Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, μ-(tri-tert-butoxy­silanethiol­ato-κ2S:S)-bis[(tetra­hydro­furan-κO)lithium(I)], [Li2(C12H27O3SSi)2(C4H8O)2], (I), and catena-poly[[bis­(μ-tri-tert-butoxysilanethiol­ato)-1:2κ2S;1κS:2κS,O-dilithium(I)]-μ-dimethoxy­ethane-κ2O:O′], [Li2(C12H27O3SSi)2(C4H10O2)]n, (II), were obtained by the reaction of tri-tert-butoxy­silanethiol with metallic lithium. The crude product, when recrystallized from tetra­hydro­furan (THF) yields (I), and when recrystallized from 1,2-dimethoxy­ethane (DME) gives (II). Compound (I) forms centrosymmetric dimers in the solid state with an Li2S2 central core, whereas (II) forms infinitely long chains, in which the centrosymmetric dimeric units are linked together by the bidentate DME ligand (also residing on an inversion centre), thus forming a coordination polymer. The formation of a one-dimensional structure in (II) is a consequence of replacement of a monodentate THF solvent mol­ecule with a bidentate DME mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105015076/gg1262sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105015076/gg1262Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105015076/gg1262IIsup3.hkl
Contains datablock II

CCDC references: 278532; 278533

Comment top

Structural studies on thiolates, selenolates and tellurolates of the s-block elements are important because the compounds often serve as starting materials in both inorganic and organic syntheses (Englich & Ruhlandt-Senge, 2000). The most common structural features observed for the lithium derivatives are monomeric or dimeric formulations, but lithium chalcogenolate chemistry has seen higher degrees of aggregation, e.g. trimers, tetramers or hexamers. A metal coordination number of four is observed for the majority of these compounds (Niemeyer & Power, 1996; Ruhlandt-Senge et al., 1996; Ellison & Power, 1994; Janssen et al., 1996). The structure and chemistry of silanethiolates have been the subject of research by us (Wojnowski et al., 1985, 1994) and other groups (Kovacs et al., 2000; Komuro et al., 2002, 2003). We have attempted to introduce a different type of thiolate ligand, which contains S bound to an Si atom instead of a C atom. A tri-tert-butoxysilanethiolate ligand, (tBuO)3SiS, has been used in much of our work because of its unique features, namely large steric hindrance at the Si created by the three bulky tert-butoxy groups, its chelating capability as an O– and S-ligand, and its non-polar exterior and polar interior.

Most of the papers mentioned above concern the silanethiolates of transition metals (Becker et al., 1992) and of the p-block metals (Wojnowski, Wojnowska et al., 1986; Peters et al., 1997). However, structural data regarding silanethiolates of alkali metals are scarce (Wojnowski, Peters et al., 1986; Chadwick et al., 1997) and only one report describes a lithium silanethiolate (Baranowska et al., 2002). Here, we present the structures of two new lithium silanethiolates, the title compounds, (I) and (II).

Compound (I), [(tBuO)3SiSLi·(THF)]2, resides on an inversion centre and comprises two silanethiolate ligands (Fig. 1). Each S atom bridges two Li+ cations, forming a planar central Li2S2 core, with two THF molecules bound to the two Li atoms. The THF molecules are disordered [site occupancy factors 0.693 (16)/0.307 (16)] and are positioned above and below the Li2S2 plane. Additionally, atom O3 from each of the two silanethiolate ligands chelates the Li atom, resulting in an S,S,O,O distorted tetrahedral coordination of the Li cores, with `tetrahedral' angles between 79.9 (2) and 120.2 (3)°. The longer Si—O3 bond is a consequence of chelation of the Li by atom O3. The Si—S bond length in (I) is considerably shorter than the distance in covalent silanethiolate compounds and is comparable with the values observed in ionic silanethiolate compounds (Becker et al., 2004).

Compound (II) (Fig. 2), [(tBuO)3SiSLi·(DME)]2, resides on an inversion centre and exhibits an apparently similar dimeric structure to (I). The dimer halves are related to each other by an inversion centre located at the centre of the Li2S2 unit, a planar four-membered ring of alternating Li and S atoms. Again, each Li cation is surrounded, in a distorted tetrahedral fashion, by two S and two O atoms. One of the three butoxy groups of the thiolate ligand supplies the first chelating O atom and the second O atom comes from the DME molecule. The Si—O bond is considerably longer for the bond to the chelating O3 atom. The `tetrahedral' angles at Li range from 80.61 (15) to 122.6 (2)°. The smallest angle is observed between the chelating donors O3—Li1—S1, while the largest angle, O3—Li1—O4, can be found between the heteroleptic donor atoms. Molecules of (I) and (II) are examples of lithium thiolates with Li···Li short contacts of 2.889 (14) and 2.788 (9) Å, respectively. Similar distances can be found in LiOH·H2O (Ojamäe et al., 1994).

The title compounds consist of very similar dimeric units but there is a basic difference between them. Compound (I) has Li+ cations coordinated by a THF molecule and having only one donor atom, generating an isolated dimer, whereas compound (II) has Li+ cations coordinated by a DME molecule containing two O donor atoms. The first, atom O4, coordinates to atom Li1, while the second, atom O4ii, coordinates to atom Li1ii from the neighbouring dimeric unit (Fig. 2; symmetry code as in Fig. 2). This arrangement combines the dimers together into infinitely long chains, in contrast to (I). The chain of the coordination polymer passes parallel to the b axis.

Dimers of (I) and chains of (II) are free of intermolecular interactions, apart from van der Waals forces. Compound (II) is hence an example of a coordination polymer (Braga et al., 2005) in which monomeric units are linked by coordination bonds. This study shows the fundamental role a solvent can play in the formation of the overall structure of solvated salts. The formation of a higher-order structure, namely the polymeric chains, was made possible by the replacement of a monodentate solvent by a bidentate one.

Experimental top

The synthesis was carried out using a standard vacuum, N2 line and Schlenk techniques. Both compounds (I) and (II) were synthesized by direct reaction of (tBuO)3SiSH (Piękoś & Wojnowski, 1962) with an excess of metallic Li. The mixture was stirred and heated for 4 h, yielding a white precipitate. To dissolve this, tetrahydrofuran (THF) was added to part of the precipitate. The solution was separated from the excess metal by filtration, and crystallization by slow evaporation of the solvent afforded colourless crystals of (I) suitable for X-ray diffraction analysis. The second part of the white precipitate was dissolved in 1,2-dimethoxyethane (DME) and filtered in order to separate excess Li. Colourless crystals of (II) were obtained by crystallization from DME. Crystals of (I) and (II) are stable at room temperature and are fairly resistant to oxidation but sensitive to moist air, which makes diffraction experiments possible only at low temperatures, preferably 200 K and below.

Refinement top

All H atoms were refined as riding, with C—H distances in the range 0.97–0.99 Å and with Uiso(H) = 1.2Uiso(C). Please check added text. The disorder of the THF molecule was determined by constraining the ellipsoids of atoms C14–C16 to be the same [EADP instruction; SHELXL97 (Sheldrick, 1997)]. Additionally, the C13—C14 and O4—C16 bonds were constrained to be equal in both disordered parts (SADI in SHELXL97). Note that data for (I) were measured at 200 K and for (II) at 120 K.

Computing details top

Data collection: KM4 Software (Gałdecki et al., 1996) for (I); CrysAlis CCD (Oxford Diffraction, 2003) for (II). Cell refinement: KM4 Software for (I); CrysAlis RED (Oxford Diffraction, 2003) for (II). Data reduction: DATAPROC (Gałdecki et al., 1996) for (I); CrysAlis RED for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) for (I); Please provide missing details for (II). For both compounds, software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted. [Symmetry code: (i) 1 − x, −y, −z.]
[Figure 2] Fig. 2. The molecular structure of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted. The asymmetric unit contains a (tBuO)3SiS anion, an Li+ cation and half the DME molecule. To illustrate the polymeric nature of (II), two DME molecules are shown, together with related cations Li1ii (left) and Li1iii (right). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) −x, −1 − y, −z.]
(I) µ-Tri-tert-butylsilanethiolato-κ2S:S-bis[(tetrahydrofuran-κO)lithium(I)] top
Crystal data top
[Li2(C12H27O3SSi)2(C4H8O)2]F(000) = 784
Mr = 717.06Dx = 1.109 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 47 reflections
a = 9.789 (2) Åθ = 2.3–17.5°
b = 20.083 (4) ŵ = 0.22 mm1
c = 11.746 (2) ÅT = 200 K
β = 111.52 (3)°Block, colourless
V = 2148.2 (8) Å30.5 × 0.4 × 0.2 mm
Z = 2
Data collection top
Kuma KM4, point detector
diffractometer
Rint = 0.071
Radiation source: fine-focus sealed tubeθmax = 25.6°, θmin = 2.0°
Graphite monochromatorh = 1111
ω/2θ scansk = 024
4228 measured reflectionsl = 130
4007 independent reflections3 standard reflections every 200 reflections
2806 reflections with I > 2σ(I) intensity decay: 8.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1129P)2 + 2.9823P]
where P = (Fo2 + 2Fc2)/3
4007 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Li2(C12H27O3SSi)2(C4H8O)2]V = 2148.2 (8) Å3
Mr = 717.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.789 (2) ŵ = 0.22 mm1
b = 20.083 (4) ÅT = 200 K
c = 11.746 (2) Å0.5 × 0.4 × 0.2 mm
β = 111.52 (3)°
Data collection top
Kuma KM4, point detector
diffractometer
Rint = 0.071
4228 measured reflections3 standard reflections every 200 reflections
4007 independent reflections intensity decay: 8.4%
2806 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.13Δρmax = 0.50 e Å3
4007 reflectionsΔρmin = 0.50 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.61759 (10)0.08201 (5)0.00057 (9)0.0318 (3)
Si10.47437 (11)0.10708 (5)0.17217 (9)0.0266 (3)
Li10.5259 (8)0.0280 (3)0.1035 (6)0.0362 (15)
O10.5467 (3)0.14233 (15)0.2612 (2)0.0368 (7)
O20.3342 (3)0.15382 (14)0.1838 (2)0.0330 (6)
O30.4018 (3)0.03417 (14)0.2319 (2)0.0316 (6)
C10.6888 (6)0.1465 (3)0.2681 (5)0.0537 (13)
C20.7553 (9)0.0783 (4)0.2578 (8)0.097 (3)
H2B0.76820.05920.17770.145*
H2C0.85090.08150.26650.145*
H2A0.69010.04960.32250.145*
C30.7822 (6)0.1933 (4)0.1660 (6)0.085 (2)
H3A0.73370.23670.17520.127*
H3B0.87920.19880.17120.127*
H3C0.79330.17420.08630.127*
C40.6617 (8)0.1767 (3)0.3937 (6)0.0761 (19)
H4A0.59710.14730.45730.114*
H4B0.75550.18170.40500.114*
H4C0.61510.22040.39930.114*
C50.3165 (4)0.2245 (2)0.1810 (4)0.0387 (10)
C60.4350 (6)0.2534 (3)0.0695 (6)0.0689 (17)
H6A0.42780.23390.00460.103*
H6C0.42250.30180.06830.103*
H6B0.53160.24330.07240.103*
C70.3214 (6)0.2558 (3)0.2978 (5)0.0625 (15)
H7A0.41950.24970.30050.094*
H7C0.29950.30340.29870.094*
H7B0.24840.23420.36910.094*
C80.1659 (6)0.2356 (3)0.1757 (6)0.0588 (14)
H8A0.09110.21560.24800.088*
H8B0.14740.28350.17420.088*
H8C0.16150.21480.10160.088*
C90.2704 (5)0.0194 (2)0.3369 (4)0.0408 (10)
C100.2598 (7)0.0631 (3)0.4431 (4)0.0705 (17)
H10A0.25350.10980.42120.106*
H10B0.17180.05130.51360.106*
H10C0.34710.05680.46410.106*
C110.1385 (5)0.0282 (3)0.2991 (5)0.0679 (17)
H11A0.14680.00240.23190.102*
H11B0.04820.01850.36900.102*
H11C0.13540.07420.27220.102*
C120.2843 (7)0.0530 (3)0.3655 (5)0.0671 (16)
H12A0.37150.05910.38670.101*
H12B0.19670.06680.43460.101*
H12C0.29380.08020.29370.101*
C130.8283 (6)0.0734 (3)0.0400 (5)0.0620 (12)
H13B0.83270.09670.03350.074*
H13A0.85900.02770.01900.074*
O40.6817 (4)0.07583 (17)0.1315 (3)0.0497 (8)
C140.9223 (9)0.1142 (6)0.0923 (8)0.0620 (12)0.693 (16)
H14B1.02380.09670.06500.074*0.693 (16)
H14A0.92530.16160.06820.074*0.693 (16)
C150.8457 (11)0.1060 (7)0.2263 (9)0.0620 (12)0.693 (16)
H15B0.86690.14380.27120.074*0.693 (16)
H15A0.87600.06410.25480.074*0.693 (16)
C160.6871 (10)0.1040 (6)0.2441 (8)0.0620 (12)0.693 (16)
H16A0.63180.07580.31520.074*0.693 (16)
H16B0.64460.14940.25780.074*0.693 (16)
C14B0.928 (2)0.0769 (13)0.1179 (17)0.060 (6)*0.307 (16)
H14C0.93190.03400.15830.072*0.307 (16)
H14D1.02940.09190.06900.072*0.307 (16)
C15A0.839 (3)0.1307 (13)0.210 (2)0.066 (7)*0.307 (16)
H15C0.84030.12150.29280.079*0.307 (16)
H15D0.88200.17540.18410.079*0.307 (16)
C16A0.686 (2)0.1278 (9)0.2123 (17)0.050 (5)*0.307 (16)
H16C0.61640.11850.29620.060*0.307 (16)
H16D0.65930.17080.18500.060*0.307 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (5)0.0353 (6)0.0309 (5)0.0047 (4)0.0070 (4)0.0024 (4)
Si10.0237 (5)0.0288 (6)0.0287 (5)0.0009 (4)0.0112 (4)0.0012 (4)
Li10.040 (4)0.032 (4)0.040 (4)0.000 (3)0.019 (3)0.004 (3)
O10.0323 (15)0.0433 (18)0.0412 (16)0.0020 (12)0.0211 (13)0.0110 (13)
O20.0260 (14)0.0336 (16)0.0405 (15)0.0012 (11)0.0136 (12)0.0004 (12)
O30.0309 (14)0.0322 (15)0.0289 (13)0.0016 (11)0.0077 (11)0.0028 (11)
C10.051 (3)0.057 (3)0.072 (3)0.014 (2)0.044 (3)0.024 (3)
C20.114 (6)0.086 (5)0.140 (6)0.053 (4)0.106 (5)0.051 (5)
C30.043 (3)0.105 (6)0.102 (5)0.022 (3)0.021 (3)0.021 (4)
C40.099 (5)0.073 (4)0.089 (4)0.021 (4)0.074 (4)0.033 (3)
C50.030 (2)0.036 (2)0.052 (2)0.0092 (17)0.0170 (19)0.0009 (19)
C60.060 (3)0.048 (3)0.083 (4)0.002 (3)0.007 (3)0.022 (3)
C70.065 (3)0.052 (3)0.080 (4)0.021 (3)0.038 (3)0.023 (3)
C80.042 (3)0.054 (3)0.088 (4)0.014 (2)0.033 (3)0.004 (3)
C90.036 (2)0.048 (3)0.031 (2)0.0089 (19)0.0028 (17)0.0064 (18)
C100.080 (4)0.076 (4)0.035 (2)0.023 (3)0.002 (3)0.005 (3)
C110.033 (3)0.096 (5)0.067 (3)0.012 (3)0.008 (2)0.022 (3)
C120.067 (4)0.055 (3)0.062 (3)0.009 (3)0.002 (3)0.024 (3)
C130.059 (2)0.068 (3)0.064 (2)0.016 (2)0.0267 (18)0.002 (2)
O40.0480 (19)0.052 (2)0.0564 (19)0.0086 (16)0.0275 (16)0.0028 (16)
C140.059 (2)0.068 (3)0.064 (2)0.016 (2)0.0267 (18)0.002 (2)
C150.059 (2)0.068 (3)0.064 (2)0.016 (2)0.0267 (18)0.002 (2)
C160.059 (2)0.068 (3)0.064 (2)0.016 (2)0.0267 (18)0.002 (2)
Geometric parameters (Å, º) top
S1—Si12.0515 (16)C8—H8C0.9800
S1—Li1i2.429 (7)C9—C101.497 (7)
S1—Li12.521 (7)C9—C121.510 (7)
Si1—O11.625 (3)C9—C111.523 (7)
Si1—O21.626 (3)C10—H10A0.9800
Si1—O31.666 (3)C10—H10B0.9800
Si1—Li12.823 (7)C10—H10C0.9800
Li1—O31.992 (7)C11—H11A0.9800
Li1—O41.929 (8)C11—H11B0.9800
Li1—S1i2.429 (7)C11—H11C0.9800
Li1—Li1i2.889 (14)C12—H12A0.9800
O1—C11.425 (5)C12—H12B0.9800
O2—C51.431 (5)C12—H12C0.9800
O3—C91.449 (5)C13—O41.444 (6)
C1—C21.502 (8)C13—C141.520 (9)
C1—C31.534 (9)C13—C14B1.569 (15)
C1—C41.525 (7)C13—H13B0.9700
C2—H2B0.9800C13—H13A0.9700
C2—H2C0.9800O4—C16A1.422 (13)
C2—H2A0.9800O4—C161.457 (8)
C3—H3A0.9800C14—C151.483 (13)
C3—H3B0.9800C14—H14B0.9900
C3—H3C0.9800C14—H14A0.9900
C4—H4A0.9800C15—C161.489 (13)
C4—H4B0.9800C15—H15B0.9900
C4—H4C0.9800C15—H15A0.9900
C5—C61.511 (7)C16—H16A0.9900
C5—C81.515 (6)C16—H16B0.9900
C5—C71.526 (7)C14B—C15A1.55 (3)
C6—H6A0.9800C14B—H14C0.9900
C6—H6C0.9800C14B—H14D0.9900
C6—H6B0.9800C15A—C16A1.49 (3)
C7—H7A0.9800C15A—H15C0.9900
C7—H7C0.9800C15A—H15D0.9900
C7—H7B0.9800C16A—H16C0.9900
C8—H8A0.9800C16A—H16D0.9900
C8—H8B0.9800
Si1—S1—Li1i106.91 (17)H8A—C8—H8C109.5
Si1—S1—Li175.48 (16)H8B—C8—H8C109.5
Li1i—S1—Li171.4 (3)O3—C9—C10111.0 (4)
O1—Si1—O2104.35 (15)O3—C9—C12105.2 (4)
O1—Si1—O3109.31 (15)C10—C9—C12111.4 (4)
O2—Si1—O3104.83 (15)O3—C9—C11108.1 (3)
O1—Si1—S1115.95 (12)C10—C9—C11111.6 (5)
O2—Si1—S1118.38 (11)C12—C9—C11109.4 (5)
O3—Si1—S1103.32 (11)C9—C10—H10A109.5
O1—Si1—Li1121.90 (18)C9—C10—H10B109.5
O2—Si1—Li1129.46 (18)H10A—C10—H10B109.5
S1—Si1—Li159.82 (15)C9—C10—H10C109.5
O3—Li1—S179.9 (2)H10A—C10—H10C109.5
O3—Li1—S1i110.9 (3)H10B—C10—H10C109.5
O4—Li1—S1i120.2 (3)C9—C11—H11A109.5
O4—Li1—S1110.7 (3)C9—C11—H11B109.5
O3—Li1—O4118.9 (4)H11A—C11—H11B109.5
S1i—Li1—S1108.6 (3)C9—C11—H11C109.5
O4—Li1—Si1119.9 (3)H11A—C11—H11C109.5
S1i—Li1—Si1119.8 (3)H11B—C11—H11C109.5
O4—Li1—Li1i137.0 (5)C9—C12—H12A109.5
O3—Li1—Li1i98.4 (4)C9—C12—H12B109.5
S1i—Li1—Li1i55.8 (2)H12A—C12—H12B109.5
S1—Li1—Li1i52.8 (2)C9—C12—H12C109.5
Si1—Li1—Li1i78.3 (3)H12A—C12—H12C109.5
C1—O1—Si1136.6 (3)H12B—C12—H12C109.5
C5—O2—Si1132.5 (2)O4—C13—C14105.4 (5)
C9—O3—Si1130.3 (3)O4—C13—C14B103.2 (8)
C9—O3—Li1128.3 (3)O4—C13—H13B110.7
Si1—O3—Li1100.7 (2)C14—C13—H13B105.3
O1—C1—C2110.2 (5)C14B—C13—H13B131.7
O1—C1—C4104.6 (4)O4—C13—H13A110.6
C2—C1—C4110.9 (5)C14—C13—H13A115.8
O1—C1—C3107.8 (4)C14B—C13—H13A89.3
C2—C1—C3112.3 (6)H13B—C13—H13A108.8
C4—C1—C3110.8 (5)C16A—O4—C13104.8 (8)
C1—C2—H2B109.5C13—O4—C16109.4 (5)
C1—C2—H2C109.5C16A—O4—Li1134.4 (8)
H2B—C2—H2C109.5C13—O4—Li1119.2 (4)
C1—C2—H2A109.5C16—O4—Li1129.9 (5)
H2B—C2—H2A109.5C15—C14—C13102.9 (6)
H2C—C2—H2A109.5C15—C14—H14B111.2
C1—C3—H3A109.5C13—C14—H14B111.2
C1—C3—H3B109.5C15—C14—H14A111.2
H3A—C3—H3B109.5C13—C14—H14A111.2
C1—C3—H3C109.5H14B—C14—H14A109.1
H3A—C3—H3C109.5C14—C15—C16104.3 (8)
H3B—C3—H3C109.5C14—C15—H15B110.9
C1—C4—H4A109.5C16—C15—H15B110.9
C1—C4—H4B109.5C14—C15—H15A110.9
H4A—C4—H4B109.5C16—C15—H15A110.9
C1—C4—H4C109.5H15B—C15—H15A108.9
H4A—C4—H4C109.5O4—C16—C15105.4 (7)
H4B—C4—H4C109.5O4—C16—H16A110.7
O2—C5—C6109.9 (4)C15—C16—H16A110.7
O2—C5—C8105.9 (4)O4—C16—H16B110.7
C6—C5—C8110.9 (4)C15—C16—H16B110.7
O2—C5—C7110.1 (4)H16A—C16—H16B108.8
C6—C5—C7110.7 (5)C15A—C14B—C1397.3 (14)
C8—C5—C7109.2 (4)C15A—C14B—H14C112.3
C5—C6—H6A109.5C13—C14B—H14C112.3
C5—C6—H6C109.5C15A—C14B—H14D112.3
H6A—C6—H6C109.5C13—C14B—H14D112.3
C5—C6—H6B109.5H14C—C14B—H14D109.9
H6A—C6—H6B109.5C16A—C15A—C14B106.7 (17)
H6C—C6—H6B109.5C16A—C15A—H15C110.4
C5—C7—H7A109.5C14B—C15A—H15C110.4
C5—C7—H7C109.5C16A—C15A—H15D110.4
H7A—C7—H7C109.5C14B—C15A—H15D110.4
C5—C7—H7B109.5H15C—C15A—H15D108.6
H7A—C7—H7B109.5O4—C16A—C15A107.2 (14)
H7C—C7—H7B109.5O4—C16A—H16C110.3
C5—C8—H8A109.5C15A—C16A—H16C110.3
C5—C8—H8B109.5O4—C16A—H16D110.3
H8A—C8—H8B109.5C15A—C16A—H16D110.3
C5—C8—H8C109.5H16C—C16A—H16D108.5
Symmetry code: (i) x+1, y, z.
(II) catena-poly[[bis(µ-tri-tert-butylsilanethiolato)-1:2κ2S;1κS:2κS,O- dilithium(I)]-µ-dimethoxyethane-κ2O:O'] top
Crystal data top
[Li2(C12H27O3SSi)2(C4H10O2)]Z = 2
Mr = 331.49F(000) = 362
Triclinic, P1Dx = 1.124 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.721 (2) ÅCell parameters from 3123 reflections
b = 9.305 (2) Åθ = 2–20°
c = 14.048 (3) ŵ = 0.24 mm1
α = 82.24 (3)°T = 120 K
β = 72.91 (3)°Rod, colourless
γ = 64.01 (3)°0.4 × 0.2 × 0.2 mm
V = 979.4 (5) Å3
Data collection top
Kuma KM4, Sapphire2 CCD area detector
diffractometer
Rint = 0.027
Graphite monochromatorθmax = 25.5°, θmin = 2.8°
ω scans, 612 framesh = 810
5576 measured reflectionsk = 1111
3638 independent reflectionsl = 1616
3362 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0341P)2 + 2.4894P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Li2(C12H27O3SSi)2(C4H10O2)]γ = 64.01 (3)°
Mr = 331.49V = 979.4 (5) Å3
Triclinic, P1Z = 2
a = 8.721 (2) ÅMo Kα radiation
b = 9.305 (2) ŵ = 0.24 mm1
c = 14.048 (3) ÅT = 120 K
α = 82.24 (3)°0.4 × 0.2 × 0.2 mm
β = 72.91 (3)°
Data collection top
Kuma KM4, Sapphire2 CCD area detector
diffractometer
3362 reflections with I > 2σ(I)
5576 measured reflectionsRint = 0.027
3638 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.54 e Å3
3638 reflectionsΔρmin = 0.45 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39933 (8)0.51368 (8)0.38284 (5)0.01799 (17)
Si10.64125 (9)0.46593 (8)0.28166 (5)0.01596 (18)
Li10.5520 (6)0.6222 (5)0.4601 (3)0.0196 (9)
O10.6362 (2)0.5571 (2)0.17438 (13)0.0201 (4)
O20.7704 (2)0.2787 (2)0.25352 (13)0.0200 (4)
O30.7429 (2)0.5242 (2)0.34096 (13)0.0164 (4)
C10.5314 (4)0.7128 (3)0.1407 (2)0.0219 (6)
C20.4836 (5)0.8407 (4)0.2144 (2)0.0356 (7)
H2A0.41030.82180.27810.043*
H2B0.41770.94610.18820.043*
H2C0.59190.83690.22440.043*
C30.3662 (4)0.7104 (4)0.1272 (2)0.0328 (7)
H3A0.29420.6930.19190.039*
H3B0.40.62380.08190.039*
H3C0.29780.81290.0990.039*
C40.6459 (4)0.7387 (4)0.0411 (2)0.0358 (7)
H4A0.75180.74020.05110.043*
H4B0.57880.84090.01220.043*
H4C0.6810.65170.00410.043*
C50.7913 (4)0.1825 (3)0.1737 (2)0.0236 (6)
C60.6118 (4)0.2130 (4)0.1617 (2)0.0333 (7)
H6A0.54130.18770.22440.04*
H6B0.6280.14520.10860.04*
H6C0.55030.32560.14450.04*
C70.9057 (5)0.2199 (4)0.0781 (2)0.0360 (8)
H7A0.8440.33120.05840.043*
H7B0.92890.14860.02520.043*
H7C1.0180.20410.08910.043*
C80.8850 (4)0.0099 (4)0.2050 (2)0.0329 (7)
H8A0.81060.01290.26680.039*
H8B0.99780.0070.21580.039*
H8C0.90710.06160.15250.039*
C90.9272 (3)0.4987 (3)0.3201 (2)0.0192 (5)
C100.9222 (4)0.6257 (3)0.3804 (2)0.0238 (6)
H10A0.85540.7320.35560.029*
H10B1.04310.61130.37360.029*
H10C0.86470.61550.45060.029*
C111.0319 (4)0.3316 (3)0.3563 (2)0.0267 (6)
H11A1.03350.25170.31670.032*
H11B0.97610.31930.42650.032*
H11C1.15330.31640.34880.032*
C121.0025 (4)0.5193 (4)0.2095 (2)0.0280 (6)
H12A1.00410.43670.17220.034*
H12B1.12320.50930.19760.034*
H12C0.92860.62520.18740.034*
O40.4265 (2)0.8526 (2)0.47834 (14)0.0226 (4)
C130.4894 (4)0.9293 (3)0.5299 (2)0.0225 (6)
H13A0.60450.85190.54110.027*
H13B0.40460.96630.59570.027*
C140.2380 (4)0.9227 (4)0.4979 (2)0.0288 (6)
H14A0.18550.91370.56920.035*
H14B0.20330.86670.45970.035*
H14C0.19611.03580.47820.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0147 (3)0.0207 (3)0.0173 (3)0.0083 (3)0.0017 (2)0.0009 (2)
Si10.0145 (3)0.0175 (4)0.0150 (3)0.0071 (3)0.0024 (3)0.0007 (3)
Li10.020 (2)0.023 (2)0.017 (2)0.0085 (18)0.0063 (17)0.0030 (17)
O10.0201 (9)0.0240 (10)0.0163 (9)0.0104 (8)0.0044 (7)0.0023 (7)
O20.0217 (9)0.0198 (9)0.0179 (9)0.0078 (8)0.0042 (7)0.0042 (7)
O30.0129 (8)0.0208 (9)0.0182 (9)0.0091 (7)0.0044 (7)0.0012 (7)
C10.0254 (14)0.0245 (14)0.0191 (13)0.0127 (12)0.0096 (11)0.0061 (11)
C20.052 (2)0.0243 (16)0.0370 (18)0.0193 (15)0.0183 (15)0.0051 (13)
C30.0262 (15)0.0386 (18)0.0324 (16)0.0122 (13)0.0123 (13)0.0084 (13)
C40.0360 (17)0.0457 (19)0.0283 (16)0.0221 (15)0.0114 (14)0.0157 (14)
C50.0327 (15)0.0236 (14)0.0186 (13)0.0168 (12)0.0017 (11)0.0064 (11)
C60.0466 (19)0.0343 (17)0.0327 (17)0.0263 (15)0.0136 (14)0.0032 (13)
C70.051 (2)0.0370 (18)0.0229 (15)0.0278 (16)0.0054 (14)0.0091 (13)
C80.0418 (18)0.0240 (15)0.0261 (16)0.0116 (14)0.0013 (13)0.0094 (12)
C90.0119 (12)0.0260 (14)0.0221 (13)0.0101 (11)0.0042 (10)0.0010 (11)
C100.0202 (13)0.0262 (15)0.0297 (15)0.0121 (11)0.0089 (11)0.0023 (12)
C110.0217 (14)0.0245 (15)0.0370 (17)0.0081 (12)0.0137 (12)0.0026 (12)
C120.0205 (14)0.0418 (18)0.0255 (15)0.0193 (13)0.0001 (11)0.0041 (13)
O40.0239 (10)0.0175 (9)0.0267 (10)0.0082 (8)0.0065 (8)0.0037 (8)
C130.0297 (15)0.0184 (14)0.0214 (14)0.0120 (12)0.0064 (11)0.0007 (11)
C140.0248 (14)0.0257 (15)0.0384 (17)0.0097 (12)0.0104 (13)0.0060 (12)
Geometric parameters (Å, º) top
S1—Si12.0629 (13)C6—H6A0.98
S1—Li1i2.444 (4)C6—H6B0.98
S1—Li12.509 (4)C6—H6C0.98
Si1—O11.6290 (19)C7—H7A0.98
Si1—O21.633 (2)C7—H7B0.98
Si1—O31.6587 (18)C7—H7C0.98
Si1—Li12.802 (4)C8—H8A0.98
Li1—O31.962 (5)C8—H8B0.98
Li1—O41.946 (5)C8—H8C0.98
Li1—S1i2.444 (4)C9—C101.522 (4)
Li1—Li1i2.788 (9)C9—C111.524 (4)
O1—C11.437 (3)C9—C121.521 (4)
O2—C51.449 (3)C10—H10A0.98
O3—C91.461 (3)C10—H10B0.98
C1—C21.519 (4)C10—H10C0.98
C1—C31.517 (4)C11—H11A0.98
C1—C41.521 (4)C11—H11B0.98
C2—H2A0.98C11—H11C0.98
C2—H2B0.98C12—H12A0.98
C2—H2C0.98C12—H12B0.98
C3—H3A0.98C12—H12C0.98
C3—H3B0.98O4—C141.430 (3)
C3—H3C0.98O4—C131.433 (3)
C4—H4A0.98C13—C13ii1.514 (5)
C4—H4B0.98C13—H13A0.99
C4—H4C0.98C13—H13B0.99
C5—C61.520 (4)C14—H14A0.98
C5—C71.520 (4)C14—H14B0.98
C5—C81.520 (4)C14—H14C0.98
Si1—S1—Li1i108.86 (11)C6—C5—C7111.4 (3)
Si1—S1—Li174.89 (11)C5—C6—H6A109.5
Li1i—S1—Li168.50 (17)C5—C6—H6B109.5
O1—Si1—O2104.46 (10)H6A—C6—H6B109.5
O1—Si1—O3110.23 (10)C5—C6—H6C109.5
O2—Si1—O3105.80 (10)H6A—C6—H6C109.5
O1—Si1—S1116.06 (8)H6B—C6—H6C109.5
O2—Si1—S1116.91 (8)C5—C7—H7A109.5
O3—Si1—S1102.94 (7)C5—C7—H7B109.5
O1—Si1—Li1123.58 (12)H7A—C7—H7B109.5
O2—Si1—Li1128.33 (12)C5—C7—H7C109.5
S1—Si1—Li159.82 (10)H7A—C7—H7C109.5
O4—Li1—O3122.6 (2)H7B—C7—H7C109.5
O4—Li1—S1i110.81 (19)C5—C8—H8A109.5
O3—Li1—S1i115.2 (2)C5—C8—H8B109.5
O4—Li1—S1112.28 (19)H8A—C8—H8B109.5
O3—Li1—S180.61 (15)C5—C8—H8C109.5
S1i—Li1—S1111.50 (17)H8A—C8—H8C109.5
O4—Li1—Li1i130.7 (3)H8B—C8—H8C109.5
O3—Li1—Li1i103.1 (2)O3—C9—C12110.6 (2)
S1i—Li1—Li1i56.86 (15)O3—C9—C10104.8 (2)
S1—Li1—Li1i54.64 (14)C12—C9—C10110.8 (2)
O4—Li1—Si1124.6 (2)O3—C9—C11108.4 (2)
S1i—Li1—Si1124.48 (18)C12—C9—C11111.2 (2)
Li1i—Li1—Si182.13 (19)C10—C9—C11110.7 (2)
C1—O1—Si1135.70 (17)C9—C10—H10A109.5
C5—O2—Si1130.84 (17)C9—C10—H10B109.5
C9—O3—Si1131.68 (16)H10A—C10—H10B109.5
C9—O3—Li1126.95 (19)C9—C10—H10C109.5
Si1—O3—Li1101.08 (15)H10A—C10—H10C109.5
O1—C1—C3108.3 (2)H10B—C10—H10C109.5
O1—C1—C2111.0 (2)C9—C11—H11A109.5
C3—C1—C2110.8 (3)C9—C11—H11B109.5
O1—C1—C4105.5 (2)H11A—C11—H11B109.5
C3—C1—C4110.4 (2)C9—C11—H11C109.5
C2—C1—C4110.7 (3)H11A—C11—H11C109.5
C1—C2—H2A109.5H11B—C11—H11C109.5
C1—C2—H2B109.5C9—C12—H12A109.5
H2A—C2—H2B109.5C9—C12—H12B109.5
C1—C2—H2C109.5H12A—C12—H12B109.5
H2A—C2—H2C109.5C9—C12—H12C109.5
H2B—C2—H2C109.5H12A—C12—H12C109.5
C1—C3—H3A109.5H12B—C12—H12C109.5
C1—C3—H3B109.5C14—O4—C13113.3 (2)
H3A—C3—H3B109.5C14—O4—Li1117.9 (2)
C1—C3—H3C109.5C13—O4—Li1118.5 (2)
H3A—C3—H3C109.5O4—C13—C13ii110.4 (3)
H3B—C3—H3C109.5O4—C13—H13A109.6
C1—C4—H4A109.5C13ii—C13—H13A109.6
C1—C4—H4B109.5O4—C13—H13B109.6
H4A—C4—H4B109.5C13ii—C13—H13B109.6
C1—C4—H4C109.5H13A—C13—H13B108.1
H4A—C4—H4C109.5O4—C14—H14A109.5
H4B—C4—H4C109.5O4—C14—H14B109.5
O2—C5—C8105.5 (2)H14A—C14—H14B109.5
O2—C5—C6110.5 (2)O4—C14—H14C109.5
C8—C5—C6110.1 (2)H14A—C14—H14C109.5
O2—C5—C7109.1 (2)H14B—C14—H14C109.5
C8—C5—C7110.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Li2(C12H27O3SSi)2(C4H8O)2][Li2(C12H27O3SSi)2(C4H10O2)]
Mr717.06331.49
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)200120
a, b, c (Å)9.789 (2), 20.083 (4), 11.746 (2)8.721 (2), 9.305 (2), 14.048 (3)
α, β, γ (°)90, 111.52 (3), 9082.24 (3), 72.91 (3), 64.01 (3)
V3)2148.2 (8)979.4 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.220.24
Crystal size (mm)0.5 × 0.4 × 0.20.4 × 0.2 × 0.2
Data collection
DiffractometerKuma KM4, point detector
diffractometer
Kuma KM4, Sapphire2 CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4228, 4007, 2806 5576, 3638, 3362
Rint0.0710.027
(sin θ/λ)max1)0.6080.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.220, 1.13 0.049, 0.127, 1.05
No. of reflections40073638
No. of parameters212191
No. of restraints20
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.500.54, 0.45

Computer programs: KM4 Software (Gałdecki et al., 1996), CrysAlis CCD (Oxford Diffraction, 2003), KM4 Software, CrysAlis RED (Oxford Diffraction, 2003), DATAPROC (Gałdecki et al., 1996), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), Please provide missing details.

Selected geometric parameters (Å, º) for (I) top
S1—Si12.0515 (16)Si1—O21.626 (3)
S1—Li1i2.429 (7)Si1—O31.666 (3)
S1—Li12.521 (7)Li1—O31.992 (7)
Si1—O11.625 (3)Li1—O41.929 (8)
Si1—S1—Li1i106.91 (17)O4—Li1—S1i120.2 (3)
Si1—S1—Li175.48 (16)O4—Li1—S1110.7 (3)
Li1i—S1—Li171.4 (3)O3—Li1—O4118.9 (4)
O3—Li1—S179.9 (2)S1i—Li1—S1108.6 (3)
O3—Li1—S1i110.9 (3)O4—Li1—Li1i137.0 (5)
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
S1—Si12.0629 (13)Si1—O21.633 (2)
S1—Li1i2.444 (4)Si1—O31.6587 (18)
S1—Li12.509 (4)Li1—O31.962 (5)
Si1—O11.6290 (19)Li1—O41.946 (5)
Si1—S1—Li1i108.86 (11)O4—Li1—S1112.28 (19)
Si1—S1—Li174.89 (11)O3—Li1—S180.61 (15)
Li1i—S1—Li168.50 (17)S1i—Li1—S1111.50 (17)
O4—Li1—O3122.6 (2)S1i—Li1—Li1i56.86 (15)
O4—Li1—S1i110.81 (19)S1—Li1—Li1i54.64 (14)
O3—Li1—S1i115.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds