Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of N-ethyl-3-(4-fluoro­phen­yl)-5-(4-methoxy­phen­yl)-2-pyrazoline-1-thio­carboxamide, C19H20FN3OS, (I), and 3-(4-fluoro­phen­yl)-N-methyl-5-(4-methyl­phen­yl)-2-pyrazoline-1-thio­carboxamide, C18H18FN3S, (II), have similar geometric parameters. The meth­oxy/methyl-substituted phenyl groups are almost perpendicular to the pyrazoline (pyraz) ring [inter­planar angles of 89.29 (8) and 80.39 (10)° for (I) and (II), respectively], which is coplanar with the fluoro­phenyl ring [inter­planar angles of 5.72 (9) and 10.48 (10)°]. The pyrazoline ring approximates an envelope conformation in both structures, with the two-coordinate N atom involved in an intra­molecular N—H...Npyraz inter­action. In (I), N—H...O and C—H...S inter­molecular hydrogen bonds are the primary inter­actions, whereas in (II), there are no intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023255/gg1282sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023255/gg1282Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023255/gg1282IIsup3.hkl
Contains datablock II

CCDC references: 285794; 285795

Comment top

Prodrug-based monoamine oxidase (MAO) inhibitors display important antidepressant activity. Previous studies have demonstrated the MAO inhibitory activities of 1,3,5-triphenyl-2-pyrazolines (Soni et al., 1987; Chimenti et al., 2004). We have previously synthesized several phenyl-2-pyrazoline derivatives (Bilgin et al., 1993; Palaska et al., 1996, 2001), and we report here the structures of two 1-N-substituted thiocarbamoyl-3-(4-fluorophenyl)-5-aryl-2-pyrazolines (Figs. 1–3, and Tables 1 and 2).

In (I), the five-membered pyrazoline ring has an envelope conformation, with atom C8 forming the flap, and atoms N1, N2, C9 and C10 coplanar with a maximum deviation of 0.069 (2) Å for C9; atom C8 is 0.18 (2) Å from this plane [the puckering parameters (Cremer & Pople, 1975) are q2 = 0.15 (2) Å and ϕ = 89.36 (6)°]. Compound (II) is similar, although it shows a slight envelope-like distortion; atom C8 is 0.12 (2) Å from the mean plane [q2 = 0.24 (3) Å and ϕ = 84.16 (7)°]. The bond lengths and angles in the five-membered rings in both compounds are in agreement with expected values (Allen, 2002; Krishnakumar et al., 2004). The pyrazoline ring N—N bond lengths are similar, viz. 1.3886 (16) Å in (I) and 1.395 (2) Å in (II), and influenced by the degree of conjugation within the CN double bond of the pyrazoline ring.

The bond lengths and angles of the thiocarbamoyl groups of (I) and (II) are comparable to those of the related compound 2-[(diethylamino)carbonyl]-3- formylphenyl-N,N-diethylthiocarbamate (Castillo et al., 2003). In (I) and (II), the thiocarbamoyl S1C7 and pyrazoline N2C10 bonds are well defined double bonds. The N—CS bond angles around the C atoms of the thiocarbamoyl moieties are similar, with values of 120.75 (10)° for (I) and 121.31 (14)° for (II). The N—C—N(H)—C torsion angles are −175.44 (13)° for (I) and −170.43 (17)° for (II). In each compounds, the methoxyphenyl or methylphenyl group occupies a pseudo-axial position and, as a result, is approximately perpendicular to the mean plane of the pyrazoline ring [the interplanar angle is 89.29 (8)° in (I) and 80.39 (10)° in (II)].

In (I), the carbamoyl N—H H atom forms a bifurcated hydrogen bond involving an intramolecular interaction with atom N2 of the pyrazoline group [graph set S(5) (Bernstein et al., 1995)] and an intermolecular hydrogen bond with methoxy atom O1 [N3—H20···O1i, with graph set C(11); symmetry code: (i) x − 1, y, z; Table 1]. The latter interaction links the molecules into a one-dimensional chain along (100) (Fig. 3). Intermolecular C3—H3···S1ii hydrogen bonds [symmetry code: (ii) 2 − x, 2 − y, 1 − z] further link the chains across inversion centres, forming rings with graph set R22(16) (Bernstein et al., 1995). In (II), only relatively weak intramolecular hydrogen bonds are present (Table 2).

Experimental top

Hydrazine hydrate (0.02 mol) was added to an ethanol solution of 1-(4-fluorophenyl)-3-aryl-2-propenones [please specify] (0.01 mol) and refluxed for 2 h. The reaction mixture was cooled to 255 K, and the solid mass that separated out was filtered and dissolved in dry diethyl ether. Substituted isothiocyanates [please specify] (0.01 mol) and three drops of Et3N were added and stirred for 4 h. The reaction mixture was evaporated to dryness and the solid mass was crystallized from alcoholic solvents [please specify]. Compound (I) was crystallized from ethanol. Yield 50.4%, m.p. 412 K. IR (KBr, cm−1): 3342 (N—H), 1606 (CN), 1440 (CC), 1387 (C4—H), 1320 (CS), 1033 (C5—N1). 1H NMR (CDCl3, p.p.m.): 1.28 (t, 3H, CH2—CH3), 3.11 (dd, 1H, pyrazoline H4), 3.72 (m, 2H, CH2—CH3), 3.75 (m, 4H, –OCH3, pyrazoline H4), 6.03 (dd, 1H, pyrazoline H5), 6.83–7.74 (m, 8H, aromatic). Compound (II) was crystallized from methanol. Yield 45.8%, m.p. 422 K. IR (KBr, cm−1): 3362 (N—H), 1602 (CN), 1419 (CC), 1320 (C S), 1004 (C5—N1). 1H NMR (CDCl3, p.p.m.): 2.30 (s, 3H, Ar—CH3), 3.19 (s, 3H, NH—CH3), 3.12 (dd, 1H, pyrazoline H4), 3.76 (dd, 1H, pyrazoline H4), 6.05 (dd, 1H, pyrazoline H5), 7.09–7.73 (m, 8H, aromatic).

Refinement top

Atoms H8 and H2O atoms for (I) and atom H18 for (II) were located in a difference Fourier map and refined independently, with isotropic displacement parameters [C8—H8 = 1.001 (16) Å, N3—H2O = 0.865 (16) Å and C8—H18 = 0.94 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model, fixing the aromatic C—H distances at 0.93 Å, the CH2 distances at 0.97 Å and the CH3 distances at 0.96 Å [Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C)].

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The structure of (II) with displacement ellipsoids drawn at the 50% probability level.

Fig. 3. Interactions (dashed lines) in (I), depicted with the unit cell. Only H atoms involved in interactions and atom H8 are shown. [Symmetry codes as in table 2; (a) 1 + x, y, z.]

Table 1. Hydrogen bonding and contact geometry in (I).

Table 2. Hydrogen bonding and contact geometry in (II).
(I) N-ethyl-3-(4-fluorophenyl)-5-(4-methoxyphenyl)-2-pyrazoline-1-thiocarboxamide top
Crystal data top
C19H20FN3OSF(000) = 752
Mr = 357.44Dx = 1.315 Mg m3
Monoclinic, P21/cMelting point: 412 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.706 (5) ÅCell parameters from 46195 reflections
b = 12.141 (5) Åθ = 1.3–26.7°
c = 17.753 (5) ŵ = 0.20 mm1
β = 120.372 (17)°T = 293 K
V = 1804.9 (13) Å3Prism, yellow
Z = 40.60 × 0.54 × 0.30 mm
Data collection top
Stoe IPDS-II
diffractometer
2785 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 26.3°, θmin = 2.1°
Detector resolution: 6.67 pixels mm-1h = 1212
ω scank = 1515
12891 measured reflectionsl = 2222
3622 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.0998P]
where P = (Fo2 + 2Fc2)/3
3622 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H20FN3OSV = 1804.9 (13) Å3
Mr = 357.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.706 (5) ŵ = 0.20 mm1
b = 12.141 (5) ÅT = 293 K
c = 17.753 (5) Å0.60 × 0.54 × 0.30 mm
β = 120.372 (17)°
Data collection top
Stoe IPDS-II
diffractometer
2785 reflections with I > 2σ(I)
12891 measured reflectionsRint = 0.043
3622 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
3622 reflectionsΔρmin = 0.15 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9806 (3)0.72994 (18)0.20341 (14)0.0839 (6)
C20.91737 (15)0.86849 (11)0.27695 (9)0.0455 (3)
C30.97484 (15)0.93586 (12)0.34925 (9)0.0489 (3)
C40.87103 (15)0.99298 (11)0.36604 (9)0.0457 (3)
C50.70652 (15)0.98556 (10)0.31049 (9)0.0430 (3)
C60.65160 (16)0.91931 (12)0.23769 (9)0.0513 (3)
C70.75442 (16)0.86029 (13)0.22029 (9)0.0524 (4)
C80.59425 (16)1.04925 (12)0.32998 (10)0.0484 (3)
C90.47674 (17)1.12380 (12)0.25474 (12)0.0581 (4)
C100.31872 (16)1.06658 (11)0.22181 (9)0.0453 (3)
C110.16867 (16)1.09685 (11)0.14357 (9)0.0457 (3)
C120.16151 (19)1.18543 (12)0.09248 (10)0.0534 (4)
C130.0200 (2)1.21216 (13)0.01723 (10)0.0604 (4)
C140.11108 (19)1.14910 (14)0.00541 (10)0.0586 (4)
C150.11049 (18)1.06157 (14)0.04359 (11)0.0597 (4)
C160.03008 (17)1.03551 (13)0.11859 (10)0.0525 (3)
C170.51387 (15)0.90727 (11)0.40617 (9)0.0435 (3)
C180.39898 (19)0.77132 (14)0.46138 (11)0.0600 (4)
C190.4651 (2)0.65993 (15)0.46169 (14)0.0757 (5)
N10.48105 (12)0.97533 (10)0.33845 (8)0.0491 (3)
N20.32498 (12)0.98592 (10)0.26989 (7)0.0468 (3)
N30.39258 (14)0.84378 (11)0.39485 (8)0.0510 (3)
O11.03063 (12)0.81323 (10)0.26744 (8)0.0635 (3)
F10.24975 (12)1.17383 (10)0.08014 (6)0.0842 (3)
S10.69494 (4)0.90641 (4)0.49604 (2)0.05958 (14)
H1A0.92590.67330.21580.126*
H1B1.07200.69900.20390.126*
H1C0.90980.76090.14700.126*
H31.08440.94270.38680.059*
H40.91141.03740.41540.055*
H60.71440.81570.17110.063*
H70.54220.91420.19910.062*
H80.6546 (18)1.0908 (13)0.3862 (10)0.055 (4)*
H9A0.47481.19740.27550.070*
H9B0.50451.12860.20950.070*
H120.25261.22740.10880.064*
H130.01481.27180.01700.072*
H150.20281.02080.02660.072*
H160.03290.97670.15290.063*
H18A0.29210.76280.45210.072*
H18B0.46450.80520.51810.072*
H19A0.57180.66750.47220.113*
H19B0.39930.62510.40620.113*
H19C0.46650.61570.50690.113*
H200.301 (2)0.8533 (15)0.3479 (12)0.066 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0880 (14)0.0866 (13)0.0905 (14)0.0103 (10)0.0551 (12)0.0354 (11)
C20.0413 (7)0.0470 (7)0.0484 (8)0.0046 (5)0.0228 (6)0.0026 (6)
C30.0330 (6)0.0509 (8)0.0528 (8)0.0075 (5)0.0144 (6)0.0077 (6)
C40.0393 (7)0.0427 (7)0.0461 (7)0.0086 (5)0.0150 (6)0.0080 (6)
C50.0360 (6)0.0392 (6)0.0485 (7)0.0055 (5)0.0175 (6)0.0014 (6)
C60.0340 (6)0.0574 (8)0.0477 (8)0.0061 (6)0.0098 (6)0.0048 (7)
C70.0460 (7)0.0599 (9)0.0424 (7)0.0091 (6)0.0159 (6)0.0112 (6)
C80.0410 (7)0.0428 (7)0.0585 (9)0.0039 (6)0.0229 (6)0.0004 (7)
C90.0487 (8)0.0442 (7)0.0791 (11)0.0032 (6)0.0306 (8)0.0102 (7)
C100.0434 (7)0.0420 (7)0.0515 (8)0.0035 (5)0.0246 (6)0.0025 (6)
C110.0480 (7)0.0423 (7)0.0485 (7)0.0077 (6)0.0257 (6)0.0026 (6)
C120.0592 (9)0.0463 (8)0.0550 (8)0.0064 (6)0.0290 (7)0.0038 (7)
C130.0777 (11)0.0515 (8)0.0516 (9)0.0189 (8)0.0325 (8)0.0089 (7)
C140.0549 (9)0.0672 (10)0.0446 (8)0.0209 (8)0.0183 (7)0.0005 (7)
C150.0473 (8)0.0663 (10)0.0598 (9)0.0059 (7)0.0229 (7)0.0043 (8)
C160.0474 (8)0.0536 (8)0.0559 (8)0.0068 (6)0.0256 (7)0.0053 (7)
C170.0404 (7)0.0457 (7)0.0439 (7)0.0035 (5)0.0210 (6)0.0026 (6)
C180.0577 (9)0.0698 (10)0.0582 (9)0.0039 (7)0.0336 (8)0.0143 (8)
C190.0807 (12)0.0660 (11)0.0860 (13)0.0064 (9)0.0464 (11)0.0170 (10)
N10.0338 (5)0.0549 (7)0.0513 (7)0.0010 (5)0.0161 (5)0.0087 (5)
N20.0360 (6)0.0539 (7)0.0454 (6)0.0011 (5)0.0168 (5)0.0056 (5)
N30.0415 (6)0.0598 (7)0.0468 (7)0.0003 (5)0.0188 (6)0.0109 (6)
O10.0502 (6)0.0706 (7)0.0714 (7)0.0039 (5)0.0319 (5)0.0204 (6)
F10.0702 (6)0.1027 (8)0.0531 (6)0.0288 (6)0.0115 (5)0.0067 (5)
S10.0444 (2)0.0675 (3)0.0479 (2)0.00061 (17)0.00936 (16)0.00324 (18)
Geometric parameters (Å, º) top
C1—O11.411 (2)C11—C121.386 (2)
C1—H1A0.9600C11—C161.399 (2)
C1—H1B0.9600C12—C131.386 (2)
C1—H1C0.9600C12—H120.9300
C2—O11.3692 (17)C13—C141.360 (3)
C2—C31.380 (2)C13—H130.9300
C2—C71.384 (2)C14—F11.3624 (18)
C3—C41.374 (2)C14—C151.372 (2)
C3—H30.9300C15—C161.377 (2)
C4—C51.3921 (19)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.380 (2)C17—N31.3345 (18)
C5—C81.512 (2)C17—N11.3574 (18)
C6—C71.384 (2)C17—S11.6729 (15)
C6—H70.9300C18—N31.449 (2)
C7—H60.9300C18—C191.496 (2)
C8—N11.4840 (18)C18—H18A0.9700
C8—C91.537 (2)C18—H18B0.9700
C8—H81.001 (16)C19—H19A0.9600
C9—C101.507 (2)C19—H19B0.9600
C9—H9A0.9700C19—H19C0.9600
C9—H9B0.9700N1—N21.3886 (16)
C10—N21.2802 (18)N3—H200.865 (18)
C10—C111.4627 (19)
O1—C1—H1A109.5C12—C11—C10120.85 (13)
O1—C1—H1B109.5C16—C11—C10120.22 (13)
H1A—C1—H1B109.5C11—C12—C13120.65 (15)
O1—C1—H1C109.5C11—C12—H12119.7
H1A—C1—H1C109.5C13—C12—H12119.7
H1B—C1—H1C109.5C14—C13—C12118.45 (15)
O1—C2—C3115.66 (12)C14—C13—H13120.8
O1—C2—C7124.68 (13)C12—C13—H13120.8
C3—C2—C7119.66 (13)C13—C14—F1118.67 (15)
C4—C3—C2120.33 (12)C13—C14—C15123.06 (14)
C4—C3—H3119.8F1—C14—C15118.27 (16)
C2—C3—H3119.8C14—C15—C16118.39 (15)
C3—C4—C5121.19 (13)C14—C15—H15120.8
C3—C4—H4119.4C16—C15—H15120.8
C5—C4—H4119.4C15—C16—C11120.52 (15)
C6—C5—C4117.56 (12)C15—C16—H16119.7
C6—C5—C8122.04 (12)C11—C16—H16119.7
C4—C5—C8120.40 (13)N3—C17—N1115.09 (12)
C5—C6—C7122.00 (12)N3—C17—S1124.15 (11)
C5—C6—H7119.0N1—C17—S1120.76 (10)
C7—C6—H7119.0N3—C18—C19113.17 (14)
C6—C7—C2119.24 (13)N3—C18—H18A108.9
C6—C7—H6120.4C19—C18—H18A108.9
C2—C7—H6120.4N3—C18—H18B108.9
N1—C8—C5111.72 (12)C19—C18—H18B108.9
N1—C8—C9100.49 (11)H18A—C18—H18B107.8
C5—C8—C9113.96 (13)C18—C19—H19A109.5
N1—C8—H8107.1 (9)C18—C19—H19B109.5
C5—C8—H8111.0 (9)H19A—C19—H19B109.5
C9—C8—H8111.9 (9)C18—C19—H19C109.5
C10—C9—C8103.19 (12)H19A—C19—H19C109.5
C10—C9—H9A111.1H19B—C19—H19C109.5
C8—C9—H9A111.1C17—N1—N2119.75 (11)
C10—C9—H9B111.1C17—N1—C8127.13 (11)
C8—C9—H9B111.1N2—N1—C8113.00 (11)
H9A—C9—H9B109.1C10—N2—N1108.55 (11)
N2—C10—C11120.94 (12)C17—N3—C18123.85 (13)
N2—C10—C9113.46 (13)C17—N3—H20117.7 (12)
C11—C10—C9125.60 (13)C18—N3—H20117.9 (12)
C12—C11—C16118.92 (14)C2—O1—C1118.65 (12)
O1—C2—C3—C4178.43 (13)C12—C13—C14—F1178.84 (13)
C7—C2—C3—C41.3 (2)C12—C13—C14—C151.3 (2)
C2—C3—C4—C50.8 (2)C13—C14—C15—C160.9 (2)
C3—C4—C5—C60.4 (2)F1—C14—C15—C16179.18 (13)
C3—C4—C5—C8179.86 (13)C14—C15—C16—C110.3 (2)
C4—C5—C6—C71.1 (2)C12—C11—C16—C151.1 (2)
C8—C5—C6—C7179.44 (14)C10—C11—C16—C15178.07 (13)
C5—C6—C7—C20.6 (2)N3—C17—N1—N28.69 (18)
O1—C2—C7—C6179.09 (14)S1—C17—N1—N2171.12 (10)
C3—C2—C7—C60.6 (2)N3—C17—N1—C8175.64 (13)
C6—C5—C8—N158.71 (17)S1—C17—N1—C84.55 (19)
C4—C5—C8—N1121.86 (13)C5—C8—N1—C1773.89 (18)
C6—C5—C8—C954.33 (18)C9—C8—N1—C17164.89 (14)
C4—C5—C8—C9125.10 (14)C5—C8—N1—N2110.20 (13)
N1—C8—C9—C1010.40 (15)C9—C8—N1—N211.02 (15)
C5—C8—C9—C10109.21 (13)C11—C10—N2—N1179.40 (12)
C8—C9—C10—N27.85 (17)C9—C10—N2—N11.05 (17)
C8—C9—C10—C11172.63 (13)C17—N1—N2—C10169.43 (12)
N2—C10—C11—C12178.83 (14)C8—N1—N2—C106.82 (16)
C9—C10—C11—C120.7 (2)N1—C17—N3—C18175.43 (13)
N2—C10—C11—C162.0 (2)S1—C17—N3—C184.4 (2)
C9—C10—C11—C16178.53 (14)C19—C18—N3—C1786.88 (19)
C16—C11—C12—C130.8 (2)C3—C2—O1—C1169.97 (16)
C10—C11—C12—C13178.41 (13)C7—C2—O1—C19.7 (2)
C11—C12—C13—C140.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H20···O1i0.865 (18)2.319 (18)3.092 (2)148.9 (15)
N3—H20···N20.865 (18)2.211 (17)2.6187 (18)108.7 (14)
C3—H3···S1ii0.932.793.5471 (18)140
C18—H18B···S10.972.753.088 (2)101
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1.
(II) 3-(4-fluorophenyl)-N-methyl-5-(4-methylphenyl)-2-pyrazoline-1-thiocarboxamide top
Crystal data top
C18H18FN3SF(000) = 688
Mr = 327.41Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11340 reflections
a = 9.4191 (17) Åθ = 1.4–26.7°
b = 12.2032 (11) ŵ = 0.21 mm1
c = 14.673 (2) ÅT = 293 K
β = 103.063 (14)°Prism., yellow
V = 1642.9 (4) Å30.60 × 0.46 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube2655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 26.6°, θmin = 2.2°
ω scanh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1415
Tmin = 0.885, Tmax = 0.954l = 1818
10474 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.2481P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3429 reflectionsΔρmax = 0.23 e Å3
214 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (5)
Crystal data top
C18H18FN3SV = 1642.9 (4) Å3
Mr = 327.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4191 (17) ŵ = 0.21 mm1
b = 12.2032 (11) ÅT = 293 K
c = 14.673 (2) Å0.60 × 0.46 × 0.25 mm
β = 103.063 (14)°
Data collection top
Stoe IPDS 2
diffractometer
3429 independent reflections
Absorption correction: integration
(X-RED32; Stoe &amp; Cie, 2002)
2655 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.954Rint = 0.051
10474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
3429 reflectionsΔρmin = 0.30 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0791 (3)0.5668 (2)0.32224 (18)0.0780 (7)
C20.0533 (2)0.49507 (15)0.35315 (14)0.0549 (5)
C30.1489 (2)0.51036 (15)0.43928 (14)0.0552 (5)
C40.2688 (2)0.44391 (15)0.46772 (12)0.0510 (4)
C50.29738 (19)0.35865 (13)0.41191 (12)0.0441 (4)
C60.2036 (2)0.34376 (15)0.32543 (13)0.0532 (5)
C70.0841 (2)0.41140 (17)0.29727 (14)0.0583 (5)
C80.4206 (2)0.28008 (14)0.45128 (12)0.0469 (4)
C90.3754 (2)0.20018 (15)0.52082 (12)0.0516 (4)
C100.34190 (18)0.09779 (14)0.46302 (11)0.0446 (4)
C110.26411 (18)0.00248 (14)0.48697 (12)0.0453 (4)
C120.2068 (2)0.00285 (16)0.56652 (13)0.0539 (5)
C130.1255 (2)0.08421 (18)0.58586 (14)0.0612 (5)
C140.1033 (2)0.17167 (16)0.52582 (16)0.0595 (5)
C150.1599 (2)0.17673 (17)0.44849 (16)0.0620 (5)
C160.2407 (2)0.08890 (15)0.42864 (14)0.0537 (4)
C170.52724 (19)0.22231 (15)0.31508 (12)0.0479 (4)
C180.6298 (3)0.13239 (19)0.19464 (14)0.0662 (6)
N10.45171 (17)0.20309 (12)0.38164 (10)0.0494 (4)
N20.38989 (16)0.10033 (12)0.38796 (10)0.0480 (4)
N30.53707 (19)0.13606 (13)0.26064 (11)0.0554 (4)
F10.01935 (17)0.25571 (12)0.54330 (11)0.0881 (5)
S10.60120 (6)0.34546 (4)0.30441 (4)0.0645 (2)
H1A0.08400.61840.37080.117*
H1B0.16510.52200.30980.117*
H1C0.07240.60550.26640.117*
H30.48500.07930.26520.066*
H3A0.13150.56640.47840.066*
H40.33190.45640.52540.061*
H60.22120.28800.28610.064*
H70.02250.40020.23890.070*
H9A0.45420.18840.57520.062*
H9B0.29020.22650.54100.062*
H120.22360.06250.60700.065*
H130.08640.08370.63870.073*
H150.14470.23800.40980.074*
H160.27970.09090.37580.064*
H18A0.61900.06270.16340.099*
H18B0.72940.14210.22730.099*
H18C0.60250.18980.14940.099*
H180.506 (2)0.3208 (17)0.4767 (14)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0670 (14)0.0773 (15)0.0898 (16)0.0130 (12)0.0177 (12)0.0173 (13)
C20.0523 (10)0.0518 (10)0.0631 (11)0.0015 (8)0.0184 (8)0.0118 (8)
C30.0661 (12)0.0464 (10)0.0572 (10)0.0018 (8)0.0228 (9)0.0005 (8)
C40.0599 (11)0.0485 (9)0.0455 (9)0.0033 (8)0.0139 (8)0.0016 (7)
C50.0507 (9)0.0409 (8)0.0428 (8)0.0058 (7)0.0151 (7)0.0002 (6)
C60.0595 (11)0.0494 (10)0.0492 (9)0.0058 (8)0.0091 (8)0.0071 (7)
C70.0569 (11)0.0611 (12)0.0528 (10)0.0060 (9)0.0038 (8)0.0029 (9)
C80.0515 (10)0.0452 (9)0.0449 (9)0.0062 (8)0.0126 (7)0.0028 (7)
C90.0597 (11)0.0501 (10)0.0450 (9)0.0028 (8)0.0117 (8)0.0009 (7)
C100.0427 (8)0.0471 (9)0.0429 (8)0.0019 (7)0.0075 (7)0.0032 (7)
C110.0419 (9)0.0458 (9)0.0471 (9)0.0032 (7)0.0076 (7)0.0071 (7)
C120.0584 (11)0.0560 (11)0.0484 (9)0.0009 (8)0.0146 (8)0.0042 (8)
C130.0618 (12)0.0693 (13)0.0555 (11)0.0014 (10)0.0193 (9)0.0131 (9)
C140.0533 (11)0.0538 (11)0.0741 (12)0.0042 (8)0.0198 (9)0.0135 (9)
C150.0671 (12)0.0492 (10)0.0724 (13)0.0062 (9)0.0218 (10)0.0005 (9)
C160.0557 (10)0.0486 (10)0.0594 (11)0.0005 (8)0.0186 (8)0.0026 (8)
C170.0450 (9)0.0520 (10)0.0475 (9)0.0031 (7)0.0121 (7)0.0060 (7)
C180.0740 (14)0.0737 (13)0.0571 (11)0.0219 (11)0.0277 (10)0.0086 (10)
N10.0569 (9)0.0418 (7)0.0530 (8)0.0029 (6)0.0200 (7)0.0028 (6)
N20.0500 (8)0.0410 (8)0.0541 (8)0.0013 (6)0.0140 (7)0.0007 (6)
N30.0618 (10)0.0520 (9)0.0573 (9)0.0036 (7)0.0239 (8)0.0020 (7)
F10.0904 (10)0.0709 (9)0.1129 (11)0.0238 (7)0.0436 (8)0.0128 (8)
S10.0730 (4)0.0547 (3)0.0718 (4)0.0101 (2)0.0290 (3)0.0038 (2)
Geometric parameters (Å, º) top
C1—C21.507 (3)C10—C111.459 (2)
C1—H1A0.9600C11—C121.392 (3)
C1—H1B0.9600C11—C161.393 (3)
C1—H1C0.9600C12—C131.376 (3)
C2—C71.381 (3)C12—H120.9300
C2—C31.388 (3)C13—C141.370 (3)
C3—C41.377 (3)C13—H130.9300
C3—H3A0.9300C14—F11.355 (2)
C4—C51.387 (2)C14—C151.360 (3)
C4—H40.9300C15—C161.383 (3)
C5—C61.384 (2)C15—H150.9300
C5—C81.516 (2)C16—H160.9300
C6—C71.382 (3)C17—N31.337 (2)
C6—H60.9300C17—N11.352 (2)
C7—H70.9300C17—S11.6786 (19)
C8—N11.465 (2)C18—N31.444 (3)
C8—C91.540 (2)C18—H18A0.9600
C8—H180.94 (2)C18—H18B0.9600
C9—C101.503 (2)C18—H18C0.9600
C9—H9A0.9700N1—N21.395 (2)
C9—H9B0.9700N3—H30.8600
C10—N21.282 (2)
C2—C1—H1A109.5N2—C10—C9113.27 (16)
C2—C1—H1B109.5C11—C10—C9125.41 (16)
H1A—C1—H1B109.5C12—C11—C16118.70 (17)
C2—C1—H1C109.5C12—C11—C10120.68 (16)
H1A—C1—H1C109.5C16—C11—C10120.57 (16)
H1B—C1—H1C109.5C13—C12—C11120.64 (19)
C7—C2—C3117.39 (18)C13—C12—H12119.7
C7—C2—C1121.4 (2)C11—C12—H12119.7
C3—C2—C1121.2 (2)C14—C13—C12118.69 (19)
C4—C3—C2121.02 (18)C14—C13—H13120.7
C4—C3—H3A119.5C12—C13—H13120.7
C2—C3—H3A119.5F1—C14—C15118.66 (19)
C3—C4—C5121.20 (17)F1—C14—C13118.61 (19)
C3—C4—H4119.4C15—C14—C13122.72 (19)
C5—C4—H4119.4C14—C15—C16118.6 (2)
C6—C5—C4118.10 (17)C14—C15—H15120.7
C6—C5—C8122.76 (15)C16—C15—H15120.7
C4—C5—C8118.90 (15)C15—C16—C11120.63 (19)
C7—C6—C5120.23 (18)C15—C16—H16119.7
C7—C6—H6119.9C11—C16—H16119.7
C5—C6—H6119.9N3—C17—N1114.43 (16)
C2—C7—C6122.04 (18)N3—C17—S1124.25 (14)
C2—C7—H7119.0N1—C17—S1121.31 (14)
C6—C7—H7119.0N3—C18—H18A109.5
N1—C8—C5113.34 (14)N3—C18—H18B109.5
N1—C8—C9100.66 (14)H18A—C18—H18B109.5
C5—C8—C9110.49 (15)N3—C18—H18C109.5
N1—C8—H18109.1 (13)H18A—C18—H18C109.5
C5—C8—H18109.0 (13)H18B—C18—H18C109.5
C9—C8—H18114.1 (13)C17—N1—N2119.98 (14)
C10—C9—C8101.93 (14)C17—N1—C8127.80 (15)
C10—C9—H9A111.4N2—N1—C8112.21 (14)
C8—C9—H9A111.4C10—N2—N1108.21 (14)
C10—C9—H9B111.4C17—N3—C18124.00 (18)
C8—C9—H9B111.4C17—N3—H3118.0
H9A—C9—H9B109.2C18—N3—H3118.0
N2—C10—C11121.33 (16)
C7—C2—C3—C40.4 (3)C10—C11—C12—C13175.83 (16)
C1—C2—C3—C4179.27 (19)C11—C12—C13—C140.6 (3)
C2—C3—C4—C50.8 (3)C12—C13—C14—F1177.89 (18)
C3—C4—C5—C61.6 (3)C12—C13—C14—C150.9 (3)
C3—C4—C5—C8172.96 (17)F1—C14—C15—C16177.41 (18)
C4—C5—C6—C71.1 (3)C13—C14—C15—C161.4 (3)
C8—C5—C6—C7173.21 (18)C14—C15—C16—C110.3 (3)
C3—C2—C7—C60.9 (3)C12—C11—C16—C151.1 (3)
C1—C2—C7—C6178.8 (2)C10—C11—C16—C15176.32 (17)
C5—C6—C7—C20.1 (3)N3—C17—N1—N21.0 (2)
C6—C5—C8—N113.3 (2)S1—C17—N1—N2179.15 (12)
C4—C5—C8—N1172.38 (15)N3—C17—N1—C8179.50 (16)
C6—C5—C8—C998.77 (19)S1—C17—N1—C80.7 (3)
C4—C5—C8—C975.5 (2)C5—C8—N1—C1778.5 (2)
N1—C8—C9—C1017.86 (17)C9—C8—N1—C17163.55 (17)
C5—C8—C9—C10102.19 (16)C5—C8—N1—N2100.09 (17)
C8—C9—C10—N214.4 (2)C9—C8—N1—N217.89 (18)
C8—C9—C10—C11166.06 (15)C11—C10—N2—N1176.84 (14)
N2—C10—C11—C12177.04 (16)C9—C10—N2—N13.6 (2)
C9—C10—C11—C123.5 (3)C17—N1—N2—C10171.44 (15)
N2—C10—C11—C160.4 (3)C8—N1—N2—C109.87 (19)
C9—C10—C11—C16179.15 (17)N1—C17—N3—C18170.43 (17)
C16—C11—C12—C131.6 (3)S1—C17—N3—C189.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.202.602 (2)108
C6—H6···N10.932.532.866 (3)102

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H20FN3OSC18H18FN3S
Mr357.44327.41
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)9.706 (5), 12.141 (5), 17.753 (5)9.4191 (17), 12.2032 (11), 14.673 (2)
β (°) 120.372 (17) 103.063 (14)
V3)1804.9 (13)1642.9 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.200.21
Crystal size (mm)0.60 × 0.54 × 0.300.60 × 0.46 × 0.25
Data collection
DiffractometerStoe IPDS-II
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe &amp; Cie, 2002)
Tmin, Tmax0.885, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12891, 3622, 2785 10474, 3429, 2655
Rint0.0430.051
(sin θ/λ)max1)0.6240.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04 0.043, 0.140, 1.08
No. of reflections36223429
No. of parameters234214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.150.23, 0.30

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H20···O1i0.865 (18)2.319 (18)3.092 (2)148.9 (15)
N3—H20···N20.865 (18)2.211 (17)2.6187 (18)108.7 (14)
C3—H3···S1ii0.932.793.5471 (18)140
C18—H18B···S10.972.753.088 (2)101
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.202.602 (2)108
C6—H6···N10.932.532.866 (3)102
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds