organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(Bi­phenyl-4-yl)-8-hy­droxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan-11-one ethyl­ene ketal

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: kruger@ukzn.ac.za

(Received 19 November 2007; accepted 6 December 2007; online 18 December 2007)

The title compound, C25H24O3, synthesized as a potential chiral catalyst, exhibits a range of C—C bond lengths in the penta­cyclo­undecane cage between 1.5144 (18) and 1.5856 (16) Å. The two benzene rings are not planar with respect to each other, but rather are twisted at a torsion angle of 34.67 (17)°. The mol­ecule has an intra­molecular O—H⋯O inter­action and participates in two C—H⋯O inter­molecular inter­actions to form a one-dimensional chain.

Related literature

For related literature, see: Flippen-Anderson et al. (1991[Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813-817.]); Linden et al. (2005[Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221-o226.]); Kruger et al. (2005[Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968-o3970.], 2006[Kruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42-o44.]); Boyle et al. (2007[Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007). Acta Cryst. E63, o3977.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24O3

  • Mr = 372.44

  • Monoclinic, P 21 /c

  • a = 10.2527 (2) Å

  • b = 16.9832 (3) Å

  • c = 10.3650 (2) Å

  • β = 90.5760 (10)°

  • V = 1804.70 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.47 × 0.45 × 0.37 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 27563 measured reflections

  • 3904 independent reflections

  • 3358 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.04

  • 3904 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3H⋯O2 0.877 (18) 1.769 (19) 2.6153 (12) 161.6 (18)
C12—H12B⋯O1i 0.99 2.54 3.2455 (18) 128
C24—H24⋯O3ii 0.95 2.60 3.4955 (16) 158
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 2.0-1. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999[Bruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The molecule was synthesized as part of an ongoing study into the synthesis of chiral cage ligands for applications in asymmetric catalysis. The title molecule, which exists as a racemic mixture, has the potential to be a very unique ligand once it is resolved into an enantiopure compound.

A number of publications have focused on the molecular geometries of PCU cage derivatives as well as the bond lengths which deviate from the normal value of 1.54 Å (Flippen-Anderson et al., 1991; Linden et al.,2005; Kruger et al., 2005, 2006, Boyle et al., 2007). Certain bonds in the cage skeleton are longer (e.g. C9—C10, 1.5922 Å) while others are significantly shorter (e.g. C1—C11, 1.5106 Å). The molecule (I) consists of a large hydrophobic hydrocarbon skeleton as well as a hydrophilic ketal group and hydroxyl moiety. The two aromatic rings attached to C8 are not planar with respect to each other, but rather twisted at a torsion angle of 34.67 (17)° as expected due to steric factors. Fig. 1 shows the molecular structure and the numbering scheme employed.

The molecule exhibits intramolecular hydrogen bonding (Fig. 2) between the hydroxyl group and the ketal group (O3—H3H···O2). There is no intermolecular hydrogen bonding present in the structure, however a complex network of weak Van der Waals interactions between neighbouring molecules (Fig. 3) results in a layered packing effect with alternating hydrophilic and hydrophobic layers made up of the hydrophobic cage molecules and aromatic moeties, and the hydrophilic hydroxyl and ketal groups, respectively (Fig. 4).

Related literature top

For related literature, see: Flippen-Anderson et al. (1991); Linden et al. (2005); Kruger et al. (2005, 2006); Boyle et al. (2007).

Experimental top

A solution of 4-bromobiphenyl in dry THF (3 mol eq) was cooled to -78°C using a dry-ice-acetone bath. Butyllithium solution (15% in hexane, 1.2 mole equivalents relative to bromobiphenyl) was added and the solution stirred for 10 minutes. A solution of pentacyclo-[5.4.0.02,6.03,10.05.,9]-undecane-8,11-dione-mono-ethylene ketal (1 mol eq-up to 1 g scale) in dry THF was added and the solution stirred at -78°C for 1 h then at room temperature overnight. The reaction was quenched by adding water dropwise. The solvent was removed in vacuo. The product was isolated using column chromatography (EtOAc/Hexane, 10:90). The oily product crystallized on standing at room temperature overnight.

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms.

Structure description top

The molecule was synthesized as part of an ongoing study into the synthesis of chiral cage ligands for applications in asymmetric catalysis. The title molecule, which exists as a racemic mixture, has the potential to be a very unique ligand once it is resolved into an enantiopure compound.

A number of publications have focused on the molecular geometries of PCU cage derivatives as well as the bond lengths which deviate from the normal value of 1.54 Å (Flippen-Anderson et al., 1991; Linden et al.,2005; Kruger et al., 2005, 2006, Boyle et al., 2007). Certain bonds in the cage skeleton are longer (e.g. C9—C10, 1.5922 Å) while others are significantly shorter (e.g. C1—C11, 1.5106 Å). The molecule (I) consists of a large hydrophobic hydrocarbon skeleton as well as a hydrophilic ketal group and hydroxyl moiety. The two aromatic rings attached to C8 are not planar with respect to each other, but rather twisted at a torsion angle of 34.67 (17)° as expected due to steric factors. Fig. 1 shows the molecular structure and the numbering scheme employed.

The molecule exhibits intramolecular hydrogen bonding (Fig. 2) between the hydroxyl group and the ketal group (O3—H3H···O2). There is no intermolecular hydrogen bonding present in the structure, however a complex network of weak Van der Waals interactions between neighbouring molecules (Fig. 3) results in a layered packing effect with alternating hydrophilic and hydrophobic layers made up of the hydrophobic cage molecules and aromatic moeties, and the hydrophilic hydroxyl and ketal groups, respectively (Fig. 4).

For related literature, see: Flippen-Anderson et al. (1991); Linden et al. (2005); Kruger et al. (2005, 2006); Boyle et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL (Bruker, 1999); molecular graphics: Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing ellipsoids at the 50% probability level and the numbering scheme employed.
[Figure 2] Fig. 2. Diagram of the intermolecular hydrogen bonding.
[Figure 3] Fig. 3. Diagram of the short intermolecular contacts.
[Figure 4] Fig. 4. Depiction of the molecular packing. Hydrogen atoms have been ommited for clarity
8-(Biphenyl-4-yl)-8-hydroxypentacyclo[5.4.0.02,6.03,10.05,9]undecan-11-one ethylene ketal top
Crystal data top
C25H24O3F(000) = 792
Mr = 372.44Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6796 reflections
a = 10.2527 (2) Åθ = 2.3–28.5°
b = 16.9832 (3) ŵ = 0.09 mm1
c = 10.3650 (2) ÅT = 173 K
β = 90.576 (1)°Block, colourless
V = 1804.70 (6) Å30.47 × 0.45 × 0.37 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3358 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.0°, θmin = 2.0°
φ and ω scansh = 1313
27563 measured reflectionsk = 2121
3904 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5851P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H24O3V = 1804.70 (6) Å3
Mr = 372.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2527 (2) ŵ = 0.09 mm1
b = 16.9832 (3) ÅT = 173 K
c = 10.3650 (2) Å0.47 × 0.45 × 0.37 mm
β = 90.576 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3358 reflections with I > 2σ(I)
27563 measured reflectionsRint = 0.037
3904 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3904 reflectionsΔρmin = 0.24 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H3H0.2134 (18)0.0511 (11)0.4718 (18)0.045 (5)*
C10.27294 (12)0.04517 (7)0.25422 (12)0.0243 (3)
H10.32410.01680.18700.029*
C20.25040 (13)0.13435 (8)0.22877 (13)0.0286 (3)
H20.28400.15660.14620.034*
C30.10706 (13)0.15304 (8)0.26439 (13)0.0316 (3)
H30.04620.16130.18960.038*
C40.12017 (15)0.22221 (8)0.35620 (15)0.0365 (3)
H4B0.15700.26950.31440.044*
H4A0.03710.23550.39890.044*
C50.21666 (13)0.18202 (7)0.44640 (13)0.0288 (3)
H50.24600.21420.52210.035*
C60.32659 (12)0.15486 (7)0.35544 (12)0.0267 (3)
H60.40500.18950.34800.032*
C70.35006 (11)0.06574 (7)0.38116 (11)0.0224 (2)
H70.44360.04910.38250.027*
C80.27605 (11)0.05050 (7)0.50638 (11)0.0208 (2)
C90.15361 (11)0.10184 (7)0.48020 (12)0.0242 (3)
H90.09560.10530.55700.029*
C100.07520 (12)0.08160 (8)0.35180 (12)0.0268 (3)
H100.02040.07470.36610.032*
C110.13428 (12)0.01565 (7)0.27329 (12)0.0252 (3)
C120.08855 (16)0.06659 (9)0.10563 (14)0.0370 (3)
H12A0.17300.07010.06050.044*
H12B0.01770.08320.04600.044*
C130.08947 (14)0.11551 (8)0.22633 (13)0.0321 (3)
H13A0.00260.13900.24130.038*
H13B0.15470.15830.22070.038*
C140.34966 (11)0.08247 (7)0.62415 (11)0.0215 (2)
C150.47065 (12)0.11841 (8)0.61578 (12)0.0274 (3)
H150.50850.12640.53350.033*
C160.53703 (12)0.14274 (8)0.72545 (12)0.0284 (3)
H160.61960.16750.71680.034*
C170.48648 (12)0.13201 (7)0.84792 (11)0.0234 (3)
C180.36431 (12)0.09680 (7)0.85637 (12)0.0254 (3)
H180.32640.08910.93870.031*
C190.29713 (12)0.07281 (7)0.74651 (12)0.0245 (3)
H190.21360.04930.75490.029*
C200.56860 (11)0.15326 (7)0.96176 (12)0.0237 (3)
C210.65359 (12)0.21726 (8)0.95569 (12)0.0276 (3)
H210.64960.25170.88350.033*
C220.74373 (13)0.23134 (8)1.05342 (13)0.0316 (3)
H220.80270.27421.04670.038*
C230.74797 (13)0.18301 (8)1.16083 (13)0.0319 (3)
H230.81110.19191.22690.038*
C240.66019 (13)0.12197 (8)1.17160 (13)0.0315 (3)
H240.66030.09021.24700.038*
C250.57148 (13)0.10685 (8)1.07246 (12)0.0280 (3)
H250.51200.06431.08030.034*
O10.06660 (10)0.01105 (6)0.15323 (9)0.0329 (2)
O20.12307 (9)0.06169 (5)0.32656 (8)0.0302 (2)
O30.25380 (9)0.02990 (5)0.53817 (8)0.0260 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (6)0.0256 (6)0.0193 (6)0.0020 (5)0.0011 (5)0.0009 (5)
C20.0352 (7)0.0264 (6)0.0242 (6)0.0020 (5)0.0004 (5)0.0051 (5)
C30.0322 (7)0.0296 (7)0.0328 (7)0.0073 (5)0.0071 (5)0.0029 (5)
C40.0398 (7)0.0280 (7)0.0417 (8)0.0105 (6)0.0041 (6)0.0013 (6)
C50.0344 (7)0.0218 (6)0.0302 (7)0.0045 (5)0.0013 (5)0.0027 (5)
C60.0276 (6)0.0238 (6)0.0288 (7)0.0019 (5)0.0007 (5)0.0048 (5)
C70.0221 (5)0.0246 (6)0.0205 (6)0.0005 (4)0.0006 (4)0.0010 (4)
C80.0219 (5)0.0207 (5)0.0198 (6)0.0003 (4)0.0001 (4)0.0011 (4)
C90.0225 (6)0.0268 (6)0.0232 (6)0.0036 (5)0.0002 (5)0.0027 (5)
C100.0227 (6)0.0309 (6)0.0266 (6)0.0032 (5)0.0036 (5)0.0017 (5)
C110.0292 (6)0.0264 (6)0.0200 (6)0.0001 (5)0.0053 (5)0.0012 (5)
C120.0484 (8)0.0357 (7)0.0268 (7)0.0029 (6)0.0085 (6)0.0061 (6)
C130.0376 (7)0.0304 (7)0.0281 (7)0.0008 (5)0.0038 (5)0.0082 (5)
C140.0232 (5)0.0208 (5)0.0207 (6)0.0020 (4)0.0011 (4)0.0002 (4)
C150.0274 (6)0.0339 (7)0.0209 (6)0.0046 (5)0.0017 (5)0.0014 (5)
C160.0255 (6)0.0347 (7)0.0248 (6)0.0071 (5)0.0006 (5)0.0010 (5)
C170.0262 (6)0.0219 (6)0.0221 (6)0.0020 (4)0.0015 (5)0.0004 (4)
C180.0272 (6)0.0288 (6)0.0204 (6)0.0007 (5)0.0037 (5)0.0001 (5)
C190.0216 (5)0.0270 (6)0.0250 (6)0.0011 (4)0.0013 (5)0.0003 (5)
C200.0240 (6)0.0252 (6)0.0220 (6)0.0030 (4)0.0003 (5)0.0030 (5)
C210.0315 (6)0.0279 (6)0.0234 (6)0.0002 (5)0.0013 (5)0.0018 (5)
C220.0300 (6)0.0331 (7)0.0317 (7)0.0038 (5)0.0017 (5)0.0093 (5)
C230.0294 (6)0.0396 (7)0.0266 (7)0.0066 (5)0.0054 (5)0.0118 (5)
C240.0380 (7)0.0339 (7)0.0224 (6)0.0077 (6)0.0024 (5)0.0012 (5)
C250.0311 (6)0.0277 (6)0.0252 (6)0.0002 (5)0.0006 (5)0.0002 (5)
O10.0400 (5)0.0333 (5)0.0252 (5)0.0037 (4)0.0122 (4)0.0026 (4)
O20.0414 (5)0.0256 (5)0.0233 (5)0.0076 (4)0.0066 (4)0.0006 (4)
O30.0343 (5)0.0222 (4)0.0214 (4)0.0040 (3)0.0041 (4)0.0024 (3)
Geometric parameters (Å, º) top
C1—C111.5222 (17)C12—C131.502 (2)
C1—C21.5542 (17)C12—H12A0.9900
C1—C71.5677 (16)C12—H12B0.9900
C1—H11.0000C13—O21.4234 (15)
C2—C31.5517 (18)C13—H13A0.9900
C2—C61.5603 (17)C13—H13B0.9900
C2—H21.0000C14—C151.3860 (17)
C3—C41.5169 (19)C14—C191.3925 (17)
C3—C101.5510 (18)C15—C161.3823 (17)
C3—H31.0000C15—H150.9500
C4—C51.5166 (18)C16—C171.3879 (18)
C4—H4B0.9900C16—H160.9500
C4—H4A0.9900C17—C181.3917 (17)
C5—C61.5470 (18)C17—C201.4871 (16)
C5—C91.5490 (18)C18—C191.3861 (17)
C5—H51.0000C18—H180.9500
C6—C71.5551 (16)C19—H190.9500
C6—H61.0000C20—C251.3921 (18)
C7—C81.5321 (16)C20—C211.3949 (18)
C7—H71.0000C21—C221.3851 (18)
C8—O31.4236 (14)C21—H210.9500
C8—C141.5284 (15)C22—C231.383 (2)
C8—C91.5502 (16)C22—H220.9500
C9—C101.5856 (16)C23—C241.378 (2)
C9—H91.0000C23—H230.9500
C10—C111.5144 (17)C24—C251.3893 (18)
C10—H101.0000C24—H240.9500
C11—O11.4209 (14)C25—H250.9500
C11—O21.4299 (15)O3—H3H0.876 (19)
C12—O11.4265 (17)
C11—C1—C2101.86 (10)C9—C10—H10113.0
C11—C1—C7115.36 (10)O1—C11—O2104.31 (9)
C2—C1—C789.89 (9)O1—C11—C10108.47 (10)
C11—C1—H1115.4O2—C11—C10115.96 (10)
C2—C1—H1115.4O1—C11—C1110.66 (10)
C7—C1—H1115.4O2—C11—C1115.56 (10)
C3—C2—C1107.37 (10)C10—C11—C1101.85 (10)
C3—C2—C6102.79 (10)O1—C12—C13102.88 (11)
C1—C2—C690.14 (9)O1—C12—H12A111.2
C3—C2—H2117.5C13—C12—H12A111.2
C1—C2—H2117.5O1—C12—H12B111.2
C6—C2—H2117.5C13—C12—H12B111.2
C4—C3—C10104.90 (11)H12A—C12—H12B109.1
C4—C3—C2103.27 (11)O2—C13—C12104.61 (11)
C10—C3—C2100.63 (10)O2—C13—H13A110.8
C4—C3—H3115.4C12—C13—H13A110.8
C10—C3—H3115.4O2—C13—H13B110.8
C2—C3—H3115.4C12—C13—H13B110.8
C5—C4—C395.24 (10)H13A—C13—H13B108.9
C5—C4—H4B112.7C15—C14—C19117.61 (11)
C3—C4—H4B112.7C15—C14—C8122.78 (11)
C5—C4—H4A112.7C19—C14—C8119.55 (10)
C3—C4—H4A112.7C16—C15—C14120.91 (12)
H4B—C4—H4A110.2C16—C15—H15119.5
C4—C5—C6103.49 (11)C14—C15—H15119.5
C4—C5—C9105.31 (11)C15—C16—C17121.85 (12)
C6—C5—C9100.60 (9)C15—C16—H16119.1
C4—C5—H5115.2C17—C16—H16119.1
C6—C5—H5115.2C16—C17—C18117.30 (11)
C9—C5—H5115.2C16—C17—C20118.70 (11)
C5—C6—C7107.35 (10)C18—C17—C20123.85 (11)
C5—C6—C2102.58 (10)C19—C18—C17120.98 (11)
C7—C6—C290.13 (9)C19—C18—H18119.5
C5—C6—H6117.6C17—C18—H18119.5
C7—C6—H6117.6C18—C19—C14121.34 (11)
C2—C6—H6117.6C18—C19—H19119.3
C8—C7—C6103.45 (9)C14—C19—H19119.3
C8—C7—C1115.05 (9)C25—C20—C21118.05 (11)
C6—C7—C189.83 (9)C25—C20—C17121.59 (11)
C8—C7—H7115.1C21—C20—C17120.14 (11)
C6—C7—H7115.1C22—C21—C20120.93 (12)
C1—C7—H7115.1C22—C21—H21119.5
O3—C8—C14103.59 (9)C20—C21—H21119.5
O3—C8—C7116.11 (10)C23—C22—C21120.09 (12)
C14—C8—C7111.83 (9)C23—C22—H22120.0
O3—C8—C9116.65 (9)C21—C22—H22120.0
C14—C8—C9109.42 (9)C24—C23—C22119.75 (12)
C7—C8—C999.43 (9)C24—C23—H23120.1
C5—C9—C8101.24 (9)C22—C23—H23120.1
C5—C9—C10102.12 (10)C23—C24—C25120.16 (12)
C8—C9—C10115.33 (10)C23—C24—H24119.9
C5—C9—H9112.4C25—C24—H24119.9
C8—C9—H9112.4C24—C25—C20120.88 (12)
C10—C9—H9112.4C24—C25—H25119.6
C11—C10—C3100.19 (10)C20—C25—H25119.6
C11—C10—C9114.16 (10)C11—O1—C12106.04 (9)
C3—C10—C9102.28 (10)C13—O2—C11109.14 (9)
C11—C10—H10113.0C8—O3—H3H106.7 (12)
C3—C10—H10113.0
C11—C1—C2—C312.21 (12)C8—C9—C10—C3108.23 (11)
C7—C1—C2—C3103.71 (10)C3—C10—C11—O163.21 (12)
C11—C1—C2—C6115.67 (10)C9—C10—C11—O1171.72 (10)
C7—C1—C2—C60.25 (9)C3—C10—C11—O2179.88 (10)
C1—C2—C3—C4127.66 (11)C9—C10—C11—O271.37 (14)
C6—C2—C3—C433.44 (12)C3—C10—C11—C153.55 (11)
C1—C2—C3—C1019.42 (12)C9—C10—C11—C154.96 (13)
C6—C2—C3—C1074.81 (11)C2—C1—C11—O174.93 (12)
C10—C3—C4—C551.75 (12)C7—C1—C11—O1170.52 (10)
C2—C3—C4—C553.26 (12)C2—C1—C11—O2166.82 (10)
C3—C4—C5—C653.65 (12)C7—C1—C11—O271.23 (13)
C3—C4—C5—C951.53 (13)C2—C1—C11—C1040.23 (11)
C4—C5—C6—C7128.13 (11)C7—C1—C11—C1055.37 (12)
C9—C5—C6—C719.40 (12)O1—C12—C13—O223.62 (14)
C4—C5—C6—C233.99 (12)O3—C8—C14—C15123.86 (12)
C9—C5—C6—C274.74 (11)C7—C8—C14—C151.91 (16)
C3—C2—C6—C50.29 (12)C9—C8—C14—C15111.07 (13)
C1—C2—C6—C5107.56 (10)O3—C8—C14—C1953.41 (13)
C3—C2—C6—C7108.11 (10)C7—C8—C14—C19179.18 (10)
C1—C2—C6—C70.25 (9)C9—C8—C14—C1971.66 (13)
C5—C6—C7—C812.78 (12)C19—C14—C15—C160.82 (19)
C2—C6—C7—C8116.01 (9)C8—C14—C15—C16176.51 (12)
C5—C6—C7—C1102.98 (10)C14—C15—C16—C170.4 (2)
C2—C6—C7—C10.25 (9)C15—C16—C17—C181.12 (19)
C11—C1—C7—C81.95 (15)C15—C16—C17—C20174.66 (12)
C2—C1—C7—C8105.05 (11)C16—C17—C18—C190.68 (18)
C11—C1—C7—C6102.85 (11)C20—C17—C18—C19174.86 (11)
C2—C1—C7—C60.25 (9)C17—C18—C19—C140.51 (19)
C6—C7—C8—O3165.61 (9)C15—C14—C19—C181.25 (18)
C1—C7—C8—O369.38 (13)C8—C14—C19—C18176.16 (11)
C6—C7—C8—C1475.83 (11)C16—C17—C20—C25139.90 (13)
C1—C7—C8—C14172.06 (9)C18—C17—C20—C2535.57 (18)
C6—C7—C8—C939.61 (11)C16—C17—C20—C2134.67 (17)
C1—C7—C8—C956.62 (12)C18—C17—C20—C21149.86 (12)
C4—C5—C9—C8151.54 (10)C25—C20—C21—C223.91 (18)
C6—C5—C9—C844.25 (11)C17—C20—C21—C22170.85 (11)
C4—C5—C9—C1032.28 (12)C20—C21—C22—C231.9 (2)
C6—C5—C9—C1075.02 (11)C21—C22—C23—C241.5 (2)
O3—C8—C9—C5178.53 (10)C22—C23—C24—C252.8 (2)
C14—C8—C9—C564.36 (11)C23—C24—C25—C200.7 (2)
C7—C8—C9—C552.91 (11)C21—C20—C25—C242.62 (18)
O3—C8—C9—C1069.21 (14)C17—C20—C25—C24172.06 (12)
C14—C8—C9—C10173.68 (10)O2—C11—O1—C1234.19 (13)
C7—C8—C9—C1056.41 (12)C10—C11—O1—C12158.35 (11)
C4—C3—C10—C11150.89 (10)C1—C11—O1—C1290.71 (12)
C2—C3—C10—C1143.93 (11)C13—C12—O1—C1135.81 (14)
C4—C3—C10—C933.20 (12)C12—C13—O2—C113.28 (14)
C2—C3—C10—C973.76 (11)O1—C11—O2—C1318.51 (13)
C5—C9—C10—C11107.79 (12)C10—C11—O2—C13137.71 (11)
C8—C9—C10—C111.01 (15)C1—C11—O2—C13103.21 (12)
C5—C9—C10—C30.57 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3H···O20.877 (18)1.769 (19)2.6153 (12)161.6 (18)
C12—H12B···O1i0.992.543.2455 (18)128
C24—H24···O3ii0.952.603.4955 (16)158
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC25H24O3
Mr372.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.2527 (2), 16.9832 (3), 10.3650 (2)
β (°) 90.576 (1)
V3)1804.70 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.45 × 0.37
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27563, 3904, 3358
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections3904
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 1999), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999), SHELXTL (Bruker, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3H···O20.877 (18)1.769 (19)2.6153 (12)161.6 (18)
C12—H12B···O1i0.992.543.2455 (18)128
C24—H24···O3ii0.952.603.4955 (16)158
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance with the crystallographic data collection. This work was supported by grants from the National Research Foundation (South Africa) (grant No. GUN 2046819), Aspen Pharmacare and the University of KwaZulu-Natal.

References

First citationBoyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007). Acta Cryst. E63, o3977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Version 2.0-1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42–o44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968–o3970.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds