Download citation
Download citation
link to html
The title manganese(III) phthalocyaninate (Pc) complex, viz. iodo­[phthalocyaninato(2-)]­manganese(III) hemi­(diiodine), [Mn(C32H16N8)I]·0.5I2 or (MnPcI)2·I2, was obtained from the reaction of pure powdered manganese with phthalo­nitrile under oxidation conditions of iodine vapour. The phthalocyaninato(2-) residue is not strictly planar and the Mn atom is five-coordinate, having distorted square-pyramidal geometry and residing 0.262 (2) Å above the plane defined by the four iso­indole N atoms of the phthalocyaninate macrocycle. The neutral I2 mol­ecule bridges the iodo­[phthalocyaninato(2-)]­manganese(III) mol­ecules, forming a centrosymmetric dimeric structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012387/gg1221sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012387/gg1221Isup2.hkl
Contains datablock I

CCDC reference: 245858

Comment top

The present study continues our investigations into the synthesis, characterization and stereochemistry of metallophthalocyaninate complexes, which have been obtained under oxidation conditions of iodine vapour. The I atoms in most iodine-doped metallophthalocyanines form linear chains of symmetrical I3 ions, which are usually disordered in the crystal (Janczak & Idemori, 2001). The I atoms can also be bonded directly to the central metal, yielding mono- or diiodo-metallophthalocyaninate complexes (Janczak & Kubiak, 1999a; Schweiger et al., 1998). Additionally, it has been stated that, besides these disordered and symmetrical triiodide ions, I atoms can form ordered but unsymmetrical I3 ions (Janczak & Kubiak, 1999b; Janczak & Idemori, 2002a). Against this background, we present here the crystal structure of the title compound, (I). \sch

Refinement of the crystal structure of (I), supported by a Raman experiment, clearly shows that this iodo[phthalocyaninato(2-)]manganese(III) complex (Fig. 1) crystallizes as a dimer, with a neutral I2 molecule forming a bridge (Fig. 2). The Raman spectrum exhibits, in the frequency region of 100–500 cm−1, one expected band at \v ~180 cm−1, for an I2 molecule which interacts weakly with the axial I atoms of neighbouring MnPcI molecules, forming a dimeric structure, (MnPcI)2·I2. The absence of any observable peak at ~200 cm−1 eliminates pure iodine as an impurity (Anderson & Sun, 1970). The interaction of the I2 molecule with two I atoms axially bonded to the central Mn results in the population of molecular orbitals with I—I antibonding character, hence a slight increase in the I—I bond length, a decrease in bond order and constant stretching forces are observed (Cowie et al., 1979; Marks et al., 1976). This Raman spectrum is characteristic of complexes containing weakly interacting I2 molecules (Teitelbaum et al., 1978, 1980; Mizuno et al., 1981).

The structure of (I) consists of two iodo[phthalocyaninato(2-)manganese(III) molecules bridged by an I2 molecule to form a dimer. The Mn atom is five-coordinate, four of which are the N-isoindole atoms while the fifth is an axial I atom, resulting in a distorted square-pyramidal geometry for the metal. The Mn atom lies 0.262 (2) Å above the weighted mean plane defined by the four N-isoindole atoms of Pc macroring. The phthalocyaninate ring is not strictly planar but has a saucer shape, since the I atom axially bound to the central Mn atom leads to a deviation of the macroring from planarity.

The Pc(2-) macrorings in the dimer are related by an inversion centre located at the centre of the I—I bond of the bridged I2 molecule. The I—I bond length in the bridging I2 molecule provides evidence for the existence of neutral I2 molecules in the crystal that only weakly interact with the axial I atoms of the MnPcI molecules, since it is slightly longer than the I—I distance observed in pure iodine; in the solid-state, this is 2.715 (6) Å (van Bolhuis et al., 1967).

A search of the Cambridge Structural Database (Version?; Allen, 2002) shows that relatively few structures have been reported having a neutral I2 molecule coordinated between two I atoms, and only three are metallophthalocyanine structures: GePcI2·I2 (Janczak Razik & Kubiak, 1999) and CrPcI2·I2 (Janczak & Idemori, 2002b), in which the neutral I2 molecules develop polymeric structures, and (FePcI)2·I2 (Janczak Kubiak & Hahn, 1999), which is isostructural with the present Mn complex, (I).

The I—I distance of the bridging I2 molecule in (I) is comparable with those found in the GePcI2·I2 [2.770 (2) Å], CrPcI2·I2 [2.773 (1) Å] and (FePcI)2I2 [2.766 (2) Å] systems, three phthalocyaninate complexes with a bridging I2 molecule between the two I atoms. Besides these complexes, a new iodine-doped phthalocyaninate complex has been reported in which the neutral I2 molecules interact with unsymmetrical I3 ions, forming zigzag ···I3···I2···I3···I2··· chains (Janczak, 2003). An interesting example of an I2 molecule interacting with two I3 ions and forming I3···I2···I3 aggregates is in the crystal structure of iodine-doped bis(phthalocyaninato)niobium(IV) (Donzello et al., 1998). A neutral I2 molecule acting as a bridge can also be found in the iodine-doped chloro[phthalocyaninato(2-)]iron(III) complex (FePcCl)2·I2 (Palmer et al., 1985). Additionally, the I2 molecule is present and `stapled' by two inter-ring C—C σ bonds in the (diphthalocyaninato)niobium(V) complex obtained in an IBr2 atmosphere. However, in that crystal, the I2 molecule interacts with the Br atom of the IBr2 ion via only one I atom, forming [I—I···Br—I—Br] aggregates (Janczak & Kubiak, 2003).

The I···I distance between the neutral I2 molecule and the I atom coordinated to the central Mn atom in (I) is a little shorter than the intermolecular distance (~3.50 Å) in pure iodine in the solid-state (van Bolhuis et al., 1967). This value demonstrates the interaction between the I2 molecule and the two MnPcI molecules, which are related by an inversion centre to formi a dimeric structure. The I1···I2—I2i···I1i sequence is almost linear. The Mn···Mn distance in the dimer is 12.045 (2) Å, while the shortest Mn···Mn distance of 5.610 (2) Å is observed between back-to-back partially overlapping neighbouring iodo[phthalocyaninato(2-)]manganese(III) molecules.

The two distances of ~3.25 and ~3.45 Å indicate the presence of ππ interactions between the back-to-back and face-to-face oriented and partially overlapping phthalocyaninato(2-) units (Fig. 2), since these values are comparable with the van der Waals distance of ~3.4 Å for an aromatic ring system (Pauling, 1960). The PcPc interactions overlapping with ππ interactions is a common feature in such structures (Nevin et al., 1987; Terekhov et al., 1996; Isago et al., 1997). The overlapping of π electrons between the Pc(2-) rings which form the conduction band (Ibers et al., 1982) is responsible for the observed relatively high electrical conductivity measured on a polycrystalline sample pressed into pellets (at room temperature, the conductivity is 3.3–4.8 × 10−4 Ω−1cm−1). Anisotropy of the conductivity and investigations of the magnetic and spectroscopic properties of (I) are in progress.

Experimental top

Crystals of the title compound were obtained by the direct reaction of pure powdered manganese with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapour at 493 K.

Refinement top

H atoms were placed in calculated positions and treated as riding, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C). Please check added text.

Computing details top

Data collection: KM-4 CCD Software (Kuma, 2001); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the independent unit of (I), with the atom-labelling scheme (the I2 dimer is shown). Displacement ellipsoids are shown at the ??% probability level.
[Figure 2] Fig. 2. The molecular packing in the unit cell of (I), showing the (MnPcI)2I2 dimeric unit.
Iodo[phthalocyaninato(2-)]manganese(III) hemi(diiodine) top
Crystal data top
[Mn(C32H16MnN8)I]·0.5I2Z = 2
Mr = 821.27F(000) = 790
Triclinic, P1Dx = 1.931 Mg m3
Dm = 1.93 Mg m3
Dm measured by flotation in a mixture of CHBr3/CHCl3
Hall symbol: -P 1Melting point: loses the I2 molecule K
a = 8.447 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.051 (2) ÅCell parameters from 2544 reflections
c = 13.218 (2) Åθ = 3.0–28°
α = 102.11 (2)°µ = 2.69 mm1
β = 91.61 (2)°T = 293 K
γ = 96.81 (2)°Parallelepiped, black-violet
V = 1412.6 (5) Å30.24 × 0.21 × 0.17 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
6769 independent reflections
Radiation source: fine-focus sealed tube4580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω scansh = 811
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
k = 1716
Tmin = 0.563, Tmax = 0.656l = 1717
16124 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0162P)2]
where P = (Fo2 + 2Fc2)/3
6769 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Mn(C32H16MnN8)I]·0.5I2γ = 96.81 (2)°
Mr = 821.27V = 1412.6 (5) Å3
Triclinic, P1Z = 2
a = 8.447 (2) ÅMo Kα radiation
b = 13.051 (2) ŵ = 2.69 mm1
c = 13.218 (2) ÅT = 293 K
α = 102.11 (2)°0.24 × 0.21 × 0.17 mm
β = 91.61 (2)°
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
6769 independent reflections
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
4580 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.656Rint = 0.045
16124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.00Δρmax = 0.82 e Å3
6769 reflectionsΔρmin = 1.07 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.07453 (5)0.19823 (3)0.85243 (3)0.05760 (14)
Mn10.34004 (10)0.33739 (6)0.84499 (6)0.0442 (2)
I20.02352 (6)0.05696 (4)0.60189 (4)0.1008 (2)
N10.4907 (5)0.2497 (3)0.8913 (3)0.0432 (12)
N20.4788 (5)0.3026 (3)1.0777 (3)0.0476 (13)
N30.3392 (5)0.4156 (3)0.9896 (3)0.0430 (12)
N40.1817 (5)0.5554 (3)0.9678 (3)0.0481 (13)
N50.2406 (5)0.4512 (3)0.8013 (3)0.0428 (12)
N60.2595 (5)0.4001 (3)0.6138 (3)0.0492 (13)
N70.3941 (5)0.2860 (3)0.7021 (3)0.0396 (12)
N80.5606 (5)0.1502 (3)0.7252 (4)0.0485 (13)
C10.5602 (6)0.1695 (4)0.8259 (5)0.0447 (15)
C20.6335 (6)0.1079 (4)0.8905 (5)0.0468 (16)
C30.7208 (7)0.0210 (4)0.8640 (5)0.0631 (19)
H30.73980.00760.79550.076*
C40.7757 (7)0.0186 (4)0.9440 (5)0.069 (2)
H40.83290.07620.92990.083*
C50.7484 (7)0.0244 (4)1.0441 (5)0.0604 (18)
H50.78580.00641.09600.072*
C60.6668 (7)0.1126 (4)1.0730 (5)0.0606 (18)
H60.65130.14131.14210.073*
C70.6131 (6)0.1530 (4)0.9969 (4)0.0417 (15)
C80.5189 (6)0.2415 (4)0.9921 (5)0.0425 (15)
C90.3984 (6)0.3848 (4)1.0771 (4)0.0423 (15)
C100.3558 (6)0.4535 (4)1.1685 (4)0.0451 (16)
C110.3862 (6)0.4564 (4)1.2763 (4)0.0423 (15)
H110.44820.40961.29740.051*
C120.3218 (7)0.5296 (4)1.3474 (5)0.0628 (19)
H120.33980.53221.41770.075*
C130.2260 (7)0.6032 (4)1.3153 (5)0.0627 (19)
H130.18190.65191.36480.075*
C140.1998 (6)0.6014 (4)1.2101 (4)0.0513 (17)
H140.14380.65101.18890.062*
C150.2575 (6)0.5258 (4)1.1398 (4)0.0470 (16)
C160.2560 (6)0.5018 (4)1.0238 (4)0.0424 (15)
C170.1805 (6)0.5339 (4)0.8638 (4)0.0448 (15)
C180.1175 (7)0.5986 (4)0.7991 (4)0.0528 (17)
C190.0449 (7)0.6931 (4)0.8234 (4)0.0575 (18)
H190.02520.72280.89150.069*
C200.0046 (7)0.7395 (4)0.7435 (5)0.068 (2)
H200.03980.80250.75780.081*
C210.0298 (7)0.6928 (4)0.6418 (5)0.0598 (18)
H210.00250.72460.58920.072*
C220.0994 (6)0.6029 (4)0.6154 (4)0.0525 (17)
H220.11970.57420.54720.063*
C230.1387 (6)0.5561 (4)0.6978 (4)0.0484 (16)
C240.2166 (7)0.4614 (4)0.6992 (5)0.0496 (16)
C250.3394 (7)0.3182 (4)0.6133 (4)0.0494 (16)
C260.3943 (7)0.2569 (4)0.5222 (5)0.0499 (16)
C270.3861 (7)0.2604 (4)0.4184 (5)0.066 (2)
H270.32690.30820.39660.080*
C280.4632 (8)0.1951 (4)0.3475 (5)0.070 (2)
H280.45320.19700.27770.084*
C290.5578 (8)0.1248 (4)0.3798 (5)0.076 (2)
H290.60930.08010.33090.092*
C300.5751 (7)0.1215 (4)0.4845 (5)0.0599 (18)
H300.63970.07590.50530.072*
C310.4954 (6)0.1867 (4)0.5574 (4)0.0457 (15)
C320.4893 (7)0.2043 (4)0.6664 (5)0.0503 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0650 (3)0.0376 (2)0.0730 (3)0.0074 (2)0.0011 (2)0.0184 (2)
Mn10.0584 (6)0.0310 (4)0.0468 (6)0.0129 (4)0.0014 (5)0.0122 (4)
I20.0904 (4)0.1021 (4)0.0988 (5)0.0039 (3)0.0008 (3)0.0020 (3)
N10.060 (3)0.025 (2)0.044 (3)0.008 (2)0.003 (3)0.004 (2)
N20.062 (3)0.033 (2)0.054 (3)0.023 (2)0.001 (3)0.015 (2)
N30.067 (3)0.027 (2)0.040 (3)0.018 (2)0.006 (2)0.011 (2)
N40.066 (3)0.042 (2)0.044 (3)0.022 (2)0.008 (3)0.020 (2)
N50.055 (3)0.028 (2)0.048 (3)0.015 (2)0.001 (3)0.009 (2)
N60.058 (3)0.044 (3)0.051 (3)0.013 (2)0.002 (3)0.018 (2)
N70.048 (3)0.033 (2)0.038 (3)0.008 (2)0.005 (2)0.008 (2)
N80.064 (3)0.042 (3)0.042 (3)0.015 (2)0.005 (3)0.008 (2)
C10.050 (4)0.037 (3)0.050 (4)0.002 (3)0.002 (3)0.017 (3)
C20.046 (4)0.036 (3)0.063 (4)0.001 (3)0.009 (3)0.024 (3)
C30.092 (5)0.053 (4)0.058 (4)0.033 (4)0.032 (4)0.026 (3)
C40.096 (5)0.028 (3)0.090 (5)0.031 (3)0.009 (4)0.011 (3)
C50.069 (4)0.052 (3)0.076 (5)0.031 (3)0.006 (4)0.036 (3)
C60.083 (5)0.047 (3)0.057 (4)0.016 (3)0.011 (4)0.019 (3)
C70.034 (3)0.042 (3)0.058 (4)0.017 (3)0.007 (3)0.023 (3)
C80.050 (4)0.023 (3)0.055 (4)0.004 (3)0.000 (3)0.010 (3)
C90.048 (4)0.036 (3)0.045 (4)0.002 (3)0.004 (3)0.017 (3)
C100.044 (4)0.030 (3)0.059 (4)0.007 (3)0.003 (3)0.004 (3)
C110.046 (4)0.040 (3)0.042 (4)0.002 (3)0.005 (3)0.014 (3)
C120.071 (5)0.058 (3)0.064 (5)0.007 (3)0.010 (4)0.020 (3)
C130.071 (5)0.047 (4)0.073 (5)0.031 (3)0.018 (4)0.006 (3)
C140.066 (4)0.033 (3)0.059 (4)0.003 (3)0.006 (4)0.020 (3)
C150.059 (4)0.030 (3)0.054 (4)0.001 (3)0.002 (3)0.017 (3)
C160.053 (4)0.033 (3)0.046 (4)0.009 (3)0.000 (3)0.016 (3)
C170.055 (4)0.035 (3)0.053 (4)0.015 (3)0.016 (3)0.022 (3)
C180.065 (4)0.040 (3)0.056 (4)0.018 (3)0.004 (4)0.011 (3)
C190.078 (5)0.053 (3)0.046 (4)0.015 (3)0.002 (4)0.017 (3)
C200.076 (5)0.062 (3)0.070 (5)0.026 (3)0.011 (4)0.016 (3)
C210.077 (5)0.054 (4)0.059 (4)0.024 (4)0.006 (4)0.027 (3)
C220.066 (4)0.044 (3)0.058 (4)0.021 (3)0.002 (3)0.029 (3)
C230.064 (4)0.035 (3)0.050 (4)0.017 (3)0.002 (3)0.014 (3)
C240.059 (4)0.034 (3)0.061 (4)0.010 (3)0.001 (4)0.021 (3)
C250.070 (4)0.028 (3)0.044 (4)0.023 (3)0.008 (3)0.008 (3)
C260.061 (4)0.027 (3)0.054 (4)0.011 (3)0.008 (4)0.011 (3)
C270.097 (5)0.046 (3)0.061 (5)0.022 (3)0.018 (4)0.010 (3)
C280.099 (6)0.059 (4)0.051 (4)0.003 (4)0.002 (4)0.011 (3)
C290.098 (6)0.057 (4)0.074 (5)0.023 (4)0.003 (5)0.004 (4)
C300.088 (5)0.049 (3)0.052 (4)0.026 (3)0.013 (4)0.020 (3)
C310.049 (4)0.043 (3)0.049 (4)0.005 (3)0.014 (3)0.017 (3)
C320.061 (4)0.037 (3)0.056 (4)0.005 (3)0.003 (4)0.016 (3)
Geometric parameters (Å, º) top
I1—Mn12.7312 (11)C10—C151.429 (6)
Mn1—N71.953 (4)C10—C111.434 (7)
Mn1—N51.969 (4)C11—C121.366 (7)
Mn1—N31.969 (4)C11—H110.9300
Mn1—N11.974 (4)C12—C131.447 (7)
I2—I2i2.7827 (12)C12—H120.9300
I1—I23.4238 (10)C13—C141.396 (7)
N1—C81.375 (6)C13—H130.9300
N1—C11.408 (6)C14—C151.353 (7)
N2—C81.318 (6)C14—H140.9300
N2—C91.337 (6)C15—C161.499 (7)
N3—C161.398 (6)C17—C181.454 (7)
N3—C91.401 (6)C18—C231.363 (7)
N4—C161.315 (6)C18—C191.423 (7)
N4—C171.343 (6)C19—C201.376 (7)
N5—C171.372 (6)C19—H190.9300
N5—C241.395 (6)C20—C211.388 (7)
N6—C241.327 (6)C20—H200.9300
N6—C251.329 (6)C21—C221.359 (6)
N7—C251.411 (6)C21—H210.9300
N7—C321.421 (6)C22—C231.406 (7)
N8—C11.302 (6)C22—H220.9300
N8—C321.331 (6)C23—C241.470 (6)
C1—C21.461 (7)C25—C261.421 (7)
C2—C31.414 (7)C26—C271.382 (7)
C2—C71.429 (7)C26—C311.458 (7)
C3—C41.364 (7)C27—C281.363 (7)
C3—H30.9300C27—H270.9300
C4—C51.362 (7)C28—C291.407 (7)
C4—H40.9300C28—H280.9300
C5—C61.402 (7)C29—C301.398 (8)
C5—H50.9300C29—H290.9300
C6—C71.323 (7)C30—C311.390 (7)
C6—H60.9300C30—H300.9300
C7—C81.489 (6)C31—C321.414 (7)
C9—C101.428 (7)
N7—Mn1—N589.51 (17)C13—C12—H12119.4
N7—Mn1—N3164.40 (17)C14—C13—C12120.1 (5)
N5—Mn1—N388.61 (17)C14—C13—H13120.0
N7—Mn1—N189.30 (17)C12—C13—H13120.0
N5—Mn1—N1165.03 (17)C15—C14—C13118.6 (5)
N3—Mn1—N188.54 (17)C15—C14—H14120.7
N7—Mn1—I199.69 (12)C13—C14—H14120.7
N5—Mn1—I1100.08 (12)C14—C15—C10122.8 (5)
N3—Mn1—I195.89 (12)C14—C15—C16133.2 (5)
N1—Mn1—I194.83 (12)C10—C15—C16103.8 (5)
I1—I2—I2i178.97 (3)N4—C16—N3128.2 (5)
C8—N1—C1108.2 (4)N4—C16—C15122.2 (5)
C8—N1—Mn1125.4 (3)N3—C16—C15109.5 (4)
C1—N1—Mn1125.1 (4)N4—C17—N5127.0 (5)
C8—N2—C9122.7 (5)N4—C17—C18124.2 (5)
C16—N3—C9107.8 (4)N5—C17—C18108.7 (5)
C16—N3—Mn1125.3 (3)C23—C18—C19118.7 (5)
C9—N3—Mn1126.1 (3)C23—C18—C17109.2 (5)
C16—N4—C17122.2 (4)C19—C18—C17132.1 (5)
C17—N5—C24107.2 (4)C20—C19—C18118.3 (5)
C17—N5—Mn1127.2 (4)C20—C19—H19120.9
C24—N5—Mn1125.6 (3)C18—C19—H19120.9
C24—N6—C25124.0 (5)C19—C20—C21120.5 (5)
C25—N7—C32106.3 (4)C19—C20—H20119.8
C25—N7—Mn1126.9 (3)C21—C20—H20119.8
C32—N7—Mn1126.6 (4)C22—C21—C20123.0 (5)
C1—N8—C32124.0 (5)C22—C21—H21118.5
N8—C1—N1127.6 (5)C20—C21—H21118.5
N8—C1—C2124.1 (5)C21—C22—C23115.8 (5)
N1—C1—C2108.2 (5)C21—C22—H22122.1
C3—C2—C7120.1 (5)C23—C22—H22122.1
C3—C2—C1131.0 (5)C18—C23—C22123.7 (5)
C7—C2—C1108.8 (5)C18—C23—C24105.3 (5)
C4—C3—C2116.6 (5)C22—C23—C24131.0 (5)
C4—C3—H3121.7N6—C24—N5127.7 (5)
C2—C3—H3121.7N6—C24—C23122.7 (5)
C5—C4—C3121.3 (5)N5—C24—C23109.6 (5)
C5—C4—H4119.4N6—C25—N7125.4 (5)
C3—C4—H4119.4N6—C25—C26123.8 (5)
C4—C5—C6123.4 (6)N7—C25—C26110.6 (4)
C4—C5—H5118.3C27—C26—C25134.3 (5)
C6—C5—H5118.3C27—C26—C31119.2 (5)
C7—C6—C5116.4 (6)C25—C26—C31106.0 (5)
C7—C6—H6121.8C28—C27—C26121.3 (6)
C5—C6—H6121.8C28—C27—H27119.3
C6—C7—C2122.0 (5)C26—C27—H27119.3
C6—C7—C8134.2 (5)C27—C28—C29120.0 (6)
C2—C7—C8103.7 (5)C27—C28—H28120.0
N2—C8—N1128.2 (5)C29—C28—H28120.0
N2—C8—C7120.7 (5)C30—C29—C28120.7 (6)
N1—C8—C7111.1 (5)C30—C29—H29119.6
N2—C9—N3126.5 (5)C28—C29—H29119.6
N2—C9—C10124.1 (5)C31—C30—C29119.7 (6)
N3—C9—C10109.4 (4)C31—C30—H30120.1
C9—C10—C15109.3 (5)C29—C30—H30120.1
C9—C10—C11131.8 (5)C30—C31—C32134.1 (6)
C15—C10—C11118.8 (5)C30—C31—C26118.8 (5)
C12—C11—C10118.4 (5)C32—C31—C26107.1 (5)
C12—C11—H11120.8N8—C32—C31124.2 (5)
C10—C11—H11120.8N8—C32—N7125.9 (5)
C11—C12—C13121.2 (6)C31—C32—N7109.9 (5)
C11—C12—H12119.4
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C32H16MnN8)I]·0.5I2
Mr821.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.447 (2), 13.051 (2), 13.218 (2)
α, β, γ (°)102.11 (2), 91.61 (2), 96.81 (2)
V3)1412.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.24 × 0.21 × 0.17
Data collection
DiffractometerKuma KM-4 with CCD area-detector
diffractometer
Absorption correctionAnalytical
face-indexed (SHELXTL; Sheldrick, 1990)
Tmin, Tmax0.563, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
16124, 6769, 4580
Rint0.045
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.079, 1.00
No. of reflections6769
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.07

Computer programs: KM-4 CCD Software (Kuma, 2001), KM-4 CCD Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
I1—Mn12.7312 (11)Mn1—N11.974 (4)
Mn1—N71.953 (4)I2—I2i2.7827 (12)
Mn1—N51.969 (4)I1—I23.4238 (10)
Mn1—N31.969 (4)
N7—Mn1—N589.51 (17)N7—Mn1—I199.69 (12)
N7—Mn1—N3164.40 (17)N5—Mn1—I1100.08 (12)
N5—Mn1—N388.61 (17)N3—Mn1—I195.89 (12)
N7—Mn1—N189.30 (17)N1—Mn1—I194.83 (12)
N5—Mn1—N1165.03 (17)I1—I2—I2i178.97 (3)
N3—Mn1—N188.54 (17)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds