metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m145-m146

Di-μ-acetato-κ4O:O′-μ-oxido-κ2O:O′-bis­­[cis-(2,2′-bi­pyridine-κ2N,N′)-trans-(pyridine-κN)ruthenium(III)] bis­­(hexa­fluoridophosphate)

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

(Received 15 January 2013; accepted 1 February 2013; online 9 February 2013)

The hemerythrin-type dinuclear title complex, [Ru2(CH3COO)2O(C10H8N2)2(C5H5N)2](PF6)2, consists of two RuIII ions with a six-coordinate octa­hedral geometry, bridged by an oxide and two acetate ligands, with a bidentate 2,2′-bipyridine ligand and a pyridine ligand bonding at terminal positions. The Ru—Ru distance and Ru—O—Ru angle are 3.2838 (3) Å and 121.79 (7)°, respectively, and the average Ru—N(pyridine) bond length is 2.164 (8) Å. Several C—H⋯F, C—H⋯O and C—H⋯N inter­actions generate a three-dimensional network in the crystal structure. ππ stacking inter­actions [centroid–centroid distance = 3.6389 (3) Å] between inversion-related 2,2′-bipyridine rings are also observed.

Related literature

For related structures, see: Zhang et al. (2011[Zhang, H. X., Tsuge, K., Sasaki, Y., Osawa, M. & Abe, M. (2011). Eur. J. Inorg. Chem. 33, 5132-5143.]); Sudha & Chakravarty (1996[Sudha, C. & Chakravarty, A. R. (1996). J. Chem. Soc. Dalton Trans. pp. 3289-3292.]). For background to hemerythrin-type diruthenium(III) complexes, see: Abe et al. (2002[Abe, M., Mitani, A., Ohsawa, A., Herai, M., Tanaka, M. & Sasaki, Y. (2002). Inorg. Chim. Acta, 331, 158-167.]); Dean (1985[Dean, J. A. (1985). Lange's Handbook of Chemistry. New York: McGraw-Hill.]); Tembe & Ganeshpure (1999[Tembe, G. L. & Ganeshpure, P. A. (1999). React. Kinet. Catal. Lett. 67, 83-88.]); Fukumoto et al. (1998[Fukumoto, T., Kikuchi, A., Umakoshi, K. & Sasaki, Y. (1998). Inorg. Chim. Acta, 283, 151-159.]); Inomata et al. (1999[Inomata, T., Umakoshi, K. & Sasaki, Y. (1999). Electrochemistry, 67, 427-430.]); Sasaki (1995[Sasaki, Y. (1995). J. Mol. Liq., 65/66, 253-260.]); Sasaki et al. (1991[Sasaki, Y., Suzuki, M., Nagasawa, A., Tokiwa, A., Ebihara, M., Yamaguchi, T., Kabuto, C., Ochi, T. & Ito, T. (1991). Inorg. Chem. 30, 1632-1635.]); Valli et al. (1997[Valli, M., Miyata, S., Wakita, H., Yamaguchi, T., Kikuchi, A., Umakoshi, K., Imamura, T. & Sasaki, Y. (1997). Inorg. Chem., 36, 4622-4626.]). For the synthesis, see: Sasaki et al. (1991[Sasaki, Y., Suzuki, M., Nagasawa, A., Tokiwa, A., Ebihara, M., Yamaguchi, T., Kabuto, C., Ochi, T. & Ito, T. (1991). Inorg. Chem. 30, 1632-1635.]); Ido et al. (2013[Ido, Y., Fujihara, T. & Nagasawa, A. (2013). Eur. J. Inorg. Chem. Submitted. ]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C2H3O2)2O(C10H8N2)2(C5H5N)2](PF6)2

  • Mr = 1096.74

  • Monoclinic, P 21 /n

  • a = 12.3330 (9) Å

  • b = 18.2182 (14) Å

  • c = 18.1490 (14) Å

  • β = 97.253 (1)°

  • V = 4045.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 150 K

  • 0.16 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.929

  • 21514 measured reflections

  • 8544 independent reflections

  • 7343 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.02

  • 8544 reflections

  • 552 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F2 0.95 2.53 3.227 (3) 130
C10—H10⋯F5 0.95 2.48 3.362 (3) 154
C10—H10⋯O4 0.95 2.59 3.105 (3) 115
C12—H12⋯F6i 0.95 2.42 3.270 (3) 149
C15—H15⋯O4 0.95 2.43 2.904 (3) 110
C17—H17A⋯F1ii 0.98 2.34 3.240 (3) 153
C18—H18⋯F12 0.95 2.37 3.090 (3) 132
C18—H18⋯O3 0.95 2.52 3.096 (3) 119
C24—H24⋯O1iii 0.95 2.56 3.405 (3) 149
C27—H27⋯F5 0.95 2.32 3.101 (3) 139
C28—H28⋯O3 0.95 2.23 2.855 (3) 122
C32—H32⋯N5 0.95 2.49 3.080 (3) 121
C34—H34C⋯F7iv 0.98 2.52 3.455 (3) 160
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: XCIF (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Several hemerythrin type diruthenium(III) complexes have been studied. These complexes are characterized by the unique core which consists of two RuIII ions and a µ-oxido ligand and two carboxylato ligands. For example, the Ru–Ru distance and Ru–O–Ru angle of the complex with pyridine at cis-to-oxido position, [RuIII2(CH3CO2)2O(C5H5N)6](PF6)2 (III), are 3.251 (2) Å and 122.2 (5)°, respectively, (Sasaki et al. 1991). Although the substitution, redox and spectroscopic properties of the title complex have been reported, the structure in the solid state remains unexplored. We report here the determination of the structure of I. The molecule has a hemerythrin type diruthenium(III) core {RuIII2(CH3CO2)2O}2+ which consists of two RuIII ions in a six-coordinated octahedral geometry and terminal ligands (2,2'-bipyridine and pyridine). The Ru–Ru distance and the Ru–O–Ru angle are 3.2838 (3) Å and 121.79 (7)°, respectively. The average of Ru–N bond lengths at the trans- and at the cis-sites to the bridging oxido are 2.1635 and 2.0292 Å, respectively. The former is longer than the latter, and this could be interpreted as in order to the trans influence of the µ-oxido, which is a stronger electron donating ligand than acetato oxygen atoms. The average Ru–Ntrans length is shorter than that of III (2.185 Å), and longer than that of the complex with 1-methylimidazole instead of pyridine at the trans-to-oxido position, [RuIII2(CH3CO2)2O(C10H8N2)2(C4H6N2)2](PF6)2 (IV) (2.125 Å) (Sudha & Chakravarty, 1996). The former may be due to the steric effect of the ligands at the cis-to-oxido position: the molecular plane of the flat 2,2'-bipyridine in I is coplanar with the plane consisting of four cis-to-oxido positions ("cis plane"), and does not hinder the bonding of pyridine at the trans position, while two pyridine molecules at the cis-to-oxido position in II are almost perpendicular to the cis plane, and some steric interactions may be possible. The electronic effect is probable for the latter case: pyridine is weaker Lewis base (protonation constant exponent pKa = 5.17; Dean, 1985) than 1-methylimidazole is (pKa = 7.06; Dean, 1985), and Ru–Ntrans(pyridine) in I bond is weaker than Ru–Ntrans(1-methylimidazole) in IV. In addition, steric interactions of vicinal protons of Ntrans with 2,2'-bipyridine on the cis plane are stronger with 2- and 6-protons on the six-membered ring of pyridine in I than with the 2- and 5-protons on the five-membered ring of 1-methylimidazole in IV, with the result that they gives more negative effect on bonding in I. On the other hand, though the average length of Ru–Ncis(2,2'-bipyridine) in I (2.0292 Å) is similar to that in IV (2.030 Å), these lengths are shorter than that of Ru–Ntrans(pyridine) in III (2.087 Å). This fact shows that Ru–Ncis distance is influenced by the steric hindrance of ligands at the cis position rather than the electronic effect of ligands at the trans (pyridine and 1-methylimidazole) or cis (pyridine and 2,2'-bipyridine(pKa = 4.35; Dean, 1985)) sites. In the crystal structure the cations and anions are linked by C-H···F, C-H···O and C-H···N hydrogen bond interactions. In addition, π-π stacking interactions between neighbouring 2,2'-bipyridine ligands are also observed with a shortest centroid-centroid distance of 3.6389 (3) Å (Fig. 2; [Cg1···Cg2 (1 - x, - y, 2 - z) and Cg2···Cg1 (1 - x, - y, 2 - z)] where Cg1 and Cg2 are the N4/C18–C21 and N5/C23–C27 rings, respectively).

Related literature top

For related structures, see: Zhang et al. (2011); Sudha & Chakravarty (1996). For background to hemerythrin-type diruthenium(III) complexes, see: Abe et al. (2002); Dean (1985); Tembe & Ganeshpure (1999); Fukumoto et al. (1998); Inomata et al. (1999); Sasaki (1995); Sasaki et al. (1991); Valli et al. (1997). For the synthesis, see: Sasaki et al. (1991); Ido et al. (2013).

Experimental top

The complex was synthesized previously (Sasaki et al. 1991), but we have prepared single crystals by another method. The complex with nitrile-κNs at the both trans-to-oxido sites, [RuIII2(CH3CO2)2O(C10H8N2)2(C2H3N)2](PF6)2 (II) (10 mg, 1.0 × 10 -5 mol; Ido et al., 2013), was dissolved in CH3CN. Pyridine (82 mg, 1.0 × 10 -3 mol) was dissolved in this solution and kept for 12 h at 333 K. The solution was dried under vacuum to obtain precipitates, which were then recrystallized from the solution in CH3CN by adding Et2O, and washed with Et2O. A blue crystalline product was obtained in 73% yield. By evaporating a concentrated solution in CD3CN, single crystals of I were obtained. 1H NMR (in CD3CN, 500 MHz, 300 K): δ 8.66 (4H, pyridine), 8.54 (4H, 2,2'-bipyridine), 8.12 (4H, pyridine), 7.8 (8H, pyridine and 2,2'-bipyridine), 7.24 (4H, 2,2'-bipyridine), 6.07 (4H, 2,2'-bipyridine), 2.09 (6H, CH3). UV/Vis (CH3CN): λmax/nm (ε/M-1 cm-1) = 599 (19600), 463 (4500), 340 (sh), 285 (43400), and 242 (28500). Elemental analysis: found (calculated): C 36.79 (37.24), H 2.89 (2.94), N 7.55 (7.66)%.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.95 Å , and refined using a riding model, with Uiso(H) = 1.2Ueq for aromatic H atoms or 1.5Ueq for methyl ones. Solvent accessible voids of 37Å-3 are present in the lattice.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex cation of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The complex cations are linked by π- π interactions between neighbouring 2,2'-bipyridine ligands with centroid-centroid distance of 3.6389 (3) Å.
Di-µ-acetato-κ4O:O'-µ-oxido-κ2O:O'-bis[cis-(2,2'-bipyridine-κ2N,N')-trans-(pyridine-κN)ruthenium(III)] bis(hexafluoridophosphate) top
Crystal data top
[Ru2(C2H3O2)2O(C10H8N2)2(C5H5N)2](PF6)2F(000) = 2176
Mr = 1096.74Dx = 1.801 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9917 reflections
a = 12.3330 (9) Åθ = 2.2–28.3°
b = 18.2182 (14) ŵ = 0.93 mm1
c = 18.1490 (14) ÅT = 150 K
β = 97.253 (1)°Block, violet
V = 4045.2 (5) Å30.16 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8544 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode7343 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.039
Detector resolution: 8.333 pixels mm-1θmax = 26.7°, θmin = 1.6°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2318
Tmin = 0.865, Tmax = 0.929l = 2219
21514 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0308P)2 + 1.0615P]
where P = (Fo2 + 2Fc2)/3
8544 reflections(Δ/σ)max < 0.001
552 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ru2(C2H3O2)2O(C10H8N2)2(C5H5N)2](PF6)2V = 4045.2 (5) Å3
Mr = 1096.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3330 (9) ŵ = 0.93 mm1
b = 18.2182 (14) ÅT = 150 K
c = 18.1490 (14) Å0.16 × 0.14 × 0.08 mm
β = 97.253 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8544 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7343 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.929Rint = 0.039
21514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
8544 reflectionsΔρmin = 0.69 e Å3
552 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84969 (17)0.16178 (12)0.95696 (13)0.0266 (5)
H10.84200.14500.90700.032*
C20.94008 (18)0.14115 (13)1.00407 (14)0.0330 (5)
H20.99200.10840.98770.040*
C30.95489 (19)0.16843 (14)1.07542 (14)0.0352 (6)
H31.01920.15691.10790.042*
C40.87585 (18)0.21250 (13)1.09933 (13)0.0309 (5)
H40.88510.23191.14830.037*
C50.78242 (17)0.22835 (11)1.05108 (11)0.0222 (4)
C60.68668 (17)0.26654 (11)1.07217 (11)0.0216 (4)
C70.67667 (19)0.29137 (12)1.14324 (12)0.0284 (5)
H70.73640.28701.18150.034*
C80.5805 (2)0.32224 (13)1.15816 (13)0.0330 (5)
H80.57300.33941.20670.040*
C90.49437 (19)0.32815 (12)1.10180 (13)0.0310 (5)
H90.42670.34881.11120.037*
C100.50830 (17)0.30350 (11)1.03152 (12)0.0252 (4)
H100.44940.30810.99270.030*
C110.82524 (19)0.35124 (13)0.89702 (12)0.0304 (5)
H110.86550.30690.89640.037*
C120.8776 (2)0.41694 (14)0.88632 (14)0.0368 (6)
H120.95230.41740.87860.044*
C130.8198 (2)0.48151 (14)0.88702 (14)0.0387 (6)
H130.85390.52730.88010.046*
C140.7113 (2)0.47823 (13)0.89792 (14)0.0356 (6)
H140.66920.52190.89840.043*
C150.66473 (19)0.41103 (12)0.90809 (13)0.0298 (5)
H150.58980.40930.91530.036*
C160.68155 (17)0.18333 (11)0.76443 (11)0.0225 (4)
C170.7534 (2)0.18554 (14)0.70400 (13)0.0353 (6)
H17A0.71810.21480.66240.053*
H17B0.76530.13550.68690.053*
H17C0.82380.20770.72300.053*
C180.62599 (17)0.01977 (12)0.82185 (12)0.0269 (5)
H180.66500.00830.78980.032*
C190.65819 (19)0.09121 (13)0.83825 (14)0.0338 (5)
H190.71820.11200.81760.041*
C200.6015 (2)0.13190 (12)0.88527 (14)0.0347 (5)
H200.62270.18100.89760.042*
C210.51407 (18)0.10063 (12)0.91407 (13)0.0289 (5)
H210.47470.12780.94660.035*
C220.48426 (16)0.02916 (11)0.89494 (11)0.0208 (4)
C230.39162 (16)0.00954 (11)0.91996 (11)0.0209 (4)
C240.32321 (18)0.01977 (12)0.96786 (12)0.0265 (5)
H240.33510.06810.98690.032*
C250.23823 (19)0.02179 (13)0.98736 (13)0.0323 (5)
H250.19070.00261.02000.039*
C260.22311 (18)0.09185 (13)0.95879 (13)0.0322 (5)
H260.16520.12150.97190.039*
C270.29211 (17)0.11832 (12)0.91149 (12)0.0267 (5)
H270.28060.16650.89190.032*
C280.4205 (2)0.08571 (14)0.66017 (12)0.0325 (5)
H280.48730.11100.65730.039*
C290.3602 (2)0.06282 (16)0.59510 (13)0.0414 (6)
H290.38630.07080.54870.050*
C300.2610 (2)0.02813 (14)0.59821 (14)0.0393 (6)
H300.21830.01140.55420.047*
C310.2258 (2)0.01849 (13)0.66669 (13)0.0355 (6)
H310.15680.00340.67050.043*
C320.29174 (19)0.04088 (13)0.72914 (13)0.0325 (5)
H320.26740.03260.77610.039*
C330.42434 (17)0.27757 (11)0.81583 (11)0.0221 (4)
C340.34423 (19)0.33600 (12)0.78780 (13)0.0303 (5)
H34A0.32240.36350.82990.045*
H34B0.27960.31330.75990.045*
H34C0.37820.36950.75520.045*
F10.19206 (15)0.25070 (8)1.03726 (9)0.0508 (4)
F20.25047 (14)0.36665 (9)1.02528 (10)0.0552 (4)
F30.07127 (14)0.34422 (11)1.02327 (11)0.0668 (5)
F40.08042 (14)0.26209 (10)0.93069 (10)0.0599 (5)
F50.25968 (13)0.28531 (9)0.93345 (9)0.0491 (4)
F60.13802 (14)0.37771 (9)0.91763 (10)0.0571 (5)
F71.08931 (11)0.01718 (9)0.81833 (8)0.0456 (4)
F81.01735 (13)0.09573 (8)0.82953 (9)0.0482 (4)
F90.96227 (14)0.00061 (9)0.89494 (8)0.0506 (4)
F100.92007 (13)0.06315 (8)0.78882 (9)0.0507 (4)
F110.97600 (13)0.03209 (9)0.72357 (8)0.0527 (4)
F120.84871 (12)0.04979 (10)0.80123 (11)0.0641 (5)
N10.77176 (13)0.20484 (9)0.97898 (9)0.0206 (4)
N20.60242 (14)0.27328 (9)1.01643 (9)0.0201 (3)
N30.72032 (14)0.34776 (10)0.90824 (9)0.0235 (4)
N40.54145 (13)0.01119 (9)0.84978 (9)0.0203 (4)
N50.37543 (13)0.07851 (9)0.89189 (9)0.0199 (4)
N60.38902 (14)0.07386 (9)0.72756 (9)0.0233 (4)
O10.56711 (11)0.15277 (7)0.91364 (7)0.0193 (3)
O20.70429 (13)0.22717 (8)0.81711 (8)0.0293 (3)
O30.60385 (12)0.13784 (8)0.75799 (8)0.0276 (3)
O40.50483 (12)0.29827 (8)0.86021 (8)0.0280 (3)
O50.40569 (12)0.21248 (8)0.79379 (8)0.0265 (3)
P10.16409 (5)0.31467 (3)0.97767 (4)0.03196 (14)
P20.96918 (5)0.01609 (4)0.80911 (3)0.03143 (14)
Ru10.638351 (13)0.243804 (9)0.914219 (9)0.01857 (5)
Ru20.486442 (13)0.114865 (9)0.827033 (9)0.01832 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0253 (11)0.0236 (11)0.0326 (12)0.0008 (9)0.0112 (9)0.0007 (9)
C20.0222 (11)0.0290 (12)0.0493 (15)0.0039 (9)0.0107 (10)0.0051 (11)
C30.0215 (11)0.0385 (14)0.0443 (15)0.0011 (10)0.0012 (10)0.0105 (11)
C40.0286 (12)0.0362 (13)0.0268 (12)0.0015 (10)0.0004 (9)0.0054 (10)
C50.0252 (11)0.0198 (10)0.0217 (10)0.0035 (8)0.0033 (8)0.0017 (8)
C60.0250 (11)0.0186 (10)0.0211 (10)0.0027 (8)0.0025 (8)0.0008 (8)
C70.0354 (12)0.0278 (12)0.0216 (11)0.0011 (10)0.0024 (9)0.0015 (9)
C80.0469 (14)0.0300 (12)0.0239 (12)0.0002 (11)0.0116 (10)0.0057 (9)
C90.0316 (12)0.0300 (12)0.0344 (13)0.0028 (10)0.0162 (10)0.0018 (10)
C100.0224 (11)0.0242 (11)0.0302 (12)0.0008 (9)0.0074 (9)0.0010 (9)
C110.0326 (12)0.0295 (12)0.0290 (12)0.0022 (10)0.0030 (10)0.0010 (9)
C120.0334 (13)0.0363 (14)0.0409 (14)0.0092 (11)0.0053 (11)0.0051 (11)
C130.0453 (15)0.0295 (13)0.0395 (14)0.0119 (11)0.0022 (11)0.0058 (11)
C140.0414 (14)0.0255 (12)0.0371 (14)0.0018 (10)0.0061 (11)0.0020 (10)
C150.0293 (12)0.0262 (11)0.0327 (12)0.0009 (10)0.0005 (10)0.0018 (9)
C160.0272 (11)0.0219 (10)0.0194 (10)0.0006 (9)0.0067 (8)0.0023 (8)
C170.0424 (14)0.0391 (14)0.0280 (12)0.0109 (11)0.0185 (11)0.0038 (10)
C180.0264 (11)0.0253 (11)0.0305 (12)0.0015 (9)0.0099 (9)0.0037 (9)
C190.0296 (12)0.0283 (12)0.0455 (14)0.0043 (10)0.0120 (10)0.0053 (10)
C200.0372 (13)0.0190 (11)0.0478 (15)0.0037 (10)0.0052 (11)0.0014 (10)
C210.0294 (12)0.0230 (11)0.0342 (12)0.0030 (9)0.0037 (10)0.0038 (9)
C220.0225 (10)0.0205 (10)0.0193 (10)0.0030 (8)0.0025 (8)0.0002 (8)
C230.0231 (10)0.0215 (10)0.0178 (10)0.0043 (8)0.0020 (8)0.0004 (8)
C240.0298 (11)0.0264 (11)0.0242 (11)0.0077 (9)0.0067 (9)0.0019 (9)
C250.0293 (12)0.0382 (13)0.0320 (12)0.0111 (10)0.0144 (10)0.0034 (10)
C260.0227 (11)0.0355 (13)0.0407 (13)0.0030 (10)0.0128 (10)0.0070 (10)
C270.0240 (11)0.0239 (11)0.0323 (12)0.0000 (9)0.0043 (9)0.0021 (9)
C280.0336 (13)0.0390 (13)0.0255 (12)0.0023 (11)0.0061 (10)0.0016 (10)
C290.0478 (16)0.0541 (17)0.0222 (12)0.0014 (13)0.0037 (11)0.0051 (11)
C300.0478 (15)0.0375 (14)0.0297 (13)0.0008 (12)0.0058 (11)0.0057 (11)
C310.0397 (14)0.0286 (12)0.0360 (13)0.0075 (11)0.0036 (11)0.0002 (10)
C320.0407 (13)0.0302 (12)0.0264 (12)0.0079 (10)0.0038 (10)0.0022 (9)
C330.0262 (11)0.0232 (11)0.0178 (10)0.0007 (9)0.0056 (8)0.0016 (8)
C340.0361 (13)0.0245 (11)0.0289 (12)0.0042 (10)0.0018 (10)0.0018 (9)
F10.0738 (11)0.0407 (9)0.0368 (9)0.0087 (8)0.0020 (8)0.0039 (7)
F20.0578 (10)0.0440 (9)0.0611 (11)0.0088 (8)0.0035 (8)0.0183 (8)
F30.0587 (11)0.0706 (12)0.0781 (13)0.0189 (10)0.0359 (10)0.0048 (10)
F40.0574 (11)0.0634 (11)0.0548 (11)0.0285 (9)0.0091 (9)0.0039 (8)
F50.0485 (9)0.0500 (9)0.0522 (9)0.0037 (8)0.0190 (7)0.0078 (8)
F60.0563 (10)0.0500 (10)0.0641 (11)0.0043 (8)0.0045 (9)0.0224 (8)
F70.0355 (8)0.0565 (10)0.0455 (9)0.0094 (7)0.0077 (7)0.0087 (7)
F80.0549 (9)0.0368 (8)0.0528 (10)0.0076 (7)0.0061 (8)0.0032 (7)
F90.0689 (11)0.0511 (9)0.0366 (8)0.0099 (8)0.0248 (8)0.0043 (7)
F100.0567 (10)0.0406 (9)0.0543 (10)0.0156 (8)0.0042 (8)0.0003 (7)
F110.0617 (10)0.0640 (11)0.0308 (8)0.0206 (9)0.0002 (7)0.0092 (7)
F120.0319 (8)0.0642 (11)0.0965 (14)0.0086 (8)0.0090 (9)0.0198 (10)
N10.0205 (8)0.0177 (8)0.0245 (9)0.0020 (7)0.0064 (7)0.0004 (7)
N20.0223 (9)0.0181 (8)0.0206 (9)0.0015 (7)0.0049 (7)0.0005 (7)
N30.0261 (9)0.0229 (9)0.0210 (9)0.0033 (7)0.0016 (7)0.0016 (7)
N40.0222 (9)0.0179 (8)0.0210 (9)0.0015 (7)0.0040 (7)0.0006 (7)
N50.0199 (8)0.0225 (9)0.0175 (8)0.0026 (7)0.0026 (7)0.0013 (7)
N60.0293 (10)0.0205 (9)0.0201 (9)0.0018 (7)0.0030 (7)0.0004 (7)
O10.0195 (7)0.0200 (7)0.0191 (7)0.0020 (6)0.0056 (5)0.0007 (5)
O20.0357 (9)0.0313 (8)0.0233 (8)0.0110 (7)0.0130 (7)0.0049 (6)
O30.0336 (8)0.0309 (8)0.0204 (7)0.0114 (7)0.0113 (6)0.0036 (6)
O40.0316 (8)0.0203 (7)0.0299 (8)0.0000 (6)0.0048 (7)0.0001 (6)
O50.0320 (8)0.0199 (8)0.0258 (8)0.0002 (6)0.0034 (6)0.0007 (6)
P10.0310 (3)0.0305 (3)0.0345 (3)0.0006 (3)0.0047 (3)0.0005 (3)
P20.0289 (3)0.0339 (3)0.0325 (3)0.0013 (3)0.0077 (2)0.0024 (3)
Ru10.02055 (9)0.01830 (9)0.01732 (9)0.00145 (6)0.00417 (6)0.00025 (6)
Ru20.02204 (9)0.01740 (9)0.01607 (8)0.00198 (6)0.00459 (6)0.00085 (6)
Geometric parameters (Å, º) top
C1—N11.340 (3)C24—C251.375 (3)
C1—C21.369 (3)C24—H240.9500
C1—H10.9500C25—C261.381 (3)
C2—C31.377 (4)C25—H250.9500
C2—H20.9500C26—C271.370 (3)
C3—C41.375 (3)C26—H260.9500
C3—H30.9500C27—N51.342 (3)
C4—C51.387 (3)C27—H270.9500
C4—H40.9500C28—N61.347 (3)
C5—N11.367 (3)C28—C291.379 (3)
C5—C61.462 (3)C28—H280.9500
C6—N21.361 (3)C29—C301.384 (4)
C6—C71.387 (3)C29—H290.9500
C7—C81.371 (3)C30—C311.379 (4)
C7—H70.9500C30—H300.9500
C8—C91.382 (3)C31—C321.371 (3)
C8—H80.9500C31—H310.9500
C9—C101.383 (3)C32—N61.345 (3)
C9—H90.9500C32—H320.9500
C10—N21.344 (3)C33—O41.255 (2)
C10—H100.9500C33—O51.263 (2)
C11—N31.337 (3)C33—C341.497 (3)
C11—C121.385 (3)C34—H34A0.9800
C11—H110.9500C34—H34B0.9800
C12—C131.376 (4)C34—H34C0.9800
C12—H120.9500F1—P11.5977 (16)
C13—C141.379 (4)F2—P11.5956 (16)
C13—H130.9500F3—P11.5889 (18)
C14—C151.375 (3)F4—P11.5771 (16)
C14—H140.9500F5—P11.5997 (16)
C15—N31.341 (3)F6—P11.5878 (16)
C15—H150.9500F7—P21.5898 (15)
C16—O21.250 (2)F8—P21.5936 (16)
C16—O31.261 (2)F9—P21.5961 (16)
C16—C171.495 (3)F10—P21.5908 (16)
C17—H17A0.9800F11—P21.5921 (16)
C17—H17B0.9800F12—P21.5972 (17)
C17—H17C0.9800N1—Ru12.0258 (17)
C18—N41.340 (3)N2—Ru12.0331 (17)
C18—C191.382 (3)N3—Ru12.1559 (17)
C18—H180.9500N4—Ru22.0316 (17)
C19—C201.384 (3)N5—Ru22.0262 (17)
C19—H190.9500N6—Ru22.1710 (17)
C20—C211.379 (3)O1—Ru11.8762 (13)
C20—H200.9500O1—Ru21.8822 (13)
C21—C221.385 (3)O2—Ru12.0546 (15)
C21—H210.9500O3—Ru22.0737 (14)
C22—N41.362 (3)O4—Ru12.0614 (14)
C22—C231.463 (3)O5—Ru22.0897 (14)
C23—N51.361 (3)Ru1—Ru23.2838 (3)
C23—C241.392 (3)
N1—C1—C2122.2 (2)N6—C32—C31123.6 (2)
N1—C1—H1118.9N6—C32—H32118.2
C2—C1—H1118.9C31—C32—H32118.2
C1—C2—C3119.3 (2)O4—C33—O5125.66 (19)
C1—C2—H2120.4O4—C33—C34116.05 (18)
C3—C2—H2120.4O5—C33—C34118.29 (18)
C4—C3—C2119.5 (2)C33—C34—H34A109.5
C4—C3—H3120.3C33—C34—H34B109.5
C2—C3—H3120.3H34A—C34—H34B109.5
C3—C4—C5119.2 (2)C33—C34—H34C109.5
C3—C4—H4120.4H34A—C34—H34C109.5
C5—C4—H4120.4H34B—C34—H34C109.5
N1—C5—C4120.7 (2)C1—N1—C5118.87 (18)
N1—C5—C6114.60 (17)C1—N1—Ru1126.35 (15)
C4—C5—C6124.6 (2)C5—N1—Ru1114.73 (13)
N2—C6—C7120.8 (2)C10—N2—C6118.92 (18)
N2—C6—C5114.47 (18)C10—N2—Ru1125.98 (14)
C7—C6—C5124.62 (19)C6—N2—Ru1114.86 (13)
C8—C7—C6119.9 (2)C11—N3—C15117.61 (19)
C8—C7—H7120.1C11—N3—Ru1121.24 (15)
C6—C7—H7120.1C15—N3—Ru1120.82 (15)
C7—C8—C9119.3 (2)C18—N4—C22119.15 (18)
C7—C8—H8120.4C18—N4—Ru2124.77 (15)
C9—C8—H8120.4C22—N4—Ru2116.05 (13)
C8—C9—C10118.9 (2)C27—N5—C23118.73 (18)
C8—C9—H9120.5C27—N5—Ru2125.00 (15)
C10—C9—H9120.5C23—N5—Ru2116.19 (13)
N2—C10—C9122.1 (2)C32—N6—C28116.84 (19)
N2—C10—H10118.9C32—N6—Ru2122.50 (15)
C9—C10—H10118.9C28—N6—Ru2120.48 (15)
N3—C11—C12122.7 (2)Ru1—O1—Ru2121.79 (7)
N3—C11—H11118.7C16—O2—Ru1132.48 (14)
C12—C11—H11118.7C16—O3—Ru2131.07 (13)
C13—C12—C11119.1 (2)C33—O4—Ru1132.87 (14)
C13—C12—H12120.4C33—O5—Ru2130.27 (13)
C11—C12—H12120.4F4—P1—F690.36 (10)
C12—C13—C14118.5 (2)F4—P1—F391.27 (11)
C12—C13—H13120.7F6—P1—F390.89 (10)
C14—C13—H13120.7F4—P1—F2178.90 (11)
C15—C14—C13119.2 (2)F6—P1—F290.34 (10)
C15—C14—H14120.4F3—P1—F289.57 (10)
C13—C14—H14120.4F4—P1—F189.63 (9)
N3—C15—C14122.9 (2)F6—P1—F1178.96 (11)
N3—C15—H15118.5F3—P1—F190.15 (10)
C14—C15—H15118.5F2—P1—F189.66 (9)
O2—C16—O3125.82 (19)F4—P1—F589.94 (10)
O2—C16—C17116.58 (19)F6—P1—F589.76 (10)
O3—C16—C17117.60 (19)F3—P1—F5178.62 (11)
C16—C17—H17A109.5F2—P1—F589.21 (9)
C16—C17—H17B109.5F1—P1—F589.19 (9)
H17A—C17—H17B109.5F7—P2—F1090.05 (9)
C16—C17—H17C109.5F7—P2—F1190.53 (9)
H17A—C17—H17C109.5F10—P2—F1190.34 (9)
H17B—C17—H17C109.5F7—P2—F890.43 (9)
N4—C18—C19122.1 (2)F10—P2—F8179.50 (10)
N4—C18—H18119.0F11—P2—F889.78 (9)
C19—C18—H18119.0F7—P2—F989.64 (9)
C18—C19—C20118.9 (2)F10—P2—F989.99 (9)
C18—C19—H19120.5F11—P2—F9179.63 (10)
C20—C19—H19120.6F8—P2—F989.90 (9)
C21—C20—C19119.5 (2)F7—P2—F12179.08 (10)
C21—C20—H20120.3F10—P2—F1290.31 (10)
C19—C20—H20120.3F11—P2—F1290.31 (10)
C20—C21—C22119.3 (2)F8—P2—F1289.20 (10)
C20—C21—H21120.4F9—P2—F1289.52 (10)
C22—C21—H21120.4O1—Ru1—N192.23 (6)
N4—C22—C21121.12 (19)O1—Ru1—N294.74 (6)
N4—C22—C23114.24 (17)N1—Ru1—N279.50 (7)
C21—C22—C23124.6 (2)O1—Ru1—O295.78 (6)
N5—C23—C24121.07 (19)N1—Ru1—O293.76 (7)
N5—C23—C22114.34 (18)N2—Ru1—O2167.72 (6)
C24—C23—C22124.59 (19)O1—Ru1—O494.44 (6)
C25—C24—C23119.4 (2)N1—Ru1—O4170.41 (6)
C25—C24—H24120.3N2—Ru1—O493.07 (6)
C23—C24—H24120.3O2—Ru1—O492.41 (6)
C24—C25—C26118.9 (2)O1—Ru1—N3176.78 (6)
C24—C25—H25120.6N1—Ru1—N389.16 (7)
C26—C25—H25120.6N2—Ru1—N388.37 (7)
C27—C26—C25119.7 (2)O2—Ru1—N381.23 (6)
C27—C26—H26120.2O4—Ru1—N384.53 (6)
C25—C26—H26120.2O1—Ru2—N587.68 (6)
N5—C27—C26122.2 (2)O1—Ru2—N492.50 (6)
N5—C27—H27118.9N5—Ru2—N479.09 (7)
C26—C27—H27118.9O1—Ru2—O395.44 (6)
N6—C28—C29122.9 (2)N5—Ru2—O3172.56 (6)
N6—C28—H28118.6N4—Ru2—O394.00 (7)
C29—C28—H28118.6O1—Ru2—O596.39 (6)
C28—C29—C30119.2 (2)N5—Ru2—O596.52 (6)
C28—C29—H29120.4N4—Ru2—O5169.94 (6)
C30—C29—H29120.4O3—Ru2—O589.85 (6)
C31—C30—C29118.4 (2)O1—Ru2—N6178.03 (6)
C31—C30—H30120.8N5—Ru2—N691.55 (7)
C29—C30—H30120.8N4—Ru2—N689.12 (6)
C32—C31—C30119.0 (2)O3—Ru2—N685.54 (6)
C32—C31—H31120.5O5—Ru2—N681.90 (6)
C30—C31—H31120.5
N1—C1—C2—C33.5 (3)Ru2—O1—Ru1—N2141.42 (9)
C1—C2—C3—C43.6 (4)Ru2—O1—Ru1—O244.92 (9)
C2—C3—C4—C50.3 (4)Ru2—O1—Ru1—O447.96 (9)
C3—C4—C5—N14.5 (3)C1—N1—Ru1—O176.40 (17)
C3—C4—C5—C6172.0 (2)C5—N1—Ru1—O1106.27 (14)
N1—C5—C6—N20.6 (3)C1—N1—Ru1—N2170.82 (18)
C4—C5—C6—N2177.2 (2)C5—N1—Ru1—N211.86 (14)
N1—C5—C6—C7176.1 (2)C1—N1—Ru1—O219.53 (17)
C4—C5—C6—C70.5 (3)C5—N1—Ru1—O2157.79 (14)
N2—C6—C7—C80.9 (3)C1—N1—Ru1—N3100.69 (17)
C5—C6—C7—C8175.7 (2)C5—N1—Ru1—N376.63 (14)
C6—C7—C8—C90.0 (3)C10—N2—Ru1—O182.78 (17)
C7—C8—C9—C100.8 (3)C6—N2—Ru1—O1102.95 (14)
C8—C9—C10—N20.7 (3)C10—N2—Ru1—N1174.18 (18)
N3—C11—C12—C130.2 (4)C6—N2—Ru1—N111.56 (14)
C11—C12—C13—C140.4 (4)C10—N2—Ru1—O2128.4 (3)
C12—C13—C14—C150.4 (4)C6—N2—Ru1—O245.9 (4)
C13—C14—C15—N30.3 (4)C10—N2—Ru1—O411.93 (17)
N4—C18—C19—C200.3 (4)C6—N2—Ru1—O4162.33 (14)
C18—C19—C20—C210.5 (4)C10—N2—Ru1—N396.37 (17)
C19—C20—C21—C220.4 (3)C6—N2—Ru1—N377.89 (14)
C20—C21—C22—N41.7 (3)C16—O2—Ru1—O118.3 (2)
C20—C21—C22—C23178.3 (2)C16—O2—Ru1—N1110.9 (2)
N4—C22—C23—N52.3 (2)C16—O2—Ru1—N2167.1 (3)
C21—C22—C23—N5177.67 (19)C16—O2—Ru1—O476.4 (2)
N4—C22—C23—C24178.25 (19)C16—O2—Ru1—N3160.5 (2)
C21—C22—C23—C241.8 (3)C33—O4—Ru1—O126.5 (2)
N5—C23—C24—C250.3 (3)C33—O4—Ru1—N2121.5 (2)
C22—C23—C24—C25179.77 (19)C33—O4—Ru1—O269.46 (19)
C23—C24—C25—C260.1 (3)C33—O4—Ru1—N3150.4 (2)
C24—C25—C26—C270.4 (3)C11—N3—Ru1—N143.68 (17)
C25—C26—C27—N50.4 (3)C15—N3—Ru1—N1143.18 (16)
N6—C28—C29—C302.1 (4)C11—N3—Ru1—N2123.20 (17)
C28—C29—C30—C310.7 (4)C15—N3—Ru1—N263.66 (16)
C29—C30—C31—C322.5 (4)C11—N3—Ru1—O250.25 (16)
C30—C31—C32—N61.8 (4)C15—N3—Ru1—O2122.88 (16)
C2—C1—N1—C50.6 (3)C11—N3—Ru1—O4143.55 (17)
C2—C1—N1—Ru1176.58 (16)C15—N3—Ru1—O429.58 (16)
C4—C5—N1—C14.7 (3)Ru1—O1—Ru2—N5140.72 (9)
C6—C5—N1—C1172.11 (18)Ru1—O1—Ru2—N4140.31 (9)
C4—C5—N1—Ru1172.88 (16)Ru1—O1—Ru2—O346.05 (9)
C6—C5—N1—Ru110.4 (2)Ru1—O1—Ru2—O544.41 (9)
C9—C10—N2—C60.2 (3)C27—N5—Ru2—O186.17 (16)
C9—C10—N2—Ru1173.88 (16)C23—N5—Ru2—O190.44 (14)
C7—C6—N2—C101.0 (3)C27—N5—Ru2—N4179.16 (17)
C5—C6—N2—C10175.91 (18)C23—N5—Ru2—N42.56 (13)
C7—C6—N2—Ru1173.72 (16)C27—N5—Ru2—O510.00 (17)
C5—C6—N2—Ru19.4 (2)C23—N5—Ru2—O5173.39 (13)
C12—C11—N3—C150.8 (3)C27—N5—Ru2—N692.03 (17)
C12—C11—N3—Ru1174.11 (17)C23—N5—Ru2—N691.37 (14)
C14—C15—N3—C110.8 (3)C18—N4—Ru2—O196.37 (16)
C14—C15—N3—Ru1174.20 (17)C22—N4—Ru2—O185.88 (14)
C19—C18—N4—C221.0 (3)C18—N4—Ru2—N5176.48 (17)
C19—C18—N4—Ru2178.64 (16)C22—N4—Ru2—N51.26 (14)
C21—C22—N4—C181.9 (3)C18—N4—Ru2—O30.73 (17)
C23—C22—N4—C18178.00 (17)C22—N4—Ru2—O3178.48 (14)
C21—C22—N4—Ru2179.81 (15)C18—N4—Ru2—O5111.5 (4)
C23—C22—N4—Ru20.1 (2)C22—N4—Ru2—O566.2 (4)
C26—C27—N5—C230.1 (3)C18—N4—Ru2—N684.74 (17)
C26—C27—N5—Ru2176.45 (16)C22—N4—Ru2—N693.01 (14)
C24—C23—N5—C270.3 (3)C16—O3—Ru2—O121.95 (19)
C22—C23—N5—C27179.81 (17)C16—O3—Ru2—N4114.85 (18)
C24—C23—N5—Ru2177.12 (15)C16—O3—Ru2—O574.45 (18)
C22—C23—N5—Ru23.4 (2)C16—O3—Ru2—N6156.35 (19)
C31—C32—N6—C280.9 (3)C33—O5—Ru2—O113.71 (19)
C31—C32—N6—Ru2175.96 (18)C33—O5—Ru2—N5102.09 (18)
C29—C28—N6—C322.9 (3)C33—O5—Ru2—N4165.6 (3)
C29—C28—N6—Ru2178.03 (19)C33—O5—Ru2—O381.75 (18)
O3—C16—O2—Ru13.0 (3)C33—O5—Ru2—N6167.27 (19)
C17—C16—O2—Ru1177.00 (15)C32—N6—Ru2—N51.68 (17)
O2—C16—O3—Ru20.7 (3)C28—N6—Ru2—N5176.54 (17)
C17—C16—O3—Ru2179.31 (15)C32—N6—Ru2—N480.75 (17)
O5—C33—O4—Ru11.3 (3)C28—N6—Ru2—N4104.39 (17)
C34—C33—O4—Ru1179.14 (15)C32—N6—Ru2—O3174.83 (18)
O4—C33—O5—Ru26.5 (3)C28—N6—Ru2—O310.31 (17)
C34—C33—O5—Ru2173.03 (14)C32—N6—Ru2—O594.69 (17)
Ru2—O1—Ru1—N1138.93 (9)C28—N6—Ru2—O580.17 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.952.533.227 (3)130
C10—H10···F50.952.483.362 (3)154
C10—H10···O40.952.593.105 (3)115
C12—H12···F6i0.952.423.270 (3)149
C15—H15···O40.952.432.904 (3)110
C17—H17A···F1ii0.982.343.240 (3)153
C18—H18···F120.952.373.090 (3)132
C18—H18···O30.952.523.096 (3)119
C24—H24···O1iii0.952.563.405 (3)149
C27—H27···F50.952.323.101 (3)139
C28—H28···O30.952.232.855 (3)122
C32—H32···N50.952.493.080 (3)121
C34—H34C···F7iv0.982.523.455 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+2; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ru2(C2H3O2)2O(C10H8N2)2(C5H5N)2](PF6)2
Mr1096.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.3330 (9), 18.2182 (14), 18.1490 (14)
β (°) 97.253 (1)
V3)4045.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.16 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.865, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
21514, 8544, 7343
Rint0.039
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.02
No. of reflections8544
No. of parameters552
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.69

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), XCIF (Bruker, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.952.533.227 (3)130
C10—H10···F50.952.483.362 (3)154
C10—H10···O40.952.593.105 (3)115
C12—H12···F6i0.952.423.270 (3)149
C15—H15···O40.952.432.904 (3)110
C17—H17A···F1ii0.982.343.240 (3)153
C18—H18···F120.952.373.090 (3)132
C18—H18···O30.952.523.096 (3)119
C24—H24···O1iii0.952.563.405 (3)149
C27—H27···F50.952.323.101 (3)139
C28—H28···O30.952.232.855 (3)122
C32—H32···N50.952.493.080 (3)121
C34—H34C···F7iv0.982.523.455 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+2; (iv) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

References

First citationAbe, M., Mitani, A., Ohsawa, A., Herai, M., Tanaka, M. & Sasaki, Y. (2002). Inorg. Chim. Acta, 331, 158–167.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDean, J. A. (1985). Lange's Handbook of Chemistry. New York: McGraw–Hill.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukumoto, T., Kikuchi, A., Umakoshi, K. & Sasaki, Y. (1998). Inorg. Chim. Acta, 283, 151–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdo, Y., Fujihara, T. & Nagasawa, A. (2013). Eur. J. Inorg. Chem. Submitted.  Google Scholar
First citationInomata, T., Umakoshi, K. & Sasaki, Y. (1999). Electrochemistry, 67, 427–430.  CAS Google Scholar
First citationSasaki, Y. (1995). J. Mol. Liq., 65/66, 253–260.  CrossRef CAS Web of Science Google Scholar
First citationSasaki, Y., Suzuki, M., Nagasawa, A., Tokiwa, A., Ebihara, M., Yamaguchi, T., Kabuto, C., Ochi, T. & Ito, T. (1991). Inorg. Chem. 30, 1632–1635.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, C. & Chakravarty, A. R. (1996). J. Chem. Soc. Dalton Trans. pp. 3289–3292.  CSD CrossRef Web of Science Google Scholar
First citationTembe, G. L. & Ganeshpure, P. A. (1999). React. Kinet. Catal. Lett. 67, 83–88.  Web of Science CrossRef CAS Google Scholar
First citationValli, M., Miyata, S., Wakita, H., Yamaguchi, T., Kikuchi, A., Umakoshi, K., Imamura, T. & Sasaki, Y. (1997). Inorg. Chem., 36, 4622–4626.  CrossRef PubMed CAS Google Scholar
First citationZhang, H. X., Tsuge, K., Sasaki, Y., Osawa, M. & Abe, M. (2011). Eur. J. Inorg. Chem. 33, 5132–5143.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m145-m146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds