Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Zr(Cl)2(C21H25N2)(C5H5)], [bis­(2,6-dimethyl­phenyl)nacnac](cp)ZrCl2, where nacnac is the pentane-2,4-diiminate ligand and cp is cyclo­penta­diene, has pseudo-tetra­hedral coordination geometry about the Zr center. The coordination mode of the nacnac ligand is inter­mediate between η2- and η5-coordination, with both N atoms and two C atoms clearly coordinated to the Zr center. The coordination is best described as an in-plane η1-imine and an η3-enaminato coordination of the nacnac ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043978/gg2043sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043978/gg2043Isup2.hkl
Contains datablock I

CCDC reference: 663603

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.103
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.270 0.490 Tmin and Tmax expected: 0.225 0.498 RR = 1.219 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.26 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound was synthesized by ligand metathesis starting from [bis(2,6-dimethylphenyl)nacnac]ZrCl3(THF) ("nacnac" = pentane-2,4-diiminato) and cyclopentadienyl sodium. Layering of a toluene solution with hexane yielded crystals in sufficient quality for X-ray analysis.

Coordination of the nacnac ligand to group 4 metals differs strongly dependent on the compound composition, the nature of the nacnac ligand and the metal center. An in-plane η2-coordination is often observed in octahedral coordinated compounds (Kakaliou et al., 1999; Qian et al., 1999; Jin & Novak, 2000; Franceschini et al., 2003; Hamaki et al., 2006). With sterically less encumbered nacnac ligands, such as N,N'-diphenyl nacnac, and in particular in the presence of a second, η5-coordinated ligand such as cyclopentadienyl or indenyl, a cyclopentadienyl-like η5-coordination has been observed (Rahim et al., 1998; Vollmerhaus et al., 2000).

In contrast to these, the nacnac ligand adopts in the title complex (I), an intermediate, distorted coordination mode. An analogous coordination mode has already been observed and described for the analogous complex (Verguet et al., 2007), in which cyclopentadienyl was replaced by indenyl. The assignment of the coordination mode follows the same rational and we will point out in the following only shortly the necessary metrical data. The η3-coordinated enamito-moiety C2, C3 and N1 displays short Zr—C2 and Zr—C3 distances of 2.616 (2) and 2.620 (2) Å, respectively compared to a Zr—C4 distance of 2.826 (2) Å for the η1-coordinated imine-moiety. The C2N1 bond is slighty longer than C4N2 (1.354 (3) and 1.306 (3) Å, respectively). The metal center is nearly in the plane of the imine moiety ( (C5,C4,Zr) = 169.5 (2)°), while a more side-on coordination is observed for N1, C1–C3 ( (C1,C2,Zr) = 140.7 (2)°). An elongated C3—C4 distance in comparison with C2—C3 (1.462 (3) and 1.389 (3) Å, respectively) and a 44° angle between the least square planes through N1, C1–C3 and N2, C3–C5 agree with a slight loss of electron delocalization in the nacnac ligand.

Analogous to the corresponding indenyl complex (Verguet et al., 2007), the coordination of the nacnac ligand can be thus broken down into two parts, an η3-enaminato coordination of C2, C3 and N1 and an η1-imine coordination of C4 and N2.

The coordination of the nacnac ligand observed here differs from the earlier described η2– or η5-coordination (see above) and from those observed, for example, in scandium complexes, where a placement of the Sc center outside of the plane of the nacnac ligand was ascribed to steric reasons without any significant coordination of the carbon atoms to the metal center (Lee et al., 1999). However, a comparable nacnac coordination was observed in the five-coordinated complexes reported by Basuli et al. (2004) (CSD-codes: FAPBUU, FAPCAP, FAPCEF & FABCIJ), which was simply described as "sandwich-like".

The cyclopentadienyl ligand displays an ideal η5-coordination (ΔM–C < 3σ, Faller et al., 1985).

Related literature top

The title compound is almost isostructural with the previous indenyl complex (Verguet et al., 2007) and its synthesis and structural discussion are closely related. For a related mixed (indenyl)(nacnac)ZrCl2 compound, see Rahim et al. (1998). A comparable coordination of the nacnac ligand can be found in the five-coordinated complexes reported by Basuli et al. (2004) [Cambridge Structural Database (Allen, 2002) refcodes FAPBUU, FAPCAP, FAPCEF and FABCIJ). For Zr complexes containing η2-coordinated nacnac, see: Kakaliou et al. (1999); Qian et al. (1999); Jin & Novak (2000); Franceschini et al. (2003); Hamaki et al. (2006). For Zr complexes containing η5-like coordinated nacnac ligands, see: Rahim et al. (1998); Vollmerhaus et al. (2000). For related literature, see: Fortuné et al. (2007); Faller et al. (1985); Lee et al. (1999).

Experimental top

All operations were carried out under N2 atmosphere. Solvents have been dried by standard methods and de-oxygenized.

30 ml of toluene were added to a mixture of 0.5 g (0.87 mmol) (nacnac)ZrCl3(THF) (Fortuné et al., 2007) and 0.086 g NaCp (0.96 mmol). After two days of stirring at room temperature, the obtained suspension is filtered and the precipitate washed with 8 ml of toluene. The volume of the combined filtrates was reduced to ca 10 ml and layered with 10 ml of hexane. After two weeks the product was isolated by decantation of the solvent as yellow microcrystals, 0.15 g (32%).

NMR 1H (300 MHz, C6D6), δ p.p.m.: 6.93–6.75 (m, 6H, CH [C6H3Me2]), 6.33 (s, 5H, H [Cp]), 5.35 (s, 1H, CH [nacnac]), 2.66 (s, 12H, CH3 [C6H3Me2]), 1.59 (s, 6H, CH3 [nacnac]). Elem. Anal. for C26H30N2Cl2Zr: clcd. C, 58.60%; H, 5.60%; N,5.30%. found C, 58.47%; H, 5.99%; N, 5.07%.

Refinement top

The H atoms were generated geometrically (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation; their temperature factors were set to 1.5 times those of the equivalent isotropic temperature factors of the parent site (methyl) and 1.2 times for others.

Structure description top

The title compound was synthesized by ligand metathesis starting from [bis(2,6-dimethylphenyl)nacnac]ZrCl3(THF) ("nacnac" = pentane-2,4-diiminato) and cyclopentadienyl sodium. Layering of a toluene solution with hexane yielded crystals in sufficient quality for X-ray analysis.

Coordination of the nacnac ligand to group 4 metals differs strongly dependent on the compound composition, the nature of the nacnac ligand and the metal center. An in-plane η2-coordination is often observed in octahedral coordinated compounds (Kakaliou et al., 1999; Qian et al., 1999; Jin & Novak, 2000; Franceschini et al., 2003; Hamaki et al., 2006). With sterically less encumbered nacnac ligands, such as N,N'-diphenyl nacnac, and in particular in the presence of a second, η5-coordinated ligand such as cyclopentadienyl or indenyl, a cyclopentadienyl-like η5-coordination has been observed (Rahim et al., 1998; Vollmerhaus et al., 2000).

In contrast to these, the nacnac ligand adopts in the title complex (I), an intermediate, distorted coordination mode. An analogous coordination mode has already been observed and described for the analogous complex (Verguet et al., 2007), in which cyclopentadienyl was replaced by indenyl. The assignment of the coordination mode follows the same rational and we will point out in the following only shortly the necessary metrical data. The η3-coordinated enamito-moiety C2, C3 and N1 displays short Zr—C2 and Zr—C3 distances of 2.616 (2) and 2.620 (2) Å, respectively compared to a Zr—C4 distance of 2.826 (2) Å for the η1-coordinated imine-moiety. The C2N1 bond is slighty longer than C4N2 (1.354 (3) and 1.306 (3) Å, respectively). The metal center is nearly in the plane of the imine moiety ( (C5,C4,Zr) = 169.5 (2)°), while a more side-on coordination is observed for N1, C1–C3 ( (C1,C2,Zr) = 140.7 (2)°). An elongated C3—C4 distance in comparison with C2—C3 (1.462 (3) and 1.389 (3) Å, respectively) and a 44° angle between the least square planes through N1, C1–C3 and N2, C3–C5 agree with a slight loss of electron delocalization in the nacnac ligand.

Analogous to the corresponding indenyl complex (Verguet et al., 2007), the coordination of the nacnac ligand can be thus broken down into two parts, an η3-enaminato coordination of C2, C3 and N1 and an η1-imine coordination of C4 and N2.

The coordination of the nacnac ligand observed here differs from the earlier described η2– or η5-coordination (see above) and from those observed, for example, in scandium complexes, where a placement of the Sc center outside of the plane of the nacnac ligand was ascribed to steric reasons without any significant coordination of the carbon atoms to the metal center (Lee et al., 1999). However, a comparable nacnac coordination was observed in the five-coordinated complexes reported by Basuli et al. (2004) (CSD-codes: FAPBUU, FAPCAP, FAPCEF & FABCIJ), which was simply described as "sandwich-like".

The cyclopentadienyl ligand displays an ideal η5-coordination (ΔM–C < 3σ, Faller et al., 1985).

The title compound is almost isostructural with the previous indenyl complex (Verguet et al., 2007) and its synthesis and structural discussion are closely related. For a related mixed (indenyl)(nacnac)ZrCl2 compound, see Rahim et al. (1998). A comparable coordination of the nacnac ligand can be found in the five-coordinated complexes reported by Basuli et al. (2004) [Cambridge Structural Database (Allen, 2002) refcodes FAPBUU, FAPCAP, FAPCEF and FABCIJ). For Zr complexes containing η2-coordinated nacnac, see: Kakaliou et al. (1999); Qian et al. (1999); Jin & Novak (2000); Franceschini et al. (2003); Hamaki et al. (2006). For Zr complexes containing η5-like coordinated nacnac ligands, see: Rahim et al. (1998); Vollmerhaus et al. (2000). For related literature, see: Fortuné et al. (2007); Faller et al. (1985); Lee et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: UdMX (local program).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound (I). Displacement ellipsoids are shown at the 50% probability level.
Dichlorido-[<it>N</it>,<it>N</it>'-bis(2,6-dimethylphenyl)pentane-2,4- diiminato](cyclopentadienyl)zirconium(IV) top
Crystal data top
[Zr(Cl)2(C21H25N2)(C5H5)]Z = 2
Mr = 532.64F(000) = 548
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.0163 (3) ÅCell parameters from 13439 reflections
b = 10.5990 (4) Åθ = 3.5–71.3°
c = 13.1392 (5) ŵ = 5.82 mm1
α = 73.803 (1)°T = 150 K
β = 78.869 (2)°Plate, colorless
γ = 66.178 (1)°0.30 × 0.26 × 0.12 mm
V = 1220.27 (7) Å3
Data collection top
Bruker SMART 6000
diffractometer
4561 independent reflections
Radiation source: Rotating Anode4541 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.036
Detector resolution: 5.5 pixels mm-1θmax = 71.8°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.27, Tmax = 0.49l = 1616
14734 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.4394P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
4561 reflectionsΔρmax = 0.75 e Å3
287 parametersΔρmin = 1.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0309 (9)
Crystal data top
[Zr(Cl)2(C21H25N2)(C5H5)]γ = 66.178 (1)°
Mr = 532.64V = 1220.27 (7) Å3
Triclinic, P1Z = 2
a = 10.0163 (3) ÅCu Kα radiation
b = 10.5990 (4) ŵ = 5.82 mm1
c = 13.1392 (5) ÅT = 150 K
α = 73.803 (1)°0.30 × 0.26 × 0.12 mm
β = 78.869 (2)°
Data collection top
Bruker SMART 6000
diffractometer
4561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4541 reflections with I > 2σ(I)
Tmin = 0.27, Tmax = 0.49Rint = 0.036
14734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.13Δρmax = 0.75 e Å3
4561 reflectionsΔρmin = 1.59 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Comments on CHECKCIF-errors: All geometrically accessible data was collected. A data completeness of 0.95 was due to geometrical constraints of the instrument (particularly severe for triclinic space groups) and could not be improved. Errors in the Tmax/Tmin ratio are probably due to inaccurate determination of crystal dimensions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.308862 (17)1.073009 (17)0.252603 (12)0.01780 (13)
Cl10.38706 (6)1.24068 (6)0.10173 (4)0.02458 (16)
Cl20.57167 (6)0.97220 (6)0.29131 (5)0.02741 (16)
N10.3069 (2)0.8588 (2)0.29919 (14)0.0201 (4)
N20.1471 (2)1.0924 (2)0.14178 (15)0.0188 (4)
C10.5300 (3)0.6836 (3)0.2257 (2)0.0318 (5)
H1A0.59240.68110.27580.048*
H1B0.58620.67580.15630.048*
H1C0.49630.60450.25270.048*
C20.3999 (2)0.8209 (2)0.21377 (19)0.0224 (5)
C30.3805 (3)0.9139 (2)0.11475 (18)0.0224 (5)
H30.46490.91490.06740.027*
C40.2365 (2)1.0103 (2)0.07984 (17)0.0205 (4)
C50.2026 (3)0.9982 (3)0.02249 (19)0.0285 (5)
H5A0.10181.06170.03640.043*
H5B0.21350.90040.01700.043*
H5C0.27041.02440.08090.043*
C60.0015 (2)1.1825 (2)0.11747 (18)0.0198 (4)
C70.0299 (3)1.2987 (2)0.02897 (19)0.0242 (5)
C80.1755 (3)1.3857 (3)0.0140 (2)0.0285 (5)
H80.19661.46410.04520.034*
C90.2902 (3)1.3617 (3)0.0825 (2)0.0308 (5)
H90.38831.42410.07110.037*
C100.2614 (3)1.2461 (3)0.1679 (2)0.0272 (5)
H100.34051.22870.21440.033*
C110.1171 (3)1.1545 (2)0.18677 (18)0.0222 (4)
C120.0889 (3)1.3325 (3)0.0499 (2)0.0296 (5)
H12A0.10841.28550.10860.044*
H12B0.17851.29900.01440.044*
H12C0.05691.43510.07780.044*
C130.0938 (3)1.0269 (3)0.2775 (2)0.0306 (5)
H13A0.15441.05550.34140.046*
H13B0.00970.98410.29140.046*
H13C0.12140.95780.25900.046*
C140.2780 (3)0.7493 (2)0.38273 (19)0.0227 (5)
C150.1997 (3)0.6783 (2)0.3584 (2)0.0272 (5)
C160.1606 (3)0.5787 (3)0.4393 (2)0.0330 (6)
H160.10600.53200.42390.040*
C170.1999 (3)0.5467 (3)0.5414 (2)0.0345 (6)
H170.17060.48020.59600.041*
C180.2819 (3)0.6121 (3)0.5633 (2)0.0305 (5)
H180.30980.58880.63330.037*
C190.3249 (3)0.7120 (2)0.48493 (19)0.0249 (5)
C200.1620 (3)0.7018 (3)0.2470 (2)0.0368 (6)
H20A0.24840.64870.20540.055*
H20B0.13060.80280.21320.055*
H20C0.08240.66900.25010.055*
C210.4278 (3)0.7660 (3)0.5126 (2)0.0302 (5)
H21A0.37660.82520.56430.045*
H21B0.46180.82220.44810.045*
H21C0.51200.68570.54360.045*
C220.0701 (3)1.2031 (3)0.3459 (2)0.0298 (5)
H220.01811.20710.32610.036*
C230.1387 (3)1.3008 (3)0.3012 (2)0.0319 (6)
H230.10531.38240.24550.038*
C240.2652 (3)1.2569 (3)0.3532 (2)0.0328 (6)
H240.33271.30340.33860.039*
C250.2746 (3)1.1325 (3)0.4306 (2)0.0312 (5)
H250.34881.08060.47810.037*
C260.1550 (3)1.0983 (3)0.42522 (19)0.0296 (5)
H260.13481.01830.46780.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01333 (16)0.02266 (16)0.01805 (16)0.00592 (10)0.00042 (9)0.00736 (9)
Cl10.0210 (3)0.0266 (3)0.0257 (3)0.0101 (2)0.0002 (2)0.0045 (2)
Cl20.0156 (3)0.0351 (3)0.0303 (3)0.0096 (2)0.0041 (2)0.0040 (2)
N10.0188 (9)0.0235 (9)0.0179 (9)0.0078 (7)0.0004 (7)0.0057 (7)
N20.0147 (9)0.0238 (9)0.0191 (8)0.0077 (7)0.0009 (7)0.0064 (7)
C10.0245 (12)0.0291 (12)0.0320 (13)0.0007 (10)0.0008 (10)0.0086 (10)
C20.0183 (11)0.0244 (11)0.0251 (11)0.0066 (9)0.0009 (9)0.0091 (9)
C30.0183 (11)0.0258 (11)0.0214 (11)0.0062 (9)0.0037 (9)0.0095 (9)
C40.0209 (11)0.0240 (10)0.0185 (10)0.0105 (9)0.0013 (9)0.0065 (8)
C50.0293 (12)0.0334 (12)0.0230 (11)0.0075 (10)0.0039 (10)0.0117 (9)
C60.0175 (11)0.0231 (10)0.0207 (10)0.0064 (9)0.0040 (9)0.0080 (8)
C70.0255 (12)0.0245 (11)0.0249 (11)0.0091 (9)0.0068 (10)0.0066 (9)
C80.0301 (13)0.0223 (11)0.0322 (12)0.0049 (9)0.0120 (11)0.0057 (9)
C90.0202 (11)0.0304 (12)0.0407 (14)0.0001 (9)0.0115 (11)0.0150 (11)
C100.0170 (11)0.0358 (12)0.0313 (12)0.0074 (10)0.0002 (10)0.0163 (10)
C110.0175 (10)0.0289 (11)0.0220 (11)0.0072 (9)0.0022 (9)0.0104 (9)
C120.0313 (13)0.0307 (12)0.0265 (11)0.0142 (10)0.0073 (10)0.0013 (9)
C130.0211 (11)0.0433 (14)0.0252 (12)0.0142 (10)0.0000 (10)0.0022 (10)
C140.0190 (11)0.0225 (10)0.0232 (11)0.0059 (9)0.0028 (9)0.0058 (9)
C150.0240 (12)0.0245 (11)0.0319 (12)0.0071 (9)0.0012 (10)0.0085 (9)
C160.0280 (12)0.0279 (12)0.0427 (14)0.0114 (10)0.0050 (11)0.0112 (11)
C170.0326 (14)0.0251 (12)0.0371 (14)0.0093 (10)0.0089 (11)0.0041 (10)
C180.0270 (12)0.0291 (12)0.0243 (11)0.0035 (10)0.0008 (10)0.0019 (9)
C190.0178 (10)0.0240 (10)0.0259 (11)0.0019 (8)0.0010 (9)0.0046 (9)
C200.0401 (15)0.0432 (15)0.0389 (14)0.0234 (13)0.0047 (12)0.0144 (12)
C210.0260 (12)0.0394 (13)0.0241 (11)0.0103 (10)0.0054 (10)0.0058 (10)
C220.0191 (11)0.0438 (14)0.0277 (12)0.0056 (10)0.0018 (10)0.0219 (11)
C230.0310 (13)0.0289 (12)0.0307 (12)0.0002 (10)0.0008 (11)0.0168 (10)
C240.0317 (13)0.0381 (14)0.0368 (14)0.0139 (11)0.0004 (11)0.0221 (12)
C250.0274 (12)0.0445 (14)0.0230 (11)0.0079 (11)0.0048 (10)0.0161 (10)
C260.0283 (12)0.0400 (13)0.0218 (11)0.0124 (11)0.0044 (10)0.0139 (10)
Geometric parameters (Å, º) top
Zr1—N12.1879 (19)C10—H100.95
Zr1—N22.2944 (19)C11—C131.503 (3)
Zr1—C262.500 (2)C12—H12A0.98
Zr1—C232.502 (2)C12—H12B0.98
Zr1—Cl12.5022 (5)C12—H12C0.98
Zr1—C242.503 (2)C13—H13A0.98
Zr1—C222.504 (2)C13—H13B0.98
Zr1—Cl22.5043 (5)C13—H13C0.98
Zr1—C252.514 (2)C14—C191.406 (3)
Zr1—C22.616 (2)C14—C151.412 (3)
Zr1—C32.620 (2)C15—C161.393 (4)
Zr1—C42.826 (2)C15—C201.511 (4)
N2—C41.306 (3)C16—C171.383 (4)
N2—C61.447 (3)C16—H160.95
N1—C21.354 (3)C17—C181.378 (4)
N1—C141.440 (3)C17—H170.95
C5—C41.499 (3)C18—C191.399 (3)
C5—H5A0.98C18—H180.95
C5—H5B0.98C19—C211.503 (3)
C5—H5C0.98C20—H20A0.98
C4—C31.462 (3)C20—H20B0.98
C3—C21.389 (3)C20—H20C0.98
C3—H30.95C21—H21A0.98
C2—C11.504 (3)C21—H21B0.98
C1—H1A0.98C21—H21C0.98
C1—H1B0.98C22—C231.403 (4)
C1—H1C0.98C22—C261.406 (4)
C6—C111.406 (3)C22—H220.95
C6—C71.413 (3)C23—C241.404 (4)
C7—C81.393 (3)C23—H230.95
C7—C121.510 (3)C24—C251.404 (4)
C8—C91.379 (4)C24—H240.95
C8—H80.95C25—C261.404 (4)
C9—C101.384 (4)C25—H250.95
C9—H90.95C26—H260.95
C10—C111.402 (3)
N1—Zr1—N279.32 (7)C2—C1—H1A109.5
N1—Zr1—C2683.28 (8)C2—C1—H1B109.5
N2—Zr1—C26103.18 (8)H1A—C1—H1B109.5
N1—Zr1—C23132.68 (8)C2—C1—H1C109.5
N2—Zr1—C2390.58 (8)H1A—C1—H1C109.5
C26—Zr1—C2354.01 (9)H1B—C1—H1C109.5
N1—Zr1—Cl1142.40 (5)C11—C6—C7120.8 (2)
N2—Zr1—Cl185.52 (5)C11—C6—N2118.1 (2)
C26—Zr1—Cl1133.94 (6)C7—C6—N2121.0 (2)
C23—Zr1—Cl181.18 (7)C8—C7—C6117.9 (2)
N1—Zr1—C24133.71 (8)C8—C7—C12118.7 (2)
N2—Zr1—C24123.08 (8)C6—C7—C12123.5 (2)
C26—Zr1—C2453.96 (9)C9—C8—C7122.1 (2)
C23—Zr1—C2432.57 (9)C9—C8—H8118.9
Cl1—Zr1—C2483.13 (7)C7—C8—H8118.9
N1—Zr1—C22100.32 (8)C8—C9—C10119.6 (2)
N2—Zr1—C2279.26 (7)C8—C9—H9120.2
C26—Zr1—C2232.63 (9)C10—C9—H9120.2
C23—Zr1—C2232.54 (9)C9—C10—C11120.8 (2)
Cl1—Zr1—C22110.42 (7)C9—C10—H10119.6
C24—Zr1—C2253.92 (9)C11—C10—H10119.6
N1—Zr1—Cl289.10 (5)C10—C11—C6118.7 (2)
N2—Zr1—Cl2145.66 (5)C10—C11—C13118.1 (2)
C26—Zr1—Cl2107.45 (6)C6—C11—C13123.1 (2)
C23—Zr1—Cl2119.98 (7)C7—C12—H12A109.5
Cl1—Zr1—Cl284.333 (18)C7—C12—H12B109.5
C24—Zr1—Cl288.08 (7)H12A—C12—H12B109.5
C22—Zr1—Cl2134.92 (6)C7—C12—H12C109.5
N1—Zr1—C25101.61 (8)H12A—C12—H12C109.5
N2—Zr1—C25132.79 (8)H12B—C12—H12C109.5
C26—Zr1—C2532.52 (8)C11—C13—H13A109.5
C23—Zr1—C2553.89 (9)C11—C13—H13B109.5
Cl1—Zr1—C25113.76 (7)H13A—C13—H13B109.5
C24—Zr1—C2532.49 (9)C11—C13—H13C109.5
C22—Zr1—C2553.89 (8)H13A—C13—H13C109.5
Cl2—Zr1—C2581.06 (6)H13B—C13—H13C109.5
N1—Zr1—C231.15 (7)C19—C14—C15120.1 (2)
N2—Zr1—C275.52 (7)C19—C14—N1122.6 (2)
C26—Zr1—C2114.33 (8)C15—C14—N1117.3 (2)
C23—Zr1—C2159.80 (9)C16—C15—C14118.9 (2)
Cl1—Zr1—C2111.65 (5)C16—C15—C20118.7 (2)
C24—Zr1—C2158.19 (9)C14—C15—C20122.4 (2)
C22—Zr1—C2128.32 (8)C17—C16—C15121.3 (2)
Cl2—Zr1—C277.97 (5)C17—C16—H16119.4
C25—Zr1—C2127.19 (8)C15—C16—H16119.4
N1—Zr1—C358.30 (7)C18—C17—C16119.5 (2)
N2—Zr1—C357.41 (7)C18—C17—H17120.3
C26—Zr1—C3138.28 (8)C16—C17—H17120.3
C23—Zr1—C3145.88 (8)C17—C18—C19121.6 (2)
Cl1—Zr1—C384.54 (5)C17—C18—H18119.2
C24—Zr1—C3167.55 (9)C19—C18—H18119.2
C22—Zr1—C3133.33 (8)C18—C19—C14118.5 (2)
Cl2—Zr1—C388.97 (5)C18—C19—C21117.9 (2)
C25—Zr1—C3157.90 (8)C14—C19—C21123.5 (2)
C2—Zr1—C330.77 (7)C15—C20—H20A109.5
N1—Zr1—C470.63 (7)C15—C20—H20B109.5
N2—Zr1—C427.09 (7)H20A—C20—H20B109.5
C26—Zr1—C4125.55 (7)C15—C20—H20C109.5
C23—Zr1—C4115.63 (8)H20A—C20—H20C109.5
Cl1—Zr1—C480.25 (4)H20B—C20—H20C109.5
C24—Zr1—C4146.60 (8)C19—C21—H21A109.5
C22—Zr1—C4106.02 (7)C19—C21—H21B109.5
Cl2—Zr1—C4118.61 (5)H21A—C21—H21B109.5
C25—Zr1—C4157.86 (8)C19—C21—H21C109.5
C2—Zr1—C454.74 (7)H21A—C21—H21C109.5
C3—Zr1—C430.85 (7)H21B—C21—H21C109.5
C4—N2—C6121.83 (19)C23—C22—C26107.9 (2)
C4—N2—Zr199.75 (14)C23—C22—Zr173.64 (14)
C6—N2—Zr1137.20 (14)C26—C22—Zr173.50 (14)
C2—N1—C14118.35 (19)C23—C22—H22126
C2—N1—Zr192.15 (14)C26—C22—H22126
C14—N1—Zr1147.43 (15)Zr1—C22—H22118.7
C4—C5—H5A109.5C22—C23—C24108.0 (2)
C4—C5—H5B109.5C22—C23—Zr173.82 (14)
H5A—C5—H5B109.5C24—C23—Zr173.75 (14)
C4—C5—H5C109.5C22—C23—H23126
H5A—C5—H5C109.5C24—C23—H23126
H5B—C5—H5C109.5Zr1—C23—H23118.4
N2—C4—C3118.3 (2)C23—C24—C25108.1 (2)
N2—C4—C5126.0 (2)C23—C24—Zr173.68 (14)
C3—C4—C5115.61 (19)C25—C24—Zr174.20 (14)
N2—C4—Zr153.16 (11)C23—C24—H24125.9
C3—C4—Zr166.77 (12)C25—C24—H24125.9
C5—C4—Zr1170.65 (16)Zr1—C24—H24118.1
C2—C3—C4123.2 (2)C24—C25—C26107.9 (2)
C2—C3—Zr174.45 (13)C24—C25—Zr173.31 (14)
C4—C3—Zr182.37 (13)C26—C25—Zr173.16 (14)
C2—C3—H3118.4C24—C25—H25126.1
C4—C3—H3118.4C26—C25—H25126.1
Zr1—C3—H3114.9Zr1—C25—H25119.3
N1—C2—C3119.7 (2)C25—C26—C22108.1 (2)
N1—C2—C1120.9 (2)C25—C26—Zr174.32 (14)
C3—C2—C1119.2 (2)C22—C26—Zr173.87 (13)
N1—C2—Zr156.70 (11)C25—C26—H26126
C3—C2—Zr174.77 (13)C22—C26—H26126
C1—C2—Zr1140.72 (17)Zr1—C26—H26117.8
N1—Zr1—N2—C468.14 (14)C12—C7—C8—C9179.9 (2)
C26—Zr1—N2—C4148.56 (14)C7—C8—C9—C101.4 (4)
C23—Zr1—N2—C4158.40 (14)C8—C9—C10—C111.1 (4)
Cl1—Zr1—N2—C477.30 (13)C9—C10—C11—C60.3 (3)
C24—Zr1—N2—C4156.10 (14)C9—C10—C11—C13176.9 (2)
C22—Zr1—N2—C4170.92 (15)C7—C6—C11—C101.5 (3)
Cl2—Zr1—N2—C44.16 (18)N2—C6—C11—C10176.1 (2)
C25—Zr1—N2—C4164.14 (14)C7—C6—C11—C13175.6 (2)
C2—Zr1—N2—C436.43 (13)N2—C6—C11—C136.8 (3)
C3—Zr1—N2—C49.08 (13)C2—N1—C14—C19112.3 (2)
N1—Zr1—N2—C6125.2 (2)Zr1—N1—C14—C1945.2 (4)
C26—Zr1—N2—C644.8 (2)C2—N1—C14—C1567.5 (3)
C23—Zr1—N2—C68.3 (2)Zr1—N1—C14—C15135.0 (2)
Cl1—Zr1—N2—C689.4 (2)C19—C14—C15—C164.7 (3)
C24—Zr1—N2—C610.6 (2)N1—C14—C15—C16175.5 (2)
C22—Zr1—N2—C622.4 (2)C19—C14—C15—C20172.7 (2)
Cl2—Zr1—N2—C6162.52 (17)N1—C14—C15—C207.0 (3)
C25—Zr1—N2—C629.2 (3)C14—C15—C16—C171.4 (4)
C2—Zr1—N2—C6156.9 (2)C20—C15—C16—C17176.1 (2)
C3—Zr1—N2—C6175.8 (2)C15—C16—C17—C181.4 (4)
C4—Zr1—N2—C6166.7 (3)C16—C17—C18—C190.9 (4)
N2—Zr1—N1—C279.63 (13)C17—C18—C19—C142.3 (4)
C26—Zr1—N1—C2175.54 (14)C17—C18—C19—C21173.4 (2)
C23—Zr1—N1—C2160.44 (14)C15—C14—C19—C185.2 (3)
Cl1—Zr1—N1—C211.66 (17)N1—C14—C19—C18175.1 (2)
C24—Zr1—N1—C2154.33 (14)C15—C14—C19—C21170.3 (2)
C22—Zr1—N1—C2156.51 (14)N1—C14—C19—C219.4 (3)
Cl2—Zr1—N1—C267.85 (13)N1—Zr1—C22—C23174.62 (15)
C25—Zr1—N1—C2148.53 (14)N2—Zr1—C22—C23108.45 (16)
C3—Zr1—N1—C221.50 (13)C26—Zr1—C22—C23114.9 (2)
C4—Zr1—N1—C253.02 (13)Cl1—Zr1—C22—C2327.39 (16)
N2—Zr1—N1—C14120.1 (3)C24—Zr1—C22—C2337.20 (16)
C26—Zr1—N1—C1415.2 (3)Cl2—Zr1—C22—C2375.47 (17)
C23—Zr1—N1—C1439.2 (3)C25—Zr1—C22—C2377.71 (17)
Cl1—Zr1—N1—C14172.0 (2)C2—Zr1—C22—C23170.14 (14)
C24—Zr1—N1—C146.0 (3)C3—Zr1—C22—C23129.61 (15)
C22—Zr1—N1—C1443.2 (3)C4—Zr1—C22—C23112.74 (15)
Cl2—Zr1—N1—C1492.5 (3)N1—Zr1—C22—C2659.68 (16)
C25—Zr1—N1—C1411.8 (3)N2—Zr1—C22—C26136.61 (16)
C2—Zr1—N1—C14160.3 (4)C23—Zr1—C22—C26114.9 (2)
C3—Zr1—N1—C14178.2 (3)Cl1—Zr1—C22—C26142.33 (14)
C4—Zr1—N1—C14146.7 (3)C24—Zr1—C22—C2677.75 (17)
C6—N2—C4—C3174.92 (19)Cl2—Zr1—C22—C2639.48 (19)
Zr1—N2—C4—C315.7 (2)C25—Zr1—C22—C2637.24 (15)
C6—N2—C4—C51.0 (3)C2—Zr1—C22—C2674.91 (17)
Zr1—N2—C4—C5168.4 (2)C3—Zr1—C22—C26115.45 (16)
C6—N2—C4—Zr1169.4 (2)C4—Zr1—C22—C26132.32 (15)
N1—Zr1—C4—N2104.83 (14)C26—C22—C23—C240.3 (3)
C26—Zr1—C4—N238.63 (17)Zr1—C22—C23—C2466.38 (17)
C23—Zr1—C4—N224.10 (16)C26—C22—C23—Zr166.04 (17)
Cl1—Zr1—C4—N299.32 (13)N1—Zr1—C23—C227.2 (2)
C24—Zr1—C4—N238.1 (2)N2—Zr1—C23—C2268.76 (15)
C22—Zr1—C4—N29.28 (15)C26—Zr1—C23—C2237.18 (15)
Cl2—Zr1—C4—N2177.33 (12)Cl1—Zr1—C23—C22154.13 (15)
C25—Zr1—C4—N232.2 (3)C24—Zr1—C23—C22114.8 (2)
C2—Zr1—C4—N2135.23 (16)Cl2—Zr1—C23—C22127.69 (14)
C3—Zr1—C4—N2165.0 (2)C25—Zr1—C23—C2277.70 (16)
N1—Zr1—C4—C360.15 (13)C2—Zr1—C23—C2222.9 (3)
N2—Zr1—C4—C3165.0 (2)C3—Zr1—C23—C2287.8 (2)
C26—Zr1—C4—C3126.35 (14)C4—Zr1—C23—C2279.47 (16)
C23—Zr1—C4—C3170.93 (13)N1—Zr1—C23—C24107.62 (17)
Cl1—Zr1—C4—C395.70 (12)N2—Zr1—C23—C24176.42 (17)
C24—Zr1—C4—C3156.96 (17)C26—Zr1—C23—C2477.64 (18)
C22—Zr1—C4—C3155.69 (13)Cl1—Zr1—C23—C2491.05 (16)
Cl2—Zr1—C4—C317.70 (14)C22—Zr1—C23—C24114.8 (2)
C25—Zr1—C4—C3132.8 (2)Cl2—Zr1—C23—C2412.87 (19)
C2—Zr1—C4—C329.74 (13)C25—Zr1—C23—C2437.12 (16)
N2—C4—C3—C252.1 (3)C2—Zr1—C23—C24137.7 (2)
C5—C4—C3—C2124.2 (2)C3—Zr1—C23—C24157.42 (17)
Zr1—C4—C3—C265.7 (2)C4—Zr1—C23—C24165.71 (15)
N2—C4—C3—Zr113.63 (19)C22—C23—C24—C250.3 (3)
C5—C4—C3—Zr1170.06 (18)Zr1—C23—C24—C2566.77 (18)
N1—Zr1—C3—C221.75 (13)C22—C23—C24—Zr166.43 (17)
N2—Zr1—C3—C2119.59 (15)N1—Zr1—C24—C23104.21 (18)
C26—Zr1—C3—C247.67 (19)N2—Zr1—C24—C234.3 (2)
C23—Zr1—C3—C2142.33 (17)C26—Zr1—C24—C2377.83 (18)
Cl1—Zr1—C3—C2152.24 (13)Cl1—Zr1—C24—C2384.35 (16)
C24—Zr1—C3—C2144.1 (4)C22—Zr1—C24—C2337.16 (16)
C22—Zr1—C3—C294.70 (16)Cl2—Zr1—C24—C23168.87 (16)
Cl2—Zr1—C3—C267.84 (13)C25—Zr1—C24—C23114.8 (2)
C25—Zr1—C3—C25.1 (3)C2—Zr1—C24—C23141.3 (2)
C4—Zr1—C3—C2127.6 (2)C3—Zr1—C24—C2392.5 (4)
N1—Zr1—C3—C4105.90 (14)C4—Zr1—C24—C2323.9 (2)
N2—Zr1—C3—C48.06 (11)N1—Zr1—C24—C2510.6 (2)
C26—Zr1—C3—C479.97 (17)N2—Zr1—C24—C25119.10 (16)
C23—Zr1—C3—C414.7 (2)C26—Zr1—C24—C2537.00 (15)
Cl1—Zr1—C3—C480.11 (12)C23—Zr1—C24—C25114.8 (2)
C24—Zr1—C3—C488.2 (4)Cl1—Zr1—C24—C25160.82 (16)
C22—Zr1—C3—C432.95 (17)C22—Zr1—C24—C2577.67 (17)
Cl2—Zr1—C3—C4164.52 (12)Cl2—Zr1—C24—C2576.30 (15)
C25—Zr1—C3—C4132.7 (2)C2—Zr1—C24—C2526.5 (3)
C2—Zr1—C3—C4127.6 (2)C3—Zr1—C24—C25152.7 (3)
C14—N1—C2—C3149.3 (2)C4—Zr1—C24—C25138.68 (16)
Zr1—N1—C2—C342.6 (2)C23—C24—C25—C260.9 (3)
C14—N1—C2—C134.8 (3)Zr1—C24—C25—C2665.52 (17)
Zr1—N1—C2—C1133.3 (2)C23—C24—C25—Zr166.42 (17)
C14—N1—C2—Zr1168.1 (2)N1—Zr1—C25—C24172.18 (15)
C4—C3—C2—N133.8 (3)N2—Zr1—C25—C2486.05 (18)
Zr1—C3—C2—N135.90 (19)C26—Zr1—C25—C24115.2 (2)
C4—C3—C2—C1150.2 (2)C23—Zr1—C25—C2437.22 (16)
Zr1—C3—C2—C1140.1 (2)Cl1—Zr1—C25—C2420.88 (17)
C4—C3—C2—Zr169.7 (2)C22—Zr1—C25—C2477.80 (17)
N2—Zr1—C2—N193.29 (14)Cl2—Zr1—C25—C24100.60 (15)
C26—Zr1—C2—N14.86 (16)C2—Zr1—C25—C24168.00 (14)
C23—Zr1—C2—N145.5 (3)C3—Zr1—C25—C24164.76 (19)
Cl1—Zr1—C2—N1172.38 (11)C4—Zr1—C25—C24105.3 (2)
C24—Zr1—C2—N157.4 (3)N1—Zr1—C25—C2657.02 (17)
C22—Zr1—C2—N129.99 (17)N2—Zr1—C25—C2629.1 (2)
Cl2—Zr1—C2—N1108.76 (13)C23—Zr1—C25—C2677.95 (17)
C25—Zr1—C2—N139.93 (17)Cl1—Zr1—C25—C26136.04 (14)
C3—Zr1—C2—N1142.5 (2)C24—Zr1—C25—C26115.2 (2)
C4—Zr1—C2—N1112.63 (15)C22—Zr1—C25—C2637.37 (16)
N1—Zr1—C2—C3142.5 (2)Cl2—Zr1—C25—C26144.24 (16)
N2—Zr1—C2—C349.17 (13)C2—Zr1—C25—C2676.83 (18)
C26—Zr1—C2—C3147.32 (14)C3—Zr1—C25—C2680.1 (3)
C23—Zr1—C2—C397.0 (3)C4—Zr1—C25—C269.8 (3)
Cl1—Zr1—C2—C329.92 (14)C24—C25—C26—C221.1 (3)
C24—Zr1—C2—C3160.1 (2)Zr1—C25—C26—C2266.73 (17)
C22—Zr1—C2—C3112.47 (15)C24—C25—C26—Zr165.62 (17)
Cl2—Zr1—C2—C3108.78 (13)C23—C22—C26—C250.9 (3)
C25—Zr1—C2—C3177.61 (13)Zr1—C22—C26—C2567.03 (17)
C4—Zr1—C2—C329.82 (12)C23—C22—C26—Zr166.13 (17)
N1—Zr1—C2—C199.7 (3)N1—Zr1—C26—C25124.17 (16)
N2—Zr1—C2—C1167.0 (3)N2—Zr1—C26—C25158.49 (15)
C26—Zr1—C2—C194.9 (3)C23—Zr1—C26—C2577.53 (18)
C23—Zr1—C2—C1145.2 (3)Cl1—Zr1—C26—C2561.92 (18)
Cl1—Zr1—C2—C187.9 (3)C24—Zr1—C26—C2536.96 (16)
C24—Zr1—C2—C142.3 (4)C22—Zr1—C26—C25114.6 (2)
C22—Zr1—C2—C1129.7 (3)Cl2—Zr1—C26—C2537.24 (17)
Cl2—Zr1—C2—C19.0 (3)C2—Zr1—C26—C25121.64 (16)
C25—Zr1—C2—C159.8 (3)C3—Zr1—C26—C25146.17 (15)
C3—Zr1—C2—C1117.8 (3)C4—Zr1—C26—C25175.47 (14)
C4—Zr1—C2—C1147.7 (3)N1—Zr1—C26—C22121.23 (16)
C4—N2—C6—C11114.9 (2)N2—Zr1—C26—C2243.89 (16)
Zr1—N2—C6—C1180.6 (3)C23—Zr1—C26—C2237.07 (15)
C4—N2—C6—C767.5 (3)Cl1—Zr1—C26—C2252.68 (18)
Zr1—N2—C6—C797.0 (3)C24—Zr1—C26—C2277.64 (17)
C11—C6—C7—C81.2 (3)Cl2—Zr1—C26—C22151.84 (14)
N2—C6—C7—C8176.3 (2)C25—Zr1—C26—C22114.6 (2)
C11—C6—C7—C12178.5 (2)C2—Zr1—C26—C22123.76 (15)
N2—C6—C7—C124.0 (3)C3—Zr1—C26—C2299.23 (17)
C6—C7—C8—C90.2 (4)C4—Zr1—C26—C2260.86 (17)

Experimental details

Crystal data
Chemical formula[Zr(Cl)2(C21H25N2)(C5H5)]
Mr532.64
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.0163 (3), 10.5990 (4), 13.1392 (5)
α, β, γ (°)73.803 (1), 78.869 (2), 66.178 (1)
V3)1220.27 (7)
Z2
Radiation typeCu Kα
µ (mm1)5.82
Crystal size (mm)0.30 × 0.26 × 0.12
Data collection
DiffractometerBruker SMART 6000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.27, 0.49
No. of measured, independent and
observed [I > 2σ(I)] reflections
14734, 4561, 4541
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.13
No. of reflections4561
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.59

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), UdMX (local program).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds