metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m31-m32

Crystal structure of di­bromido­(N,N-di­methyl­formamide-κO){2-(1H-indol-3-yl)-N-[(quinolin-2-yl-κN)methyl­­idene]ethanamine-κN}cadmium

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: nsharkina@ukr.net

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 15 December 2014; accepted 14 January 2015; online 21 January 2015)

In the mononuclear title complex, [CdBr2(C20H17N3)(C3H7NO)], synthesized from the quinoline-derived Schiff base 2-(1H-indol-3-yl)-N-(quinolin-2-yl­methyl­ene)ethan­amine (IQME), the coordination geometry around the Cd2+ atom is distorted trigonal bipyramidal, the axial positions being occupied by the quinoline N atom [Cd—N = 2.401 (3) Å] and one di­methyl­formamide O-atom donor [Cd—O = 2.399 (2) Å]. The equatorial plane is formed by the imine N atom [Cd—N = 2.293 (3) Å] and two bromides [Cd—Br = 2.5621 (8) and 2.5676 (8) Å], with the deviation of the CdII atom from the equatorial plane being 0.046 (1) Å. An intra­molecular C—H⋯Br inter­action occurs. In the crystal, N—H⋯Br inter­actions generate [101] chains.

1. Related literature

For applications of quinolinyl-containing Schiff bases, see: Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]); Faizi et al. (2014[Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.]); Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). For properties of d10 metal complexes, see: Henkel & Krebs (2004[Henkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801-824.]); Kimblin et al. (2000[Kimblin, C., Bridgewater, B. M., Churchill, D. G., Hascall, T. & Parkin, G. (2000). Inorg. Chem. 39, 4240-4243.]); Penkova et al. (2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). For related structures, see: Penkova et al. (2009[Penkova, L. V., Maci\,ag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CdBr2(C20H17N3)(C3H7NO)]

  • Mr = 644.68

  • Monoclinic, P 21 /n

  • a = 14.686 (4) Å

  • b = 8.384 (2) Å

  • c = 20.157 (6) Å

  • β = 97.785 (5)°

  • V = 2458.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.16 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.12 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.490, Tmax = 0.635

  • 12172 measured reflections

  • 4308 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.02

  • 4308 reflections

  • 286 parameters

  • 90 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N3⋯Br2i 0.94 (3) 2.65 (3) 3.504 (4) 153 (3)
C21—H21⋯Br1 0.93 2.83 3.527 (5) 132
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2001[Brandenburg, K. & Putz, H. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolyl derivatives of Schiff bases are important building blocks for many important compounds widely used in biological applications such as antioxidative, anticancer, fluorescent probe agents in industry, in coordination chemistry and in catalysis (Motswainyana et al. (2013); Das et al. (2013); Song et al. (2011); Jursic et al.(2002). Complexes of d10 metal ions such as Zn(II) and Cd(II) are of interest because of their fluorescent properties and involvement in many biological processes (Kimblin et al., 2000; Henkel & Krebs, 2004; Penkova et al., 2010). The synthesis of a complex of cadmium (II) using the quinoline aldehyde derivative of the Schiff base 2-(1H-indole-3-yl)-N-(quinolin-2-ylmethylene)ethanamine (IQME) has not previously been reported. The present work is part of an ongoing structural study of Schiff-base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014; Moroz et al., 2012) and we report herein a newly synthesized structure of CdII complex with IQME, [Cd(Br)2(C20H17N3)(C3H7NO)].

In the structure of title compound, the geometry around the Cd centre can be described as a distorted trigonal bipyramidal, in which the Cd atom is surrounded by one bidentate ligand, two bromines and one DMF molecule coordinated via oxygen (Fig. 1). The axial positions are occupied by Nquinolyl of the chelate and O from the DMF molecule [O(1)-Cd(1)-N(1) 160.33 (17) Å], while the equatorial plane is formed by the Nimine atom and two bromides, with the deviation of the Cd centre from the equatorial plane of 0.040 Å. The axial plane and the equatorial plane make a dihedral angle of 89.42 Å. The Cd-Nimine bond (2.290 (4) Å) is significantly shorter than the Cd1-Nquinolyl bond (2.401 (4) Å), which can be attributed to the coordination of the DMF molecule. It is noteworthy that the quinoline ring and indole ring are not coplanar, having a dihedral angle of 35.01 Å. The C—N, CN and C—C bond lenths are normal and close to the values observed in the related structures (Penkova et al., 2009; Petrusenko et al., 1997). Intermolecular N-H···Br and C-H···Br interactions generate an overall layered structure lying parallel to (010) (Fig. 2).

Related literature top

For applications of quinolinyl-containing Schiff bases see: Motswainyana et al. (2013); Das et al. (2013); Song et al. (2011); Jursic et al. (2002). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014); Moroz et al. (2012). For properties of d10 metal complexes, see: Henkel & Krebs (2004); Kimblin et al. (2000); Penkova et al. (2010). For related structures, see: Penkova et al. (2009); Petrusenko et al. (1997).

Experimental top

The iminoquinolyl compound 2-(1H-indole-3-yl)-N-(quinolin-2-ylmethylene)ethanamine (IQME) was prepared by reacting 2-quinolinecarboxaldehyde with a substituted aniline and was obtained in high yields. This compound was characterized by FT—IR, NMR and ESI-Mass spectroscopy. A mixture of IQME (0.10 g, 0.33 mmol), cadmium(II) bromide (0.09 g, 0.33 mmol) and ethanol (5 ml) were stirred vigorously for 1 h, after which the precipitate was filtered off and redissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the DMF solvent.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å, N—H = 0.88 or 0.91 Å. Uiso(H) = 1.5Ueq(N) for the amino-H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structure in the title compound extending along b, with hydrogen bonds shown as dashed lines.
Dibromido(N,N-dimethylformamide-κO){2-(1H-indol-3-yl)-N-[(quinolin-2-yl-κN)methylidene]ethanamine-κN}cadmium top
Crystal data top
[CdBr2(C20H17N3)(C3H7NO)]F(000) = 1264
Mr = 644.68Dx = 1.741 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2146 reflections
a = 14.686 (4) Åθ = 1.8–25.0°
b = 8.384 (2) ŵ = 4.16 mm1
c = 20.157 (6) ÅT = 100 K
β = 97.785 (5)°Block, yellow
V = 2458.9 (12) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4308 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
/w–scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1717
Tmin = 0.490, Tmax = 0.635k = 99
12172 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
4308 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.74 e Å3
90 restraintsΔρmin = 0.47 e Å3
Crystal data top
[CdBr2(C20H17N3)(C3H7NO)]V = 2458.9 (12) Å3
Mr = 644.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.686 (4) ŵ = 4.16 mm1
b = 8.384 (2) ÅT = 100 K
c = 20.157 (6) Å0.20 × 0.15 × 0.12 mm
β = 97.785 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3120 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.635Rint = 0.034
12172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03690 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.74 e Å3
4308 reflectionsΔρmin = 0.47 e Å3
286 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5561 (3)0.7787 (5)0.6436 (2)0.0453 (10)
C20.5466 (3)0.7981 (6)0.5739 (2)0.0566 (12)
H20.59850.79510.55200.068*
C30.4627 (4)0.8211 (6)0.5382 (3)0.0677 (14)
H30.45740.83410.49200.081*
C40.3834 (3)0.8255 (6)0.5702 (3)0.0700 (15)
H40.32630.84180.54500.084*
C50.3891 (3)0.8065 (6)0.6373 (3)0.0649 (13)
H50.33590.80830.65770.078*
C60.4762 (3)0.7837 (5)0.6770 (2)0.0502 (11)
C70.4882 (3)0.7673 (6)0.7461 (3)0.0577 (12)
H70.43720.77040.76890.069*
C80.5739 (3)0.7469 (6)0.7813 (2)0.0554 (12)
H80.58200.73700.82770.067*
C90.6492 (3)0.7413 (5)0.7455 (2)0.0439 (10)
C100.7428 (3)0.7150 (5)0.7806 (2)0.0441 (10)
H100.75110.70980.82720.053*
C110.9037 (3)0.6785 (5)0.7898 (2)0.0469 (11)
H11A0.93580.59190.77110.056*
H11B0.89620.65000.83540.056*
C120.9611 (3)0.8304 (5)0.7905 (2)0.0522 (11)
H12A0.96980.85760.74500.063*
H12B0.92840.91760.80840.063*
C131.0533 (3)0.8096 (5)0.8323 (2)0.0495 (11)
C141.0778 (4)0.8648 (6)0.8953 (2)0.0636 (13)
H141.04060.92770.91850.076*
C151.1988 (3)0.7273 (6)0.8722 (2)0.0556 (12)
C161.2826 (3)0.6473 (7)0.8738 (3)0.0686 (14)
H161.32620.64950.91180.082*
C171.2980 (4)0.5663 (7)0.8180 (3)0.0753 (15)
H171.35320.51190.81820.090*
C181.2341 (4)0.5622 (7)0.7609 (3)0.0715 (15)
H181.24770.50790.72320.086*
C191.1504 (3)0.6380 (6)0.7594 (2)0.0583 (12)
H191.10740.63390.72110.070*
C201.1309 (3)0.7205 (5)0.8157 (2)0.0477 (10)
C210.9869 (3)0.7038 (7)0.5975 (3)0.0697 (15)
H210.97060.80960.58870.084*
C221.1131 (5)0.7539 (10)0.5352 (5)0.150 (4)
H22A1.11420.71140.49110.225*
H22B1.17470.76090.55800.225*
H22C1.08590.85830.53190.225*
C231.0901 (5)0.4887 (8)0.5815 (3)0.099 (2)
H23A1.10490.44680.53990.149*
H23B1.04200.42580.59620.149*
H23C1.14360.48490.61460.149*
Cd10.78346 (2)0.70754 (4)0.635528 (15)0.04782 (13)
N10.6416 (2)0.7570 (4)0.67886 (17)0.0435 (8)
N20.8125 (2)0.6993 (4)0.75016 (17)0.0426 (8)
N31.1651 (3)0.8157 (6)0.9203 (2)0.0696 (12)
N41.0598 (3)0.6510 (6)0.5720 (2)0.0701 (12)
Br10.79839 (4)0.96756 (6)0.57108 (3)0.06928 (18)
Br20.72209 (4)0.46231 (6)0.56734 (2)0.06947 (18)
O10.9397 (2)0.6298 (5)0.63075 (17)0.0739 (10)
H3N31.192 (3)0.842 (5)0.9637 (13)0.071 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.041 (3)0.050 (3)0.002 (2)0.0079 (19)0.004 (2)
C20.051 (3)0.067 (3)0.050 (3)0.002 (3)0.003 (2)0.002 (2)
C30.066 (3)0.073 (4)0.060 (3)0.001 (3)0.006 (2)0.000 (3)
C40.044 (3)0.076 (4)0.083 (4)0.009 (3)0.013 (3)0.005 (3)
C50.043 (3)0.070 (4)0.081 (3)0.005 (3)0.008 (2)0.011 (3)
C60.043 (2)0.043 (3)0.066 (3)0.000 (2)0.012 (2)0.007 (2)
C70.053 (3)0.058 (3)0.066 (3)0.001 (2)0.022 (2)0.007 (2)
C80.058 (3)0.061 (3)0.051 (3)0.002 (2)0.020 (2)0.003 (2)
C90.048 (2)0.040 (3)0.045 (3)0.001 (2)0.0099 (19)0.0047 (19)
C100.056 (2)0.041 (3)0.037 (2)0.002 (2)0.0097 (19)0.0008 (19)
C110.051 (2)0.046 (3)0.042 (2)0.001 (2)0.001 (2)0.004 (2)
C120.056 (3)0.046 (3)0.054 (3)0.001 (2)0.005 (2)0.003 (2)
C130.056 (3)0.047 (3)0.044 (3)0.010 (2)0.004 (2)0.001 (2)
C140.070 (3)0.065 (3)0.057 (3)0.012 (3)0.011 (2)0.014 (3)
C150.051 (3)0.064 (3)0.050 (3)0.014 (2)0.003 (2)0.009 (2)
C160.056 (3)0.075 (4)0.071 (3)0.010 (3)0.006 (3)0.020 (3)
C170.051 (3)0.080 (4)0.094 (4)0.004 (3)0.006 (3)0.016 (3)
C180.067 (3)0.081 (4)0.071 (3)0.003 (3)0.025 (3)0.001 (3)
C190.064 (3)0.068 (3)0.042 (3)0.003 (3)0.004 (2)0.004 (2)
C200.054 (2)0.049 (3)0.040 (2)0.009 (2)0.0054 (19)0.005 (2)
C210.057 (3)0.090 (4)0.064 (3)0.002 (3)0.017 (3)0.007 (3)
C220.126 (7)0.142 (7)0.208 (10)0.025 (5)0.113 (7)0.009 (6)
C230.094 (5)0.116 (5)0.089 (4)0.031 (4)0.020 (4)0.009 (4)
Cd10.0476 (2)0.0570 (2)0.0402 (2)0.00472 (16)0.01071 (14)0.00239 (15)
N10.0435 (19)0.048 (2)0.040 (2)0.0015 (17)0.0078 (15)0.0050 (16)
N20.0440 (19)0.042 (2)0.0394 (19)0.0019 (17)0.0016 (15)0.0021 (16)
N30.072 (3)0.089 (4)0.045 (3)0.016 (2)0.005 (2)0.009 (2)
N40.053 (2)0.092 (3)0.070 (3)0.001 (2)0.025 (2)0.005 (2)
Br10.0819 (4)0.0595 (3)0.0678 (4)0.0028 (3)0.0150 (3)0.0150 (3)
Br20.1018 (4)0.0537 (3)0.0519 (3)0.0022 (3)0.0066 (3)0.0024 (2)
O10.0531 (19)0.101 (3)0.072 (2)0.0162 (19)0.0258 (17)0.026 (2)
Geometric parameters (Å, º) top
C1—N11.369 (5)C14—H140.9300
C1—C21.401 (6)C15—N31.366 (6)
C1—C61.431 (6)C15—C161.397 (7)
C2—C31.355 (6)C15—C201.409 (6)
C2—H20.9300C16—C171.360 (8)
C3—C41.407 (7)C16—H160.9300
C3—H30.9300C17—C181.383 (7)
C4—C51.352 (7)C17—H170.9300
C4—H40.9300C18—C191.381 (7)
C5—C61.427 (6)C18—H180.9300
C5—H50.9300C19—C201.392 (6)
C6—C71.387 (7)C19—H190.9300
C7—C81.370 (6)C21—O11.201 (5)
C7—H70.9300C21—N41.324 (6)
C8—C91.400 (6)C21—H210.9300
C8—H80.9300C22—N41.437 (8)
C9—N11.338 (5)C22—H22A0.9600
C9—C101.476 (6)C22—H22B0.9600
C10—N21.270 (5)C22—H22C0.9600
C10—H100.9300C23—N41.437 (7)
C11—N21.474 (5)C23—H23A0.9600
C11—C121.526 (6)C23—H23B0.9600
C11—H11A0.9700C23—H23C0.9600
C11—H11B0.9700Cd1—N22.293 (3)
C12—C131.505 (6)Cd1—O12.399 (3)
C12—H12A0.9700Cd1—N12.401 (3)
C12—H12B0.9700Cd1—Br12.5621 (8)
C13—C141.353 (6)Cd1—Br22.5676 (8)
C13—C201.439 (6)N3—H3N30.937 (19)
C14—N31.376 (7)
N1—C1—C2119.7 (4)C17—C16—H16121.1
N1—C1—C6120.8 (4)C15—C16—H16121.1
C2—C1—C6119.5 (4)C16—C17—C18122.0 (5)
C3—C2—C1120.6 (5)C16—C17—H17119.0
C3—C2—H2119.7C18—C17—H17119.0
C1—C2—H2119.7C19—C18—C17120.6 (5)
C2—C3—C4120.6 (5)C19—C18—H18119.7
C2—C3—H3119.7C17—C18—H18119.7
C4—C3—H3119.7C18—C19—C20119.5 (5)
C5—C4—C3120.9 (5)C18—C19—H19120.3
C5—C4—H4119.6C20—C19—H19120.3
C3—C4—H4119.6C19—C20—C15118.5 (4)
C4—C5—C6120.4 (5)C19—C20—C13134.8 (4)
C4—C5—H5119.8C15—C20—C13106.7 (4)
C6—C5—H5119.8O1—C21—N4127.1 (6)
C7—C6—C5123.9 (4)O1—C21—H21116.5
C7—C6—C1118.0 (4)N4—C21—H21116.5
C5—C6—C1118.0 (4)N4—C22—H22A109.5
C8—C7—C6120.9 (4)N4—C22—H22B109.5
C8—C7—H7119.5H22A—C22—H22B109.5
C6—C7—H7119.5N4—C22—H22C109.5
C7—C8—C9118.2 (4)H22A—C22—H22C109.5
C7—C8—H8120.9H22B—C22—H22C109.5
C9—C8—H8120.9N4—C23—H23A109.5
N1—C9—C8123.4 (4)N4—C23—H23B109.5
N1—C9—C10116.2 (4)H23A—C23—H23B109.5
C8—C9—C10120.4 (4)N4—C23—H23C109.5
N2—C10—C9122.9 (4)H23A—C23—H23C109.5
N2—C10—H10118.6H23B—C23—H23C109.5
C9—C10—H10118.6N2—Cd1—O189.09 (12)
N2—C11—C12111.5 (3)N2—Cd1—N171.98 (12)
N2—C11—H11A109.3O1—Cd1—N1160.51 (12)
C12—C11—H11A109.3N2—Cd1—Br1121.29 (9)
N2—C11—H11B109.3O1—Cd1—Br193.61 (9)
C12—C11—H11B109.3N1—Cd1—Br1100.11 (9)
H11A—C11—H11B108.0N2—Cd1—Br2121.28 (9)
C13—C12—C11111.2 (3)O1—Cd1—Br291.67 (10)
C13—C12—H12A109.4N1—Cd1—Br294.25 (8)
C11—C12—H12A109.4Br1—Cd1—Br2117.24 (3)
C13—C12—H12B109.4C9—N1—C1118.7 (4)
C11—C12—H12B109.4C9—N1—Cd1112.9 (3)
H12A—C12—H12B108.0C1—N1—Cd1127.9 (3)
C14—C13—C20106.1 (4)C10—N2—C11118.9 (4)
C14—C13—C12126.2 (5)C10—N2—Cd1115.6 (3)
C20—C13—C12127.6 (4)C11—N2—Cd1125.5 (3)
C13—C14—N3111.0 (5)C15—N3—C14108.2 (4)
C13—C14—H14124.5C15—N3—H3N3130 (3)
N3—C14—H14124.5C14—N3—H3N3122 (3)
N3—C15—C16130.3 (5)C21—N4—C23121.1 (5)
N3—C15—C20108.1 (4)C21—N4—C22121.7 (6)
C16—C15—C20121.6 (5)C23—N4—C22117.2 (5)
C17—C16—C15117.7 (5)C21—O1—Cd1120.7 (3)
N1—C1—C2—C3179.4 (4)C8—C9—N1—C10.4 (6)
C6—C1—C2—C30.1 (7)C10—C9—N1—C1178.9 (4)
C1—C2—C3—C40.2 (8)C8—C9—N1—Cd1172.7 (3)
C2—C3—C4—C50.2 (8)C10—C9—N1—Cd16.5 (5)
C3—C4—C5—C60.9 (8)C2—C1—N1—C9179.0 (4)
C4—C5—C6—C7178.3 (5)C6—C1—N1—C90.4 (6)
C4—C5—C6—C11.1 (7)C2—C1—N1—Cd110.0 (6)
N1—C1—C6—C70.6 (6)C6—C1—N1—Cd1170.7 (3)
C2—C1—C6—C7178.7 (4)N2—Cd1—N1—C95.4 (3)
N1—C1—C6—C5179.9 (4)O1—Cd1—N1—C98.8 (6)
C2—C1—C6—C50.7 (7)Br1—Cd1—N1—C9125.2 (3)
C5—C6—C7—C8179.5 (5)Br2—Cd1—N1—C9116.1 (3)
C1—C6—C7—C80.1 (7)N2—Cd1—N1—C1176.9 (4)
C6—C7—C8—C90.6 (7)O1—Cd1—N1—C1162.6 (4)
C7—C8—C9—N10.9 (7)Br1—Cd1—N1—C163.3 (3)
C7—C8—C9—C10178.3 (4)Br2—Cd1—N1—C155.3 (3)
N1—C9—C10—N23.7 (6)C9—C10—N2—C11178.1 (4)
C8—C9—C10—N2175.6 (4)C9—C10—N2—Cd11.6 (5)
N2—C11—C12—C13178.7 (4)C12—C11—N2—C10105.1 (4)
C11—C12—C13—C14102.0 (5)C12—C11—N2—Cd174.5 (4)
C11—C12—C13—C2074.1 (6)O1—Cd1—N2—C10171.7 (3)
C20—C13—C14—N30.7 (6)N1—Cd1—N2—C103.6 (3)
C12—C13—C14—N3176.0 (4)Br1—Cd1—N2—C1094.6 (3)
N3—C15—C16—C17179.5 (5)Br2—Cd1—N2—C1080.3 (3)
C20—C15—C16—C172.1 (7)O1—Cd1—N2—C118.6 (3)
C15—C16—C17—C180.3 (8)N1—Cd1—N2—C11176.1 (3)
C16—C17—C18—C191.7 (8)Br1—Cd1—N2—C1185.0 (3)
C17—C18—C19—C200.7 (8)Br2—Cd1—N2—C11100.0 (3)
C18—C19—C20—C151.7 (7)C16—C15—N3—C14177.8 (5)
C18—C19—C20—C13179.3 (5)C20—C15—N3—C140.2 (5)
N3—C15—C20—C19179.0 (4)C13—C14—N3—C150.6 (6)
C16—C15—C20—C193.1 (7)O1—C21—N4—C231.1 (9)
N3—C15—C20—C130.2 (5)O1—C21—N4—C22177.3 (7)
C16—C15—C20—C13177.6 (4)N4—C21—O1—Cd1155.8 (4)
C14—C13—C20—C19178.5 (5)N2—Cd1—O1—C21129.2 (4)
C12—C13—C20—C194.8 (8)N1—Cd1—O1—C21142.7 (4)
C14—C13—C20—C150.6 (5)Br1—Cd1—O1—C217.9 (4)
C12—C13—C20—C15176.1 (4)Br2—Cd1—O1—C21109.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N3···Br2i0.94 (3)2.65 (3)3.504 (4)153 (3)
C21—H21···Br10.932.833.527 (5)132
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N3···Br2i0.94 (3)2.65 (3)3.504 (4)153 (3)
C21—H21···Br10.932.833.527 (5)132
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationHenkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationKimblin, C., Bridgewater, B. M., Churchill, D. G., Hascall, T. & Parkin, G. (2000). Inorg. Chem. 39, 4240–4243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L. V., Maci\,ag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages m31-m32
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds