0.5764 (7)0.2226 (5)0.0529 (17)
H730.06690.61610.17230.064*
C830.09901 (16)0.4409 (6)0.2212 (4)0.0367 (13)
C930.12190 (15)0.3780 (6)0.2977 (4)0.0338 (12)
C1030.1281 (2)0.4595 (7)0.3736 (4)0.0473 (16)
C30.1735 (2)0.0238 (8)0.3690 (5)0.0558 (18)
H3A0.16760.00840.31160.084*
H3B0.16360.04590.39810.084*
H3C0.19910.02720.39650.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0376 (2)0.0304 (2)0.0337 (2)0.00019 (14)0.01221 (17)0.00042 (14)
Se10.0525 (4)0.0452 (3)0.0362 (3)0.0091 (3)0.0213 (3)0.0027 (2)
Se20.0452 (4)0.0316 (3)0.0610 (4)0.0035 (2)0.0193 (3)0.0042 (3)
Se30.0450 (4)0.0402 (3)0.0359 (3)0.0093 (2)0.0062 (3)0.0002 (2)
N110.041 (3)0.035 (2)0.035 (3)0.000 (2)0.015 (2)0.0011 (19)
C210.042 (3)0.038 (3)0.039 (3)0.004 (2)0.015 (3)0.001 (2)
C310.040 (4)0.058 (4)0.052 (4)0.000 (3)0.022 (3)0.005 (3)
C410.035 (4)0.054 (4)0.059 (4)0.009 (3)0.011 (3)0.003 (3)
C510.049 (4)0.048 (4)0.054 (4)0.011 (3)0.012 (3)0.012 (3)
C610.067 (5)0.052 (4)0.042 (4)0.010 (3)0.008 (4)0.019 (3)
C710.059 (4)0.044 (3)0.036 (3)0.004 (3)0.013 (3)0.001 (3)
C810.040 (3)0.040 (3)0.028 (3)0.003 (2)0.004 (3)0.004 (2)
C910.033 (3)0.035 (3)0.033 (3)0.002 (2)0.007 (2)0.004 (2)
C1010.031 (3)0.044 (3)0.042 (3)0.001 (2)0.004 (3)0.004 (3)
C10.070 (5)0.054 (4)0.052 (4)0.008 (3)0.039 (4)0.011 (3)
N120.038 (3)0.038 (3)0.039 (3)0.000 (2)0.013 (2)0.004 (2)
C220.046 (4)0.033 (3)0.046 (4)0.002 (3)0.013 (3)0.004 (3)
C320.057 (4)0.040 (3)0.054 (4)0.013 (3)0.015 (4)0.002 (3)
C420.053 (4)0.060 (4)0.056 (4)0.022 (3)0.018 (4)0.002 (3)
C520.049 (5)0.096 (6)0.068 (5)0.001 (4)0.036 (4)0.004 (5)
C620.053 (5)0.093 (6)0.072 (6)0.007 (4)0.033 (4)0.006 (5)
C720.050 (4)0.063 (4)0.057 (4)0.017 (3)0.021 (4)0.005 (3)
C820.041 (4)0.047 (3)0.035 (3)0.004 (3)0.009 (3)0.000 (3)
C920.036 (3)0.040 (3)0.030 (3)0.000 (2)0.005 (2)0.002 (2)
C1020.041 (4)0.062 (4)0.041 (4)0.009 (3)0.016 (3)0.002 (3)
C20.070 (5)0.033 (3)0.081 (5)0.003 (3)0.031 (4)0.003 (3)
N130.034 (3)0.036 (2)0.033 (3)0.0001 (19)0.010 (2)0.0007 (19)
C230.041 (3)0.044 (3)0.038 (3)0.001 (3)0.012 (3)0.002 (3)
C330.058 (4)0.050 (4)0.037 (3)0.003 (3)0.012 (3)0.005 (3)
C430.087 (6)0.050 (4)0.038 (4)0.010 (4)0.020 (4)0.009 (3)
C530.101 (7)0.039 (4)0.058 (5)0.004 (4)0.038 (5)0.010 (3)
C630.088 (6)0.039 (4)0.072 (5)0.014 (4)0.036 (5)0.008 (3)
C730.062 (5)0.041 (3)0.055 (4)0.015 (3)0.021 (4)0.006 (3)
C830.039 (3)0.034 (3)0.041 (3)0.002 (2)0.020 (3)0.001 (2)
C930.035 (3)0.034 (3)0.035 (3)0.004 (2)0.015 (3)0.003 (2)
C1030.063 (4)0.039 (3)0.045 (4)0.005 (3)0.025 (3)0.011 (3)
C30.062 (5)0.053 (4)0.046 (4)0.021 (3)0.011 (3)0.012 (3)
Geometric parameters (Å, º) top
Sb1—Se12.6069 (7)C42—C1021.415 (10)
Sb1—Se22.6081 (7)C42—H420.9300
Sb1—Se32.6140 (7)C52—C621.365 (12)
Sb1—N112.829 (4)C52—C1021.406 (10)
Sb1—N122.865 (4)C52—H520.9300
Sb1—N132.785 (5)C62—C721.400 (12)
Se1—C811.916 (6)C62—H620.9300
Se2—C821.911 (7)C72—C821.374 (9)
Se3—C831.914 (6)C72—H720.9300
N11—C211.311 (8)C82—C921.432 (9)
N11—C911.358 (8)C92—C1021.417 (9)
C21—C311.407 (9)C2—H2A0.9600
C21—C11.495 (9)C2—H2B0.9600
C31—C411.361 (10)C2—H2C0.9600
C31—H310.9300N13—C231.320 (8)
C41—C1011.410 (10)N13—C931.372 (7)
C41—H410.9300C23—C331.410 (9)
C51—C611.357 (10)C23—C31.518 (9)
C51—C1011.404 (9)C33—C431.359 (10)
C51—H510.9300C33—H330.9300
C61—C711.414 (10)C43—C1031.418 (10)
C61—H610.9300C43—H430.9300
C71—C811.376 (9)C53—C631.377 (11)
C71—H710.9300C53—C1031.398 (9)
C81—C911.434 (9)C53—H530.9300
C91—C1011.418 (8)C63—C731.380 (10)
C1—H1A0.9600C63—H630.9300
C1—H1B0.9600C73—C831.373 (8)
C1—H1C0.9600C73—H730.9300
N12—C221.323 (8)C83—C931.407 (8)
N12—C921.372 (8)C93—C1031.419 (8)
C22—C321.428 (9)C3—H3A0.9600
C22—C21.504 (10)C3—H3B0.9600
C32—C421.362 (11)C3—H3C0.9600
C32—H320.9300
Se1—Sb1—Se288.94 (2)C52—C62—H62120.2
Se1—Sb1—Se390.78 (2)C72—C62—H62120.2
Se2—Sb1—Se381.71 (2)C82—C72—C62122.3 (7)
C81—Se1—Sb1101.91 (18)C82—C72—H72118.8
C82—Se2—Sb1108.06 (19)C62—C72—H72118.8
C83—Se3—Sb1104.82 (17)C72—C82—C92118.8 (6)
C21—N11—C91119.0 (5)C72—C82—Se2118.6 (5)
N11—C21—C31122.6 (6)C92—C82—Se2122.6 (5)
N11—C21—C1117.4 (6)N12—C92—C102122.2 (6)
C31—C21—C1120.1 (6)N12—C92—C82119.3 (5)
C41—C31—C21119.4 (6)C102—C92—C82118.4 (6)
C41—C31—H31120.3C52—C102—C42122.8 (7)
C21—C31—H31120.3C52—C102—C92120.4 (7)
C31—C41—C101119.7 (6)C42—C102—C92116.7 (6)
C31—C41—H41120.2C22—C2—H2A109.5
C101—C41—H41120.2C22—C2—H2B109.5
C61—C51—C101119.8 (6)H2A—C2—H2B109.5
C61—C51—H51120.1C22—C2—H2C109.5
C101—C51—H51120.1H2A—C2—H2C109.5
C51—C61—C71120.9 (6)H2B—C2—H2C109.5
C51—C61—H61119.5C23—N13—C93119.8 (5)
C71—C61—H61119.5N13—C23—C33122.3 (6)
C81—C71—C61120.9 (6)N13—C23—C3118.4 (6)
C81—C71—H71119.5C33—C23—C3119.3 (6)
C61—C71—H71119.5C43—C33—C23119.3 (6)
C71—C81—C91119.2 (6)C43—C33—H33120.4
C71—C81—Se1118.4 (5)C23—C33—H33120.4
C91—C81—Se1122.2 (4)C33—C43—C103120.2 (6)
N11—C91—C101122.2 (6)C33—C43—H43119.9
N11—C91—C81119.4 (5)C103—C43—H43119.9
C101—C91—C81118.4 (5)C63—C53—C103118.9 (7)
C51—C101—C41122.3 (6)C63—C53—H53120.5
C51—C101—C91120.7 (6)C103—C53—H53120.5
C41—C101—C91117.0 (6)C53—C63—C73120.7 (6)
C21—C1—H1A109.5C53—C63—H63119.7
C21—C1—H1B109.5C73—C63—H63119.7
H1A—C1—H1B109.5C83—C73—C63121.9 (7)
C21—C1—H1C109.5C83—C73—H73119.0
H1A—C1—H1C109.5C63—C73—H73119.0
H1B—C1—H1C109.5C73—C83—C93119.1 (6)
C22—N12—C92119.9 (5)C73—C83—Se3116.6 (5)
N12—C22—C32120.9 (6)C93—C83—Se3124.2 (4)
N12—C22—C2118.4 (6)N13—C93—C83120.1 (5)
C32—C22—C2120.7 (6)N13—C93—C103121.2 (5)
C42—C32—C22119.9 (6)C83—C93—C103118.7 (5)
C42—C32—H32120.0C53—C103—C93120.6 (6)
C22—C32—H32120.0C53—C103—C43122.1 (6)
C32—C42—C102120.3 (6)C93—C103—C43117.3 (6)
C32—C42—H42119.9C23—C3—H3A109.5
C102—C42—H42119.9C23—C3—H3B109.5
C62—C52—C102120.4 (7)H3A—C3—H3B109.5
C62—C52—H52119.8C23—C3—H3C109.5
C102—C52—H52119.8H3A—C3—H3C109.5
C52—C62—C72119.6 (7)H3B—C3—H3C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg2i0.932.623.512 (7)161
C52—H52···Cg3ii0.932.713.629 (9)170
C71—H71···Cg3iii0.932.813.587 (8)142
C73—H73···Cg1iv0.932.843.686 (8)151
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z+1/2; (iii) x+1/2, y+1/2, z1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sb(C10H8NSe)3]
Mr785.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)40.0004 (7), 8.8672 (1), 16.9706 (4)
β (°) 111.0625 (8)
V3)5617.17 (18)
Z8
Radiation typeMo Kα
µ (mm1)4.90
Crystal size (mm)0.34 × 0.18 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
[Gaussian integration based on 12 indexed crystal faces (NUMABS; Coppens, 1970)]
Tmin, Tmax0.287, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
24753, 8183, 5183
Rint0.074
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.170, 1.06
No. of reflections8183
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.60

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL SCALEPACK (Otwinowski & Minor 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, DIRDIF (Beurskens et al., 1996), SHELXL97 (Sheldrick, 1997), Please provide missing details, maXus (Mackay et al., 1999).

Selected geometric parameters (Å, º) top
Sb1—Se12.6069 (7)Sb1—N112.829 (4)
Sb1—Se22.6081 (7)Sb1—N122.865 (4)
Sb1—Se32.6140 (7)Sb1—N132.785 (5)
Se1—Sb1—Se288.94 (2)Se2—Sb1—Se381.71 (2)
Se1—Sb1—Se390.78 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg2i0.932.623.512 (7)161
C52—H52···Cg3ii0.932.713.629 (9)170
C71—H71···Cg3iii0.932.813.587 (8)142
C73—H73···Cg1iv0.932.843.686 (8)151
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z+1/2; (iii) x+1/2, y+1/2, z1; (iv) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds