Download citation
Download citation
link to html
In methyl­aminium 4′,7-dihydroxy­isoflavone-3′-sulfonate dihydrate, CH6N+·C15H9O7S·2H2O, 11 hydrogen bonds exist between the methyl­aminium cations, the iso­flavone-3′-sulfonate anions and the solvent water mol­ecules. In hexa­aqua­iron(II) bis­(4′,7-diethoxy­isoflavone-3′-sulfonate) tetra­hydrate, [Fe(H2O)6](C19H17O7S)2·4H2O, 12 hydrogen bonds exist between the centrosymmetric [Fe(H2O)6]2+ cation, the isoflavone-3′-sulfonate anions and the solvent water mol­ecules. Additional π–π stacking inter­actions generate three-dimensional supramolecular structures in both compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106007463/gg3002sup1.cif
Contains datablocks I, global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106007463/gg3002Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106007463/gg3002IIsup3.hkl
Contains datablock (II)

CCDC references: 625705; 625706

Comment top

Daidzein (4',7-dihydroxyisoflavone), a natural soy isoflavone, is biologically active, with resistance to hypoxia and anoxemia (Meng et al., 1999). However, because the solubility of this isoflavone is poor, its biological utilization rate is low so the dose required is high (Tang et al., 1989). In order to increase the solubility of the isoflavone, some sulfonated derivatives have been prepared. Sodium 4',7-dihydroxyisoflavonesulfonate (Liu et al., 2003) and sodium 7-methoxy-4'-hydroxyisoflavone-3'-sulfonate (Zhang et al., 2002) have been synthesized and their crystal structures and biological activities have been studied. The results show that these compounds possess better biological activity than the parent compound, daidzein. The water-soluble derivatives Co(H2O)6.X2·8H2O (Zhang & Wang, 2005a), and Mg(H2O)6.X2·8H2O and Zn(H2O)6.X2·8H2O (Zhang & Wang, 2005b) (X is 4',7-diethoxyisoflavone-3'-sulfonate) have been reported. Protonated methylaminium 4',7-dihydroxyisoflavone-3'-sulfonate dihydrate, (I), and hexaaquairon(II) bis(4',7-diethoxyisoflavone-3'-sulfonate) tetrahydrate, (II), are both water-soluble derivatives of daidzein.

Compound (I) is composed of one CH3NH3+ cation, one 4',7-dihydroxyisoflavone-3'-sulfonate anion and two solvent water molecules (Fig. 1). In the anion, the bond lengths and angles of the isoflavone units are similar to those of the sodium salt (Liu et al., 2003). The atoms of the benzopyranone moiety constitute planar rings A (C4–C9) and C (C1–C4/C9/O1) [mean out-of plane deviations are 0.006 (3) and 0.013 (3) Å, respectively], with an interplanar angle of 2.8 (1)°. To avoid intramolecular steric conflicts, the two rigid ring systems, viz. benzene ring B (C10–C15) and the benzopyranone moiety, are rotated by 43.2 (1)° with respect to each other.

In compound (II), the FeII atom lies on an inversion centre and is coordinated by six water molecules, which form a slightly distorted octahedron (Fig. 2). The Fe—O bond lengths fall in the range 2.066 (2)–2.157 (2) Å, and are close to those in the compound Fe(H2O)6·(C17H13O7S)2·8H2O [2.043 (3)–2.155 (3) Å; Zhang & Cheng, 2005]. The atoms of the benzopyranone moiety constitute rings A (C4–C9) and C (C1–C4/C9/O1) [mean out-of-plane deviations are 0.003 (1) and 0.013 (2) Å, respectively], with an interplanar angle of 0.7 (1)°. The two rigid ring systems, viz. benzene ring B (C10–C15) and the benzopyranone moiety, are rotated by 24.8 (1)° with respect to each other. One independent C11—H11···O2 intramolecular hydrogen bond forms a characteristic intramolecular S(6) motif.

Fig. 1 shows how a cyclic dimer is formed in (I) by O—H···O hydrogen bonding and ππ stacking interactions. One hydrogen-bond chain exists between hydroxyl atom H3i of one molecule and sulfonate atom O5 of another molecule, bridged by O3i—H3i···O9i [symmetry code: (i) 1 − x, 1 − y, 1 − z], O9—H91···O8 and O8—H81···O5 hydrogen bonds, pairs of which build a dimeric unit described by the R66(34) synthon (Etter, 1990). Details of other hydrogen bonds are given in Table 1. In the dimer, the isoflavone skeletons are in an anti-parallel mode, with ππ stacking interactions between their A rings with an offset distance of 1.127 Å and Cg···Cgi of 3.610 (5) Å, where Cg and Cgi are the centroids of rings A at (x, y, z) and (1 − x, 1 − y, 1 − z), respectively. A normal range for such interactions is 3.3–3.8 Å (Janiak, 2000). The C—H···π(arene), O—H···O and C—H···O hydrogen bonds, which exist between the dimers, assemble the isoflavone units into an approximately two-dimensional (011) sheet linked by paired O8—H82···O6v hydrogen bonds [symmetry code: (v) −x, 1 − y, 1 − z] (Fig. 3). Atom C1 in the molecule at (1 − x, −1/2 + y, 1/2 − z) acts as hydrogen-bond donor, via axial atom H1, to ring A in the molecule at (x, y, z), with an H···centroid distance of 2.650 Å. Crosslinks between the sheets are provided by strong N—H···O hydrogen bonds, leading to a three-dimensional supramolecular structure.

In compound (II), each H atom of the six water molecules coordinated to the FeII atom and of the two solvent water molecules acts as a donor, leading to the formation of hydrogen bonds (Fig. 2). Atoms O2, O5, O6 and O7 are all trifurcated by hydrogen bonds. Details of the hydrogen bonds are given in Table 2. Similarly, the isoflavone skeletons of compound (II) are in an almost anti-parallel mode and ππ stacking interactions, forming dimers, exist between rings A and C of one molecule and rings C and A of another, with a centroid–centroid distance of 3.720 (2) Å (Fig. 4). The dimers are further linked by paired O11—H27···O5i and O11—H28···O1ii [symmetry codes: (i) −x, 2 − y, 1 − z; (ii) x, y, −1 + z] hydrogen bonds and a column is built along the (001) direction. These columns are also crosslinked by paired C6—H6···O3vi [symmetry code: (vi) 1 − x, 3 − y, 2 − z] hydrogen bonds, which form an R22(8) synthon, and a three-dimensional supramolecular structure of (II) is generated.

Experimental top

Sodium 4',7-dihydroxyisoflavone-3'-sulfonate and sodium 4',7-diethoxyisoflavone-3'-sulfonate were prepared as described by Liu et al. (2003) and Zhang & Wang (2005a), respectively. They were dissolved (1 g) in water (10 ml) and then separately mixed with a saturated CH3NH3+Cl solution (5 ml) or FeSO4·7H2O solution (5 ml) in water. Crystals of (I) and (II) were obtained after 2 and 3 d, respectively. On recrystallization from water, single crystals suitable for X-ray diffraction were obtained by slow evaporation (m.p. 585 and 611 K, respectively; decomposition).

Refinement top

All H atoms were placed in calculated positions and treated as riding, with N—H 0.89 Å, O—H 0.82 Å and C—H in the range 0.93- 0.96 Å and with Uiso(H) = 1.2Ueq(C,N,O) for compound (I), and with O—H in the range 0.84–0.85 Å and C—H in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C,O) for compound (II).

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of compound (I), showing the atom-numbering scheme, the dimer generated by hydrogen bonds and other intermolecular interactions (dashed lines). Displacement ellipsoids are drawn at the 30% probability level. For clarity, some H atoms bonded to atoms not involved in the motif shown have been omitted. For symmetry codes, see Table 1. Unlabelled atoms are related to labelled atoms by the symmetry operator [Please complete]
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin dashed lines indicate hydrogen bonds. For clarity, some H atoms of the isoflavone skeletons have been omitted. [Symmetry code: (iii) 1 − x, 2 − y, 1 − z.] Unlabelled atoms are related to labelled atoms by the symmetry operator [Please complete]
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the (011) sheet linked by hydrogen bonds to form the three-dimensional supramolecular structure. For clarity, some H atoms bonded to atoms not involved in the motif shown have been omitted. Thin dashed lines indicate hydrogen-bonding and ππ stacking interactions. Cgvi is the centroid of the C4–C9 ring. See Table 1 for symmetry codes.
[Figure 4] Fig. 4. The stacking of the organic anions in compound (II), showing the column along the a axis. For clarity, some H atoms have been omitted. [Symmetry code: (i) −x, 2 − y, 2 − z.]
(I) methylaminium 4',7-dihydroxyisoflavone-3'-sulfonate dihydrate top
Crystal data top
CH6N+·C15H9O7S·2H2OF(000) = 840
Mr = 401.38Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2270 reflections
a = 17.852 (13) Åθ = 2.3–25.2°
b = 7.365 (5) ŵ = 0.24 mm1
c = 13.558 (10) ÅT = 298 K
β = 96.194 (11)°Rhomboid, colourless
V = 1772 (2) Å30.53 × 0.45 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3123 independent reflections
Radiation source: fine-focus sealed tube2147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2110
Tmin = 0.886, Tmax = 0.952k = 88
8930 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3658P]
where P = (Fo2 + 2Fc2)/3
3123 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
CH6N+·C15H9O7S·2H2OV = 1772 (2) Å3
Mr = 401.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.852 (13) ŵ = 0.24 mm1
b = 7.365 (5) ÅT = 298 K
c = 13.558 (10) Å0.53 × 0.45 × 0.21 mm
β = 96.194 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2147 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.952Rint = 0.048
8930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
3123 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07471 (13)0.8347 (3)0.73074 (19)0.0448 (6)
H1A0.04350.86390.77520.067*
H1B0.05970.73100.70110.067*
H1C0.07440.92240.68560.067*
O10.50035 (10)0.5072 (3)0.73346 (14)0.0417 (5)
O20.35356 (10)0.1822 (3)0.56181 (14)0.0397 (5)
O30.70137 (11)0.3641 (3)0.55071 (18)0.0582 (6)
H30.71110.30670.50190.087*
O40.08814 (10)0.2597 (3)0.82469 (14)0.0430 (5)
H40.09190.24130.88470.065*
O50.10915 (10)0.3877 (3)0.51389 (13)0.0417 (5)
O60.04810 (11)0.1607 (3)0.60596 (16)0.0496 (6)
O70.03388 (10)0.4770 (3)0.64280 (14)0.0407 (5)
S10.08258 (4)0.33863 (9)0.60804 (5)0.0287 (2)
C10.42731 (15)0.4882 (4)0.7506 (2)0.0370 (7)
H10.41180.55220.80390.044*
C20.37561 (14)0.3865 (3)0.69826 (18)0.0271 (6)
C30.39663 (14)0.2856 (3)0.61197 (19)0.0275 (6)
C40.47498 (14)0.3128 (3)0.59102 (19)0.0273 (6)
C50.50372 (15)0.2275 (4)0.5111 (2)0.0321 (6)
H50.47170.15860.46720.038*
C60.57858 (15)0.2435 (4)0.4960 (2)0.0367 (7)
H60.59670.18610.44230.044*
C70.62692 (15)0.3462 (4)0.5616 (2)0.0378 (7)
C80.60027 (15)0.4337 (4)0.6409 (2)0.0377 (7)
H80.63250.50220.68470.045*
C90.52411 (14)0.4174 (4)0.6540 (2)0.0311 (6)
C100.29904 (14)0.3641 (3)0.73129 (18)0.0273 (6)
C110.23411 (14)0.3643 (3)0.66400 (18)0.0264 (6)
H110.23800.38600.59720.032*
C120.16367 (13)0.3324 (3)0.69543 (18)0.0248 (6)
C130.15725 (14)0.2993 (4)0.79646 (19)0.0294 (6)
C140.22148 (15)0.3035 (4)0.8637 (2)0.0345 (7)
H140.21760.28470.93080.041*
C150.29119 (15)0.3356 (4)0.83161 (19)0.0321 (6)
H150.33370.33820.87770.039*
C160.15183 (18)0.8126 (5)0.7811 (3)0.0563 (9)
H16A0.16640.92110.81750.084*
H16B0.18620.79090.73260.084*
H16C0.15300.71150.82590.084*
O80.10240 (13)0.8005 (3)0.51358 (19)0.0688 (7)
H810.09740.68870.50290.083*
H820.07110.85670.47740.083*
O90.25290 (12)0.8792 (3)0.57526 (18)0.0647 (7)
H910.20690.88420.55330.078*
H920.27170.97920.56280.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0384 (15)0.0467 (15)0.0516 (16)0.0003 (12)0.0159 (12)0.0019 (12)
O10.0267 (11)0.0492 (13)0.0505 (12)0.0091 (9)0.0105 (9)0.0186 (10)
O20.0258 (10)0.0530 (13)0.0407 (11)0.0066 (9)0.0059 (9)0.0151 (10)
O30.0283 (11)0.0664 (16)0.0832 (17)0.0104 (11)0.0203 (11)0.0105 (12)
O40.0261 (11)0.0735 (15)0.0307 (11)0.0043 (10)0.0091 (8)0.0116 (10)
O50.0320 (11)0.0670 (14)0.0265 (10)0.0064 (10)0.0050 (8)0.0024 (9)
O60.0438 (13)0.0425 (12)0.0585 (14)0.0127 (10)0.0125 (10)0.0028 (10)
O70.0275 (10)0.0526 (13)0.0430 (12)0.0145 (9)0.0080 (8)0.0005 (10)
S10.0225 (4)0.0376 (4)0.0261 (4)0.0028 (3)0.0029 (3)0.0008 (3)
C10.0285 (16)0.0444 (18)0.0396 (16)0.0023 (13)0.0107 (13)0.0105 (14)
C20.0232 (14)0.0296 (15)0.0288 (14)0.0011 (12)0.0041 (11)0.0001 (11)
C30.0224 (14)0.0300 (15)0.0298 (15)0.0004 (12)0.0018 (11)0.0019 (12)
C40.0259 (14)0.0267 (14)0.0292 (14)0.0004 (12)0.0029 (11)0.0026 (11)
C50.0274 (15)0.0352 (16)0.0342 (15)0.0017 (12)0.0060 (12)0.0003 (12)
C60.0321 (16)0.0384 (17)0.0417 (17)0.0036 (13)0.0138 (13)0.0010 (13)
C70.0242 (15)0.0348 (16)0.0564 (19)0.0012 (13)0.0139 (13)0.0084 (15)
C80.0258 (15)0.0358 (16)0.0515 (18)0.0062 (13)0.0045 (13)0.0027 (14)
C90.0274 (14)0.0294 (15)0.0369 (16)0.0016 (12)0.0057 (12)0.0005 (12)
C100.0238 (14)0.0296 (15)0.0291 (14)0.0017 (11)0.0049 (11)0.0007 (11)
C110.0254 (14)0.0305 (15)0.0241 (13)0.0032 (11)0.0056 (11)0.0011 (11)
C120.0218 (13)0.0283 (14)0.0247 (13)0.0014 (11)0.0038 (10)0.0004 (11)
C130.0254 (14)0.0353 (16)0.0284 (14)0.0007 (12)0.0065 (11)0.0038 (12)
C140.0329 (16)0.0476 (18)0.0236 (14)0.0010 (13)0.0060 (12)0.0037 (12)
C150.0262 (15)0.0411 (16)0.0281 (15)0.0013 (13)0.0010 (11)0.0015 (12)
C160.045 (2)0.059 (2)0.065 (2)0.0066 (17)0.0042 (17)0.0042 (17)
O80.0564 (16)0.0693 (17)0.0791 (18)0.0021 (13)0.0010 (13)0.0038 (13)
O90.0479 (14)0.0664 (17)0.0833 (18)0.0065 (12)0.0231 (12)0.0031 (13)
Geometric parameters (Å, º) top
N1—C161.478 (4)C5—H50.9300
N1—H1A0.8900C6—C71.394 (4)
N1—H1B0.8900C6—H60.9300
N1—H1C0.8900C7—C81.380 (4)
O1—C11.356 (3)C8—C91.395 (4)
O1—C91.370 (3)C8—H80.9300
O2—C31.233 (3)C10—C111.396 (4)
O3—C71.359 (3)C10—C151.398 (4)
O3—H30.8200C11—C121.390 (3)
O4—C131.362 (3)C11—H110.9300
O4—H40.8200C12—C131.408 (4)
O5—S11.455 (2)C13—C141.386 (4)
O6—S11.447 (2)C14—C151.382 (4)
O7—S11.451 (2)C14—H140.9300
S1—C121.770 (3)C15—H150.9300
C1—C21.332 (4)C16—H16A0.9600
C1—H10.9300C16—H16B0.9600
C2—C31.469 (4)C16—H16C0.9600
C2—C101.493 (3)O8—H810.8393
C3—C41.471 (4)O8—H820.8158
C4—C91.389 (4)O9—H910.8435
C4—C51.397 (4)O9—H920.8340
C5—C61.379 (4)
C16—N1—H1A109.5O3—C7—C6121.9 (3)
C16—N1—H1B109.5C8—C7—C6120.5 (3)
H1A—N1—H1B109.5C7—C8—C9118.8 (3)
C16—N1—H1C109.5C7—C8—H8120.6
H1A—N1—H1C109.5C9—C8—H8120.6
H1B—N1—H1C109.5O1—C9—C4121.5 (2)
C1—O1—C9118.0 (2)O1—C9—C8116.6 (2)
C7—O3—H3109.5C4—C9—C8121.9 (3)
C13—O4—H4109.5C11—C10—C15118.2 (2)
O6—S1—O7111.98 (13)C11—C10—C2121.8 (2)
O6—S1—O5112.73 (13)C15—C10—C2120.0 (2)
O7—S1—O5111.95 (12)C12—C11—C10120.9 (2)
O6—S1—C12107.78 (12)C12—C11—H11119.5
O7—S1—C12106.03 (12)C10—C11—H11119.5
O5—S1—C12105.85 (12)C11—C12—C13119.9 (2)
C2—C1—O1126.2 (3)C11—C12—S1119.47 (19)
C2—C1—H1116.9C13—C12—S1120.60 (19)
O1—C1—H1116.9O4—C13—C14122.0 (2)
C1—C2—C3119.1 (2)O4—C13—C12118.8 (2)
C1—C2—C10120.4 (2)C14—C13—C12119.2 (2)
C3—C2—C10120.3 (2)C15—C14—C13120.3 (2)
O2—C3—C2123.6 (2)C15—C14—H14119.8
O2—C3—C4121.8 (2)C13—C14—H14119.8
C2—C3—C4114.5 (2)C14—C15—C10121.3 (2)
C9—C4—C5117.8 (2)C14—C15—H15119.3
C9—C4—C3120.5 (2)C10—C15—H15119.3
C5—C4—C3121.7 (2)N1—C16—H16A109.5
C6—C5—C4121.3 (3)N1—C16—H16B109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C4—C5—H5119.4N1—C16—H16C109.5
C5—C6—C7119.7 (3)H16A—C16—H16C109.5
C5—C6—H6120.2H16B—C16—H16C109.5
C7—C6—H6120.2H81—O8—H82109.9
O3—C7—C8117.6 (3)H91—O9—H92106.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O9i0.821.882.664 (3)160
O4—H4···O5ii0.821.992.774 (3)160
N1—H1B···O70.892.062.950 (4)174
N1—H1C···O6iii0.892.092.946 (4)162
N1—H1A···O7iv0.892.042.918 (3)168
O8—H81···O50.842.233.043 (4)163
O8—H82···O6v0.822.302.998 (3)144
O9—H92···O2iii0.832.092.883 (3)158
O9—H91···O80.841.982.787 (4)159
C15—H15···O2ii0.932.493.201 (4)134
C1—H1···Cgvi0.932.663.440 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x+1, y1/2, z+1/2.
(II) hexaaquairon(II) bis(4',7-diethoxyisoflavone-3'-sulfonate) tetrahydrate top
Crystal data top
[Fe(H2O)6](C19H17O7S)2·4H2OZ = 1
Mr = 1014.78F(000) = 532
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.827 (3) ÅCell parameters from 1771 reflections
b = 10.422 (3) Åθ = 2.6–24.3°
c = 12.803 (4) ŵ = 0.51 mm1
α = 88.888 (4)°T = 298 K
β = 84.952 (4)°Needle, colourless
γ = 74.255 (4)°0.47 × 0.21 × 0.18 mm
V = 1129.2 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3935 independent reflections
Radiation source: fine-focus sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 910
Tmin = 0.794, Tmax = 0.913k = 1211
5966 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3331P]
where P = (Fo2 + 2Fc2)/3
3935 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.40 e Å3
36 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Fe(H2O)6](C19H17O7S)2·4H2Oγ = 74.255 (4)°
Mr = 1014.78V = 1129.2 (6) Å3
Triclinic, P1Z = 1
a = 8.827 (3) ÅMo Kα radiation
b = 10.422 (3) ŵ = 0.51 mm1
c = 12.803 (4) ÅT = 298 K
α = 88.888 (4)°0.47 × 0.21 × 0.18 mm
β = 84.952 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3935 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2698 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.913Rint = 0.022
5966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04736 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
3935 reflectionsΔρmin = 0.45 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2380 (3)1.0442 (2)1.12947 (16)0.0454 (6)
O20.3276 (3)1.0277 (3)0.81218 (18)0.0627 (8)
O30.4298 (3)1.4264 (2)1.14663 (17)0.0508 (7)
O40.0653 (3)0.5335 (2)0.74718 (18)0.0506 (7)
O50.0620 (3)0.9117 (2)0.59954 (17)0.0442 (6)
O60.2101 (3)0.6868 (2)0.55978 (18)0.0489 (6)
O70.0723 (3)0.7397 (2)0.60177 (18)0.0472 (6)
S10.07334 (10)0.77116 (8)0.61871 (6)0.0345 (2)
C10.1992 (4)0.9540 (4)1.0704 (3)0.0444 (9)
H10.15090.89491.10590.053*
C20.2233 (4)0.9406 (3)0.9654 (2)0.0341 (8)
C30.2972 (4)1.0325 (4)0.9080 (2)0.0379 (8)
C40.3325 (4)1.1341 (3)0.9710 (2)0.0346 (8)
C50.3987 (4)1.2326 (3)0.9258 (2)0.0406 (9)
H50.42221.23310.85360.049*
C60.4287 (4)1.3268 (4)0.9858 (3)0.0437 (9)
H60.47191.39160.95440.052*
C70.3951 (4)1.3276 (3)1.0952 (2)0.0380 (8)
C80.3321 (4)1.2318 (3)1.1429 (3)0.0408 (9)
H80.31081.23061.21530.049*
C90.3013 (4)1.1370 (3)1.0793 (2)0.0348 (8)
C100.1788 (4)0.8330 (3)0.9110 (2)0.0343 (8)
C110.1439 (4)0.8460 (3)0.8065 (2)0.0340 (8)
H110.14690.92430.77120.041*
C120.1053 (4)0.7471 (3)0.7538 (2)0.0313 (7)
C130.0979 (4)0.6291 (3)0.8046 (3)0.0383 (8)
C140.1286 (5)0.6160 (4)0.9101 (3)0.0466 (9)
H140.12130.53950.94640.056*
C150.1697 (4)0.7155 (4)0.9607 (3)0.0461 (9)
H150.19200.70351.03040.055*
C160.4203 (5)1.4235 (4)1.2591 (3)0.0531 (10)
H16A0.48811.34041.28280.064*
H16B0.31271.43011.28700.064*
C170.4718 (5)1.5383 (4)1.2965 (3)0.0647 (12)
H17A0.46421.53891.37180.097*
H17B0.40511.62001.27190.097*
H17C0.57931.52981.27000.097*
C180.0390 (6)0.4190 (4)0.7992 (3)0.0613 (12)
H18A0.05430.44470.84830.074*
H18B0.12860.37640.83820.074*
C190.0173 (6)0.3250 (4)0.7202 (3)0.0777 (14)
H19A0.00150.24750.75490.117*
H19B0.11060.29890.67260.117*
H19C0.07150.36770.68200.117*
Fe10.50001.00000.50000.0352 (2)
O80.2538 (3)1.0755 (2)0.53780 (17)0.0418 (6)
H210.20051.13350.49800.050*
H220.19641.02390.55590.050*
O90.5495 (3)1.0104 (3)0.65387 (17)0.0603 (8)
H230.47961.03120.70520.072*
H240.61941.05050.66300.072*
O100.4824 (3)0.7988 (2)0.5229 (2)0.0596 (7)
H250.55910.73180.50480.071*
H260.40560.76770.54440.071*
O120.7480 (3)0.5910 (3)0.5019 (2)0.0679 (8)
H290.83090.60740.52050.081*
H300.77970.51230.47700.081*
O110.2071 (3)1.1273 (3)0.6601 (2)0.0602 (8)
H270.12321.06630.64290.072*
H280.20291.12230.72620.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0665 (17)0.0485 (15)0.0300 (12)0.0327 (13)0.0019 (11)0.0016 (11)
O20.084 (2)0.093 (2)0.0296 (13)0.0583 (18)0.0096 (13)0.0111 (13)
O30.0755 (19)0.0448 (15)0.0408 (14)0.0303 (14)0.0069 (13)0.0035 (12)
O40.0793 (19)0.0382 (14)0.0441 (14)0.0315 (14)0.0099 (13)0.0029 (11)
O50.0549 (16)0.0392 (14)0.0442 (13)0.0206 (12)0.0122 (12)0.0105 (11)
O60.0498 (16)0.0547 (16)0.0410 (13)0.0141 (13)0.0052 (12)0.0084 (12)
O70.0483 (16)0.0530 (16)0.0506 (14)0.0271 (13)0.0193 (12)0.0096 (12)
S10.0385 (5)0.0369 (5)0.0320 (4)0.0159 (4)0.0066 (4)0.0031 (4)
C10.057 (2)0.046 (2)0.0377 (19)0.0277 (19)0.0011 (17)0.0006 (16)
C20.036 (2)0.0381 (19)0.0295 (17)0.0131 (16)0.0025 (14)0.0009 (14)
C30.031 (2)0.050 (2)0.0347 (19)0.0152 (17)0.0019 (15)0.0019 (16)
C40.0312 (19)0.041 (2)0.0326 (18)0.0109 (16)0.0026 (14)0.0009 (15)
C50.047 (2)0.050 (2)0.0299 (17)0.0220 (18)0.0011 (16)0.0021 (16)
C60.055 (2)0.043 (2)0.0383 (19)0.0225 (19)0.0034 (17)0.0068 (16)
C70.045 (2)0.0338 (19)0.0366 (18)0.0131 (17)0.0063 (16)0.0002 (15)
C80.051 (2)0.042 (2)0.0308 (17)0.0155 (18)0.0014 (16)0.0046 (15)
C90.035 (2)0.036 (2)0.0340 (18)0.0102 (16)0.0012 (15)0.0028 (15)
C100.035 (2)0.036 (2)0.0319 (17)0.0102 (16)0.0019 (14)0.0027 (15)
C110.035 (2)0.0305 (18)0.0372 (18)0.0097 (15)0.0018 (15)0.0016 (14)
C120.0297 (18)0.0329 (18)0.0315 (17)0.0091 (15)0.0017 (14)0.0004 (14)
C130.041 (2)0.036 (2)0.0406 (19)0.0162 (17)0.0027 (16)0.0003 (16)
C140.064 (3)0.042 (2)0.039 (2)0.023 (2)0.0069 (18)0.0113 (17)
C150.061 (3)0.050 (2)0.0342 (19)0.025 (2)0.0074 (17)0.0044 (17)
C160.077 (3)0.053 (2)0.035 (2)0.027 (2)0.0057 (19)0.0062 (18)
C170.079 (3)0.067 (3)0.056 (2)0.033 (2)0.002 (2)0.012 (2)
C180.087 (3)0.047 (2)0.061 (3)0.035 (2)0.017 (2)0.010 (2)
C190.120 (4)0.055 (3)0.074 (3)0.049 (3)0.015 (3)0.004 (2)
Fe10.0322 (4)0.0426 (4)0.0322 (4)0.0128 (3)0.0017 (3)0.0015 (3)
O80.0330 (14)0.0437 (14)0.0486 (14)0.0111 (11)0.0018 (11)0.0064 (11)
O90.0514 (17)0.104 (2)0.0340 (13)0.0373 (16)0.0017 (12)0.0048 (14)
O100.0433 (16)0.0416 (15)0.093 (2)0.0141 (13)0.0031 (14)0.0075 (14)
O120.0547 (18)0.0548 (18)0.093 (2)0.0131 (15)0.0008 (16)0.0254 (16)
O110.0598 (18)0.0628 (18)0.0616 (17)0.0221 (15)0.0019 (14)0.0181 (14)
Geometric parameters (Å, º) top
O1—C11.349 (4)C14—C151.377 (5)
O1—C91.367 (4)C14—H140.9300
O2—C31.232 (4)C15—H150.9300
O3—C71.350 (4)C16—C171.491 (5)
O3—C161.435 (4)C16—H16A0.9700
O4—C131.355 (4)C16—H16B0.9700
O4—C181.419 (4)C17—H17A0.9600
O5—S11.458 (2)C17—H17B0.9600
O6—S11.445 (3)C17—H17C0.9600
O7—S11.445 (2)C18—C191.481 (5)
S1—C121.779 (3)C18—H18A0.9700
C1—C21.346 (4)C18—H18B0.9700
C1—H10.9300C19—H19A0.9600
C2—C31.453 (4)C19—H19B0.9600
C2—C101.488 (4)C19—H19C0.9600
C3—C41.458 (4)Fe1—O9i2.066 (2)
C4—C91.389 (4)Fe1—O92.066 (2)
C4—C51.405 (4)Fe1—O82.116 (2)
C5—C61.353 (4)Fe1—O8i2.116 (2)
C5—H50.9300Fe1—O102.157 (2)
C6—C71.405 (4)Fe1—O10i2.157 (2)
C6—H60.9300O8—H210.8501
C7—C81.377 (5)O8—H220.8500
C8—C91.388 (4)O9—H230.8499
C8—H80.9300O9—H240.8499
C10—C151.388 (5)O10—H250.8500
C10—C111.395 (4)O10—H260.8501
C11—C121.376 (4)O12—H290.8500
C11—H110.9300O12—H300.8500
C12—C131.394 (4)O11—H270.8500
C13—C141.398 (5)O11—H280.8503
C1—O1—C9118.1 (3)C14—C15—H15118.9
C7—O3—C16118.6 (3)C10—C15—H15118.9
C13—O4—C18118.8 (3)O3—C16—C17108.3 (3)
O7—S1—O6113.41 (15)O3—C16—H16A110.0
O7—S1—O5111.59 (14)C17—C16—H16A110.0
O6—S1—O5111.04 (15)O3—C16—H16B110.0
O7—S1—C12108.22 (14)C17—C16—H16B110.0
O6—S1—C12107.06 (15)H16A—C16—H16B108.4
O5—S1—C12105.03 (14)C16—C17—H17A109.5
C2—C1—O1126.8 (3)C16—C17—H17B109.5
C2—C1—H1116.6H17A—C17—H17B109.5
O1—C1—H1116.6C16—C17—H17C109.5
C1—C2—C3117.7 (3)H17A—C17—H17C109.5
C1—C2—C10120.8 (3)H17B—C17—H17C109.5
C3—C2—C10121.5 (3)O4—C18—C19109.0 (3)
O2—C3—C2123.2 (3)O4—C18—H18A109.9
O2—C3—C4121.1 (3)C19—C18—H18A109.9
C2—C3—C4115.7 (3)O4—C18—H18B109.9
C9—C4—C5117.2 (3)C19—C18—H18B109.9
C9—C4—C3120.8 (3)H18A—C18—H18B108.3
C5—C4—C3122.0 (3)C18—C19—H19A109.5
C6—C5—C4121.0 (3)C18—C19—H19B109.5
C6—C5—H5119.5H19A—C19—H19B109.5
C4—C5—H5119.5C18—C19—H19C109.5
C5—C6—C7120.5 (3)H19A—C19—H19C109.5
C5—C6—H6119.7H19B—C19—H19C109.5
C7—C6—H6119.7O9i—Fe1—O9180.000 (1)
O3—C7—C8124.4 (3)O9i—Fe1—O887.26 (9)
O3—C7—C6115.1 (3)O9—Fe1—O892.74 (9)
C8—C7—C6120.4 (3)O9i—Fe1—O8i92.74 (9)
C7—C8—C9117.8 (3)O9—Fe1—O8i87.26 (9)
C7—C8—H8121.1O8—Fe1—O8i180.000 (1)
C9—C8—H8121.1O9i—Fe1—O1089.12 (11)
O1—C9—C8116.1 (3)O9—Fe1—O1090.88 (11)
O1—C9—C4120.8 (3)O8—Fe1—O1090.56 (9)
C8—C9—C4123.1 (3)O8i—Fe1—O1089.44 (9)
C15—C10—C11116.6 (3)O9i—Fe1—O10i90.88 (11)
C15—C10—C2122.3 (3)O9—Fe1—O10i89.12 (11)
C11—C10—C2121.1 (3)O8—Fe1—O10i89.44 (9)
C12—C11—C10122.3 (3)O8i—Fe1—O10i90.56 (9)
C12—C11—H11118.9O10—Fe1—O10i180.000 (1)
C10—C11—H11118.9Fe1—O8—H21118.9
C11—C12—C13120.4 (3)Fe1—O8—H22121.2
C11—C12—S1118.3 (2)H21—O8—H22105.9
C13—C12—S1121.3 (2)Fe1—O9—H23124.1
O4—C13—C12117.5 (3)Fe1—O9—H24114.9
O4—C13—C14124.5 (3)H23—O9—H24107.1
C12—C13—C14118.0 (3)Fe1—O10—H25121.7
C15—C14—C13120.5 (3)Fe1—O10—H26132.2
C15—C14—H14119.7H25—O10—H26106.0
C13—C14—H14119.7H29—O12—H30104.5
C14—C15—C10122.2 (3)H27—O11—H2897.9
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H27···O50.852.012.853 (4)175
O11—H28···O1ii0.852.573.237 (3)137
O8—H21···O7iii0.852.012.858 (3)176
O8—H22···O50.851.922.773 (3)178
O9—H23···O20.851.842.665 (3)164
O9—H24···O11iv0.851.912.749 (3)170
O12—H29···O7iv0.852.142.885 (3)147
O12—H30···O6v0.852.112.933 (4)162
O10—H25···O120.851.902.723 (4)164
O10—H26···O60.852.112.943 (3)166
C11—H11···O20.932.252.813 (4)118
C6—H6···O3vi0.932.573.500 (4)174
Symmetry codes: (ii) x, y+2, z+2; (iii) x, y+2, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+3, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaCH6N+·C15H9O7S·2H2O[Fe(H2O)6](C19H17O7S)2·4H2O
Mr401.381014.78
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)298298
a, b, c (Å)17.852 (13), 7.365 (5), 13.558 (10)8.827 (3), 10.422 (3), 12.803 (4)
α, β, γ (°)90, 96.194 (11), 9088.888 (4), 84.952 (4), 74.255 (4)
V3)1772 (2)1129.2 (6)
Z41
Radiation typeMo KαMo Kα
µ (mm1)0.240.51
Crystal size (mm)0.53 × 0.45 × 0.210.47 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.886, 0.9520.794, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
8930, 3123, 2147 5966, 3935, 2698
Rint0.0480.022
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.01 0.047, 0.125, 1.03
No. of reflections31233935
No. of parameters246295
No. of restraints036
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.270.40, 0.45

Computer programs: SMART (Bruker, 1999), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O9i0.821.882.664 (3)160
O4—H4···O5ii0.821.992.774 (3)160
N1—H1B···O70.892.062.950 (4)174
N1—H1C···O6iii0.892.092.946 (4)162
N1—H1A···O7iv0.892.042.918 (3)168
O8—H81···O50.842.233.043 (4)163
O8—H82···O6v0.822.302.998 (3)144
O9—H92···O2iii0.832.092.883 (3)158
O9—H91···O80.841.982.787 (4)159
C15—H15···O2ii0.932.493.201 (4)134
C1—H1···Cgvi0.932.663.440 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O11—H27···O50.852.012.853 (4)174.8
O11—H28···O1i0.852.573.237 (3)136.5
O8—H21···O7ii0.852.012.858 (3)176.1
O8—H22···O50.851.922.773 (3)178.2
O9—H23···O20.851.842.665 (3)164.1
O9—H24···O11iii0.851.912.749 (3)169.9
O12—H29···O7iii0.852.142.885 (3)146.7
O12—H30···O6iv0.852.112.933 (4)161.8
O10—H25···O120.851.902.723 (4)163.9
O10—H26···O60.852.112.943 (3)166.4
C11—H11···O20.932.252.813 (4)117.9
C6—H6···O3v0.932.573.500 (4)174.0
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+3, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds