Download citation
Download citation
link to html
Syntheses and X-ray structural investigations have been carried out for the two title compounds, C20H16N2O2, (IIIa), and C22H20N2O2, (IIIb). In (IIIa), the heterocyclic ring adopts a sofa conformation, while in (IIIb), the ring has a flattened boat conformation. In both mol­ecules, the fused cyclo­hexenone ring adopts a sofa conformation. The dihedral angles between these two flat fragments are 3.5 (2) and 17.5 (2)° in (IIIa) and (IIIb), respectively. The dihedral angles between the pseudo-axial naphthalene substituents and the planes of the pyran rings are 90.9 (1) and 96.7 (1)°, respectively. In the crystal structure of (IIIa), intermolecular N—H...N and N—H...O hydrogen bonds link the mol­ecules into infinite tapes along the b axis, while mol­ecules of (IIIb) form centrosymmetric dimers via N—H...N hydrogen bonds, with only one H atom of the NH2 donor group taking part in hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006924/gg1213sup1.cif
Contains datablocks IIIa, IIIb, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006924/gg1213IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006924/gg1213IIIbsup3.hkl
Contains datablock IIIb

CCDC references: 241229; 241230

Comment top

The present investigation is a continuation of our work that includes syntheses and structural studies of unsaturated nitriles as potential non-linear optical materials (Nesterov et al., 2001a,b) and heterocyclic compounds that can be obtained using such nitriles (Nesterov & Viltchinskaia, 2001). Some 4H-pyran derivatives are potential bioactive compounds, for instance, as calcium antagonists (Suarez et al., 2002). Such heterocyclic compounds have structures similar to the well known 1,4-dihydropyridines (Triggle et al., 1980; Bossert et al., 1981; Kokubun & Reuter, 1984; Bossert et al., 1989; Wang et al., 1989), which exhibit high bioactivities. Thus, there has been a growing interest in the structures of 4H-pyran derivatives (Bellanato et al., 1987; Florencio & Garcia-Blanco, 1987; Bellanato et al., 1988; Lokaj et al., 1990; Marco et al., 1993).

Syntheses and X-ray structural investigations have been carried out for the title compounds, (IIIa) and (IIIb) (Figs. 1 and 2), which were synthezized from (1-naphthylmethylene)malononitrile, (I) (Nesterov et al., 2001a). Most of the geometric parameters in the two molecules are very similar to the standard values (Allen et al., 1987) and very close to our and literature data for similar 4H-pyran derivatives (Sharanina et al., 1986; Klokol et al., 1987; Martin-Leon et al., 1990; Shestopalov et al., 1991; Samet et al., 1996; Kislyi et al., 1999; Nesterov & Viltchinskaia, 2001; Shestopalov et al., 2002; Suarez et al., 2002; Shestopalov et al., 2003).

X-ray analysis shows that the molecules of (IIIa) and (IIIb) have slightly different molecular structures. The pyran ring in (IIIa) adopts a `sofa' conformation; atom C4 lies 0.100 (1) Å out of the O1/C2/C3/C5/C10 plane [planar within 0.003 (1) Å] and the dihedral angle between this plane and the C3/C4/C5 plane is 6.5 (2)°. However, (IIIb) has a flattened boat conformation, with atoms O1 and C4 deviating from the C2/C3/C5/C10 plane [planar within 0.015 (2) Å] by 0.186 (2) and 0.340 (2) Å, respectively, and the heterocycle bending along the O1···C4, C2···C10 and C3···C5 lines by 24.5 (2), 15.1 (2) and 22.0 (2)°, respectively. Our previous work and literature data show that the pyran ring is flexible but usually adopts a flattened boat conformation.

In both molecules, the fused cyclohexanone ring adopts a sofa conformation; in (IIIa) and (IIIb), atom C8 lies 0.572 (1) and 0.620 (2) Å, resepctively, out of the C7/C6/C5/C10/C9 plane (planar within 0.005 (1) and 0.040 (1) Å, respectively). The dihedral angles between these two flat fragments are 3.5 (2) and 17.5 (2)°, respectively. In both molecules, the bulky naphthalene substituents occupy pseudo-axial positions, forming dihedral angles with the flat moieties of the pyran rings of 90.9 (1) and 96.7 (1)°, respectively. Such mutual orientation of these fragments and the flatness of the heterocyclic rings leads to intramolecular H4A···H19A steric interactions [2.01 Å in (IIIa) and 2.17 Å in (IIIb)]. These contacts are shorter than the sum of the van der Waals radii of two H atoms (Rowland & Taylor, 1996), especially in the case of (IIIa). In addition, (IIIb) contains a short intramolecular contact [C1···C19 = 3.160 (2) Å] that is shorter than the sum of the van der Waals radii (Rowland & Taylor, 1996). Such steric hindrances cause elongation of the C4—C11 bond lengths to 1.534 (3) and 1.539 (2) Å in (IIIa) an (IIIb), respectively, whereas the neighbouring Csp3—Csp2 distances are only slightly longer than the standard value (Allen et al., 1987).

As we described previously for related compounds (Sharanina et al., 1986; Klokol et al., 1987; Shestopalov et al., 1991; Samet et al., 1996; Kislyi et al., 1999; Nesterov & Viltchinskaia, 2001; Shestopalov et al., 2002; Shestopalov et al., 2003), there is conjugation between NH2 donor and CN acceptor groups via the C2=C3 double bond. Thus, in both molecules, the C2—N1 distances are shorter than the average conjugated C—N single bond (1.370 Å) found in the Cambridge Structural Database (Allen, 2002). However, variations of other bond lengths in these flat fragments are less distinct.

In the crystal structure of (IIIa), intermolecular N—H···N and N—H···O hydrogen bonds link molecules into infinite tapes along the b axis (Fig. 3), while molecules of (IIIb) form only centrosymmetric dimers via N—H···N hydrogen bonds (Fig. 4), involving only one of the NH donor atoms. These dimers are further linked by weak C—H···O contacts along the a axis.

Analysis of the crystal packing showed that there is only one intermolecular steric contact in (IIIa). This contact, C13···C18(1 − x, y, z), is shorter than the sum of the van der Waals radii (Rowland & Taylor, 1996). The other geometric parameters in the investigated molecules have standard values (Allen et al., 1987).

Experimental top

Compounds (IIIa) and (IIIb) were obtained by the reaction of (1-naphthylmethylene)malononitrile, (I) (Nesterov et al., 2001a), with 1,3-diketones (IIa) and (IIb) according to a literature procedure (Nesterov & Viltchinskaia, 2001). The precipitates were isolated and recrystallized from acetonitrile [m.p. 501 K, yield 95% for (IIIa), and 484 K, 92% for (IIIb)]. Crystals were grown by slow isothermic evaporation of CH3CN solutions of (IIIa) and (IIIb). For (IIIa), 1H NMR (DMDO-d6, 300 MHz): δ 8.38 (d, 1H, J = 8.1 Hz), 7.91 (dd, 1H, J = 7.7, 1.5 Hz), 7.76 (d, 1H, J = 8.1 Hz), 7.56 (td, 1H, J = 6.6, 1.5), 7.51 (td, 1H, J = 6.6, 1.1 Hz), 7.43 (t, 1H, J = 7.5 Hz), 7.24 (dd, 1H, J = 7.4, 1.1 Hz), 6.95 (br s, 2H, NH2), 5.14 (s, 1H, H4), 2.68 (m, 2H, H6), 2.25 (m, 2H, H8), 1.95 (m, 2H, H7); 13C NMR (CDCl3, 75 MHz): δ 195.9 (C5), 164.8 (C8a), 158.4 (C2), 142.0, 133.3, 130.7, 128.3, 126.9, 125.8 (2 C), 125.6, 124.9, 123.6 (naphthalene), 119.7 (CN), 114.5 (C4a), 58.8 (C3), 36.3 (C6), 30.0 (C4), 26.5 (C8), 19.9 (C7). For (IIIb), 1H NMR (DMDO-d6, 300 MHz): δ 8.36 (d, 1H, J = 8.5 Hz), 7.91 (dd, 1H, J = 7.4, 1.8 Hz), 7.76 (d, 1H, J = 8.1 Hz), 7.56 (td, 1H, J = 7.0, 1.5 Hz), 7.51 (td, 1H, J = 6.6, 1.1 Hz), 7.44 (t, 1H, J = 7.7 Hz), 7.23 (d, 1H, J = 7.4 Hz), 6.96 (br s, 2H, NH2), 5.13 (s, 1H, H4), 2.58 (s, 2H, H6), 2.23 (d, 1H, H8a, J = 16.2 Hz), 2.06 (d, 1H, H8b, J = 15.8 Hz), 1.05 (s, 3H, CH3), 0.98 (s, 3H, CH3); 13C NMR (CDCl3, 75 MHz): δ 195.7 (C5), 162.7 (C8a), 158.4 (C2), 141.9, 133.3, 130.7, 128.3, 126.9, 125.8, 125.63, 125.56, 125.1, 123.6 (naphthalene), 119.6 (CN), 113.4 (C4a), 58.9 (C3), 50.0 (C6), 39.8 (C8), 31.8 (C7), 30.1 (C4), 28.4 (CH3), 27.0 (CH3).

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf–Nonuis, 1989); cell refinement: CAD-4 Software; data reduction: SHELXTL (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A view of (IIIa), showing the atom-numbering used. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of (IIIb), showing the atom-numbering used. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. : A projection of the crystal packing of (IIIa) along the a axis.
[Figure 4] Fig. 4. : A projection of the crystal packing of (IIIb) along the a axis.
(IIIa) 2-Amino-4-(1-naphthyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile top
Crystal data top
C20H16N2O2F(000) = 664
Mr = 316.35Dx = 1.361 Mg m3
Monoclinic, P21/nMelting point: 501 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.4410 (13) ÅCell parameters from 24 reflections
b = 9.6330 (19) Åθ = 12–13°
c = 24.911 (5) ŵ = 0.09 mm1
β = 92.98 (3)°T = 295 K
V = 1543.5 (5) Å3Prism, colorless
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.061
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.6°
Graphite monochromatorh = 08
θ/2θ scansk = 012
3619 measured reflectionsl = 3131
3318 independent reflections3 standard reflections every 97 reflections
2287 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.085P)2 + 0.45P]
where P = (Fo2 + 2Fc2)/3
3318 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H16N2O2V = 1543.5 (5) Å3
Mr = 316.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4410 (13) ŵ = 0.09 mm1
b = 9.6330 (19) ÅT = 295 K
c = 24.911 (5) Å0.50 × 0.40 × 0.30 mm
β = 92.98 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.061
3619 measured reflections3 standard reflections every 97 reflections
3318 independent reflections intensity decay: 3%
2287 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
3318 reflectionsΔρmin = 0.24 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms, 0.97 Å for CH2, 0.98 Å for CH, 0.86 Å for NH2 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7842 (2)0.05532 (13)0.04423 (6)0.0419 (4)
O20.1552 (2)0.13142 (16)0.12749 (7)0.0534 (4)
N10.9767 (3)0.20903 (18)0.00261 (7)0.0475 (5)
H1A1.00970.29020.00850.057*
H1B1.04910.13790.00570.057*
N20.7643 (3)0.54278 (19)0.02512 (9)0.0554 (5)
C10.7258 (3)0.4310 (2)0.03638 (8)0.0379 (4)
C20.8107 (3)0.19329 (18)0.03322 (7)0.0346 (4)
C30.6815 (3)0.29156 (18)0.04988 (7)0.0328 (4)
C40.5021 (3)0.26263 (18)0.08544 (7)0.0322 (4)
H4A0.37390.29960.06800.039*
C50.4804 (3)0.10746 (18)0.09143 (7)0.0321 (4)
C60.2958 (3)0.0534 (2)0.11718 (8)0.0381 (4)
C70.2842 (4)0.0995 (2)0.12787 (11)0.0589 (7)
H7A0.22280.11340.16220.071*
H7B0.19210.14140.10040.071*
C80.4867 (4)0.1729 (2)0.12888 (11)0.0592 (6)
H8A0.46170.27220.12860.071*
H8B0.56490.15040.16210.071*
C90.6153 (3)0.1363 (2)0.08213 (9)0.0462 (5)
H9A0.75650.16930.08900.055*
H9B0.55820.18160.04990.055*
C100.6174 (3)0.01656 (19)0.07370 (7)0.0339 (4)
C110.5372 (3)0.33147 (18)0.14068 (7)0.0329 (4)
C120.7123 (3)0.2976 (2)0.17090 (8)0.0404 (5)
H12A0.80410.23330.15750.048*
C130.7587 (4)0.3566 (2)0.22170 (9)0.0490 (5)
H13A0.87980.33210.24140.059*
C140.6246 (4)0.4501 (2)0.24190 (9)0.0512 (6)
H14A0.65500.48910.27550.061*
C150.4408 (4)0.4886 (2)0.21269 (8)0.0434 (5)
C160.3004 (4)0.5849 (2)0.23369 (10)0.0566 (7)
H16A0.33080.62400.26730.068*
C170.1224 (4)0.6213 (2)0.20577 (12)0.0636 (7)
H17A0.03100.68360.22050.076*
C180.0759 (4)0.5649 (2)0.15439 (12)0.0578 (6)
H18A0.04520.59140.13510.069*
C190.2071 (3)0.4716 (2)0.13260 (10)0.0467 (5)
H19A0.17370.43510.09870.056*
C200.3938 (3)0.42953 (19)0.16079 (8)0.0368 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (8)0.0265 (7)0.0560 (9)0.0005 (5)0.0259 (7)0.0010 (6)
O20.0412 (8)0.0495 (9)0.0716 (11)0.0032 (7)0.0236 (7)0.0045 (8)
N10.0532 (11)0.0332 (9)0.0592 (11)0.0007 (7)0.0334 (9)0.0013 (8)
N20.0594 (12)0.0343 (10)0.0748 (14)0.0017 (8)0.0245 (10)0.0114 (9)
C10.0415 (11)0.0328 (10)0.0408 (10)0.0015 (8)0.0152 (8)0.0029 (8)
C20.0415 (10)0.0265 (9)0.0368 (9)0.0035 (7)0.0126 (8)0.0005 (7)
C30.0381 (10)0.0272 (8)0.0342 (9)0.0014 (7)0.0113 (7)0.0018 (7)
C40.0346 (9)0.0269 (8)0.0360 (10)0.0007 (7)0.0103 (7)0.0007 (7)
C50.0373 (10)0.0277 (9)0.0322 (9)0.0047 (7)0.0088 (7)0.0002 (7)
C60.0391 (10)0.0359 (10)0.0402 (10)0.0052 (8)0.0101 (8)0.0005 (8)
C70.0606 (14)0.0393 (12)0.0801 (17)0.0100 (10)0.0352 (13)0.0047 (11)
C80.0702 (16)0.0380 (12)0.0718 (15)0.0008 (11)0.0265 (13)0.0150 (11)
C90.0524 (12)0.0258 (10)0.0620 (13)0.0008 (8)0.0183 (10)0.0016 (9)
C100.0378 (10)0.0281 (9)0.0368 (9)0.0044 (7)0.0120 (8)0.0002 (7)
C110.0363 (9)0.0269 (8)0.0366 (9)0.0045 (7)0.0122 (7)0.0013 (7)
C120.0423 (11)0.0381 (10)0.0416 (10)0.0002 (8)0.0093 (8)0.0012 (8)
C130.0520 (13)0.0511 (13)0.0436 (11)0.0062 (10)0.0003 (10)0.0005 (10)
C140.0721 (16)0.0454 (12)0.0364 (11)0.0138 (11)0.0077 (10)0.0053 (9)
C150.0584 (13)0.0309 (10)0.0431 (11)0.0088 (9)0.0237 (10)0.0026 (8)
C160.0789 (18)0.0387 (11)0.0556 (13)0.0070 (11)0.0364 (13)0.0114 (10)
C170.0679 (17)0.0369 (12)0.0906 (19)0.0019 (11)0.0472 (15)0.0092 (12)
C180.0471 (13)0.0404 (12)0.0880 (18)0.0056 (10)0.0225 (12)0.0013 (12)
C190.0445 (12)0.0370 (10)0.0597 (13)0.0023 (9)0.0135 (10)0.0046 (10)
C200.0423 (10)0.0274 (9)0.0422 (10)0.0048 (8)0.0171 (8)0.0013 (7)
Geometric parameters (Å, º) top
O1—C21.370 (2)C9—C101.487 (3)
O1—C101.384 (2)C9—H9A0.9700
O2—C61.215 (2)C9—H9B0.9700
N1—C21.353 (2)C11—C121.363 (3)
N1—H1A0.8600C11—C201.430 (3)
N1—H1B0.8600C12—C131.406 (3)
N2—C11.143 (3)C12—H12A0.9300
C1—C31.417 (2)C13—C141.362 (3)
C2—C31.341 (3)C13—H13A0.9300
C3—C41.518 (2)C14—C151.407 (3)
C4—C51.509 (2)C14—H14A0.9300
C4—C111.534 (3)C15—C161.415 (3)
C4—H4A0.9800C15—C201.430 (3)
C5—C101.335 (3)C16—C171.356 (4)
C5—C61.475 (2)C16—H16A0.9300
C6—C71.500 (3)C17—C181.408 (4)
C7—C81.483 (3)C17—H17A0.9300
C7—H7A0.9700C18—C191.365 (3)
C7—H7B0.9700C18—H18A0.9300
C8—C91.506 (3)C19—C201.420 (3)
C8—H8A0.9700C19—H19A0.9300
C8—H8B0.9700
C2—O1—C10118.46 (14)C8—C9—H9A109.5
C2—N1—H1A120.0C10—C9—H9B109.5
C2—N1—H1B120.0C8—C9—H9B109.5
H1A—N1—H1B120.0H9A—C9—H9B108.1
N2—C1—C3178.9 (2)C5—C10—O1122.93 (16)
C3—C2—N1128.06 (17)C5—C10—C9126.28 (17)
C3—C2—O1122.50 (17)O1—C10—C9110.79 (16)
N1—C2—O1109.40 (16)C12—C11—C20119.74 (17)
C2—C3—C1117.36 (17)C12—C11—C4118.12 (16)
C2—C3—C4123.70 (16)C20—C11—C4122.14 (17)
C1—C3—C4118.78 (15)C11—C12—C13122.09 (19)
C5—C4—C3108.47 (15)C11—C12—H12A119.0
C5—C4—C11110.46 (15)C13—C12—H12A119.0
C3—C4—C11111.28 (15)C14—C13—C12119.4 (2)
C5—C4—H4A108.9C14—C13—H13A120.3
C3—C4—H4A108.9C12—C13—H13A120.3
C11—C4—H4A108.9C13—C14—C15121.1 (2)
C10—C5—C6118.32 (16)C13—C14—H14A119.5
C10—C5—C4123.42 (16)C15—C14—H14A119.5
C6—C5—C4118.25 (16)C14—C15—C16121.2 (2)
O2—C6—C5120.05 (18)C14—C15—C20119.71 (19)
O2—C6—C7121.70 (18)C16—C15—C20119.1 (2)
C5—C6—C7118.20 (17)C17—C16—C15121.3 (2)
C8—C7—C6114.82 (19)C17—C16—H16A119.4
C8—C7—H7A108.6C15—C16—H16A119.4
C6—C7—H7A108.6C16—C17—C18120.0 (2)
C8—C7—H7B108.6C16—C17—H17A120.0
C6—C7—H7B108.6C18—C17—H17A120.0
H7A—C7—H7B107.5C19—C18—C17120.6 (2)
C7—C8—C9113.2 (2)C19—C18—H18A119.7
C7—C8—H8A108.9C17—C18—H18A119.7
C9—C8—H8A108.9C18—C19—C20121.1 (2)
C7—C8—H8B108.9C18—C19—H19A119.4
C9—C8—H8B108.9C20—C19—H19A119.4
H8A—C8—H8B107.8C19—C20—C11124.15 (18)
C10—C9—C8110.53 (17)C19—C20—C15117.87 (18)
C10—C9—H9A109.5C11—C20—C15117.97 (18)
C10—O1—C2—C30.0 (3)C8—C9—C10—C520.0 (3)
C10—O1—C2—N1177.82 (16)C8—C9—C10—O1159.99 (19)
N1—C2—C3—C13.1 (3)C5—C4—C11—C1262.7 (2)
O1—C2—C3—C1179.51 (18)C3—C4—C11—C1257.8 (2)
N1—C2—C3—C4178.48 (18)C5—C4—C11—C20117.69 (18)
O1—C2—C3—C44.2 (3)C3—C4—C11—C20121.78 (18)
C2—C3—C4—C57.6 (3)C20—C11—C12—C130.4 (3)
C1—C3—C4—C5177.11 (17)C4—C11—C12—C13179.24 (18)
C2—C3—C4—C11114.1 (2)C11—C12—C13—C140.5 (3)
C1—C3—C4—C1161.2 (2)C12—C13—C14—C150.1 (3)
C3—C4—C5—C108.1 (3)C13—C14—C15—C16179.6 (2)
C11—C4—C5—C10114.1 (2)C13—C14—C15—C200.4 (3)
C3—C4—C5—C6170.49 (16)C14—C15—C16—C17179.5 (2)
C11—C4—C5—C667.3 (2)C20—C15—C16—C170.4 (3)
C10—C5—C6—O2170.5 (2)C15—C16—C17—C181.1 (3)
C4—C5—C6—O28.2 (3)C16—C17—C18—C191.1 (4)
C10—C5—C6—C77.0 (3)C17—C18—C19—C200.3 (3)
C4—C5—C6—C7174.3 (2)C18—C19—C20—C11179.4 (2)
O2—C6—C7—C8162.4 (2)C18—C19—C20—C150.4 (3)
C5—C6—C7—C820.1 (3)C12—C11—C20—C19179.89 (18)
C6—C7—C8—C947.1 (3)C4—C11—C20—C190.5 (3)
C7—C8—C9—C1046.0 (3)C12—C11—C20—C150.1 (3)
C6—C5—C10—O1173.28 (17)C4—C11—C20—C15179.70 (16)
C4—C5—C10—O15.3 (3)C14—C15—C20—C19179.75 (18)
C6—C5—C10—C96.7 (3)C16—C15—C20—C190.3 (3)
C4—C5—C10—C9174.6 (2)C14—C15—C20—C110.5 (3)
C2—O1—C10—C50.6 (3)C16—C15—C20—C11179.45 (18)
C2—O1—C10—C9179.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.223.016 (3)153
N1—H1B···O1ii0.862.383.226 (3)170
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z.
(IIIb) 2-amino-7,7-dimethyl-4-(1-naphthyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene- 3-carbonitrile top
Crystal data top
C22H20N2O2F(000) = 728
Mr = 344.40Dx = 1.288 Mg m3
Monoclinic, P21/nMelting point: 484 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.456 (3) ÅCell parameters from 24 reflections
b = 14.854 (7) Åθ = 13–14°
c = 16.133 (9) ŵ = 0.08 mm1
β = 96.16 (2)°T = 298 K
V = 1776.4 (15) Å3Prism, colorless
Z = 40.55 × 0.45 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.5°
Graphite monochromatorh = 09
θ/2θ scansk = 019
4563 measured reflectionsl = 2121
4255 independent reflections3 standard reflections every 97 reflections
3299 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.06P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
4255 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H20N2O2V = 1776.4 (15) Å3
Mr = 344.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.456 (3) ŵ = 0.08 mm1
b = 14.854 (7) ÅT = 298 K
c = 16.133 (9) Å0.55 × 0.45 × 0.30 mm
β = 96.16 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
4563 measured reflections3 standard reflections every 97 reflections
4255 independent reflections intensity decay: 3%
3299 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
4255 reflectionsΔρmin = 0.18 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms, 0.97 Å for CH2, 0.98 Å for CH, 0.86 Å for NH2and 0.96 Å for CH3 groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03730 (14)0.17320 (8)0.35918 (7)0.0501 (3)
O20.39171 (15)0.39902 (9)0.25107 (8)0.0581 (3)
N10.1342 (2)0.04963 (9)0.42773 (9)0.0590 (4)
H1A0.21340.01480.45380.071*
H1B0.02270.03370.42100.071*
N20.6250 (2)0.06985 (10)0.45543 (12)0.0704 (5)
C10.5008 (2)0.11197 (10)0.43221 (10)0.0481 (4)
C20.1847 (2)0.12901 (10)0.39753 (9)0.0438 (3)
C30.35144 (19)0.16558 (9)0.40175 (8)0.0403 (3)
C40.38082 (17)0.26304 (9)0.37565 (8)0.0357 (3)
H4A0.49270.26540.34890.043*
C50.22615 (17)0.28676 (9)0.31091 (8)0.0354 (3)
C60.25066 (18)0.35663 (10)0.24856 (9)0.0391 (3)
C70.09945 (19)0.36981 (11)0.17965 (9)0.0452 (3)
H7A0.11570.32790.13490.054*
H7B0.10720.43020.15760.054*
C80.08908 (18)0.35615 (10)0.20703 (8)0.0400 (3)
C90.09483 (19)0.26327 (10)0.24800 (9)0.0426 (3)
H9A0.20100.25960.27770.051*
H9B0.10580.21750.20490.051*
C100.06802 (18)0.24414 (9)0.30709 (8)0.0379 (3)
C110.40036 (17)0.32780 (9)0.45053 (8)0.0349 (3)
C120.25813 (19)0.37887 (10)0.46955 (9)0.0419 (3)
H12A0.15010.37600.43500.050*
C130.2698 (2)0.43596 (11)0.53992 (10)0.0499 (4)
H13A0.17130.47110.55010.060*
C140.4236 (2)0.43977 (11)0.59268 (10)0.0495 (4)
H14A0.42960.47670.63950.059*
C150.5748 (2)0.38784 (10)0.57677 (9)0.0426 (3)
C160.7364 (2)0.39001 (12)0.63227 (11)0.0574 (4)
H16A0.74150.42510.68020.069*
C170.8832 (2)0.34170 (14)0.61626 (12)0.0640 (5)
H17A0.98720.34300.65360.077*
C180.8786 (2)0.28992 (13)0.54372 (11)0.0573 (4)
H18A0.98060.25790.53270.069*
C190.72578 (19)0.28585 (10)0.48869 (10)0.0440 (3)
H19A0.72600.25160.44040.053*
C200.56721 (18)0.33288 (9)0.50394 (8)0.0373 (3)
C210.1316 (2)0.43017 (13)0.26767 (11)0.0584 (4)
H21A0.04330.42920.31560.088*
H21B0.24930.42020.28490.088*
H21C0.12890.48770.24060.088*
C220.2308 (2)0.35838 (13)0.13085 (10)0.0553 (4)
H22A0.22840.41610.10430.083*
H22B0.34820.34820.14830.083*
H22C0.20450.31220.09230.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (6)0.0522 (6)0.0526 (6)0.0066 (5)0.0003 (5)0.0160 (5)
O20.0428 (6)0.0695 (8)0.0608 (7)0.0112 (5)0.0008 (5)0.0188 (6)
N10.0652 (9)0.0463 (8)0.0617 (9)0.0126 (6)0.0108 (7)0.0136 (6)
N20.0684 (10)0.0438 (8)0.0931 (12)0.0088 (7)0.0183 (8)0.0074 (8)
C10.0565 (9)0.0346 (7)0.0507 (8)0.0019 (6)0.0065 (7)0.0004 (6)
C20.0536 (8)0.0401 (7)0.0361 (7)0.0013 (6)0.0024 (6)0.0018 (6)
C30.0469 (8)0.0361 (7)0.0364 (7)0.0032 (6)0.0021 (6)0.0011 (5)
C40.0331 (6)0.0387 (7)0.0351 (6)0.0018 (5)0.0021 (5)0.0021 (5)
C50.0351 (6)0.0390 (7)0.0318 (6)0.0028 (5)0.0027 (5)0.0002 (5)
C60.0346 (7)0.0458 (7)0.0374 (7)0.0023 (6)0.0060 (5)0.0032 (6)
C70.0415 (7)0.0567 (9)0.0372 (7)0.0009 (6)0.0028 (6)0.0107 (6)
C80.0352 (7)0.0478 (8)0.0360 (7)0.0030 (6)0.0006 (5)0.0002 (6)
C90.0375 (7)0.0510 (8)0.0385 (7)0.0045 (6)0.0003 (5)0.0004 (6)
C100.0400 (7)0.0410 (7)0.0326 (6)0.0010 (5)0.0037 (5)0.0016 (5)
C110.0354 (6)0.0336 (6)0.0352 (6)0.0041 (5)0.0022 (5)0.0040 (5)
C120.0401 (7)0.0443 (8)0.0405 (7)0.0009 (6)0.0008 (6)0.0010 (6)
C130.0530 (9)0.0458 (8)0.0517 (9)0.0058 (7)0.0096 (7)0.0059 (7)
C140.0617 (10)0.0435 (8)0.0434 (8)0.0052 (7)0.0067 (7)0.0088 (6)
C150.0480 (8)0.0387 (7)0.0398 (7)0.0110 (6)0.0005 (6)0.0026 (6)
C160.0600 (10)0.0607 (10)0.0479 (9)0.0171 (8)0.0104 (7)0.0007 (8)
C170.0472 (9)0.0772 (13)0.0630 (11)0.0131 (9)0.0148 (8)0.0093 (9)
C180.0373 (8)0.0668 (11)0.0659 (11)0.0014 (7)0.0031 (7)0.0115 (9)
C190.0385 (7)0.0459 (8)0.0472 (8)0.0027 (6)0.0029 (6)0.0060 (6)
C200.0365 (7)0.0358 (7)0.0388 (7)0.0063 (5)0.0009 (5)0.0060 (5)
C210.0500 (9)0.0607 (10)0.0629 (10)0.0128 (8)0.0013 (7)0.0149 (8)
C220.0459 (8)0.0722 (11)0.0450 (8)0.0004 (8)0.0082 (6)0.0075 (8)
Geometric parameters (Å, º) top
O1—C21.3695 (18)C11—C121.365 (2)
O1—C101.3821 (17)C11—C201.4373 (18)
O2—C61.2228 (18)C12—C131.412 (2)
N1—C21.345 (2)C12—H12A0.9300
N1—H1A0.8600C13—C141.354 (2)
N1—H1B0.8600C13—H13A0.9300
N2—C11.147 (2)C14—C151.412 (2)
C1—C31.414 (2)C14—H14A0.9300
C2—C31.352 (2)C15—C161.423 (2)
C3—C41.530 (2)C15—C201.427 (2)
C4—C51.5122 (18)C16—C171.357 (3)
C4—C111.5388 (19)C16—H16A0.9300
C4—H4A0.9800C17—C181.398 (3)
C5—C101.3338 (19)C17—H17A0.9300
C5—C61.470 (2)C18—C191.369 (2)
C6—C71.5087 (19)C18—H18A0.9300
C7—C81.532 (2)C19—C201.417 (2)
C7—H7A0.9700C19—H19A0.9300
C7—H7B0.9700C21—H21A0.9600
C8—C211.527 (2)C21—H21B0.9600
C8—C91.532 (2)C21—H21C0.9600
C8—C221.533 (2)C22—H22A0.9600
C9—C101.4884 (19)C22—H22B0.9600
C9—H9A0.9700C22—H22C0.9600
C9—H9B0.9700
C2—O1—C10117.57 (11)O1—C10—C9110.97 (12)
C2—N1—H1A120.0C12—C11—C20118.64 (13)
C2—N1—H1B120.0C12—C11—C4120.89 (12)
H1A—N1—H1B120.0C20—C11—C4120.42 (12)
N2—C1—C3178.0 (2)C11—C12—C13122.15 (14)
N1—C2—C3128.74 (14)C11—C12—H12A118.9
N1—C2—O1109.98 (13)C13—C12—H12A118.9
C3—C2—O1121.28 (13)C14—C13—C12120.35 (14)
C2—C3—C1118.51 (14)C14—C13—H13A119.8
C2—C3—C4121.63 (12)C12—C13—H13A119.8
C1—C3—C4119.86 (13)C13—C14—C15120.11 (14)
C5—C4—C3106.82 (11)C13—C14—H14A119.9
C5—C4—C11113.42 (11)C15—C14—H14A119.9
C3—C4—C11112.32 (11)C14—C15—C16120.80 (15)
C5—C4—H4A108.0C14—C15—C20120.04 (13)
C3—C4—H4A108.0C16—C15—C20119.16 (15)
C11—C4—H4A108.0C17—C16—C15120.96 (16)
C10—C5—C6118.53 (12)C17—C16—H16A119.5
C10—C5—C4121.75 (12)C15—C16—H16A119.5
C6—C5—C4119.70 (12)C16—C17—C18120.19 (15)
O2—C6—C5120.70 (13)C16—C17—H17A119.9
O2—C6—C7121.98 (13)C18—C17—H17A119.9
C5—C6—C7117.25 (12)C19—C18—C17120.75 (17)
C6—C7—C8114.00 (12)C19—C18—H18A119.6
C6—C7—H7A108.8C17—C18—H18A119.6
C8—C7—H7A108.8C18—C19—C20121.17 (15)
C6—C7—H7B108.8C18—C19—H19A119.4
C8—C7—H7B108.8C20—C19—H19A119.4
H7A—C7—H7B107.6C19—C20—C15117.71 (13)
C21—C8—C7110.45 (13)C19—C20—C11123.68 (13)
C21—C8—C9110.77 (13)C15—C20—C11118.61 (13)
C7—C8—C9108.22 (12)C8—C21—H21A109.5
C21—C8—C22108.99 (13)C8—C21—H21B109.5
C7—C8—C22109.94 (13)H21A—C21—H21B109.5
C9—C8—C22108.45 (13)C8—C21—H21C109.5
C10—C9—C8112.92 (12)H21A—C21—H21C109.5
C10—C9—H9A109.0H21B—C21—H21C109.5
C8—C9—H9A109.0C8—C22—H22A109.5
C10—C9—H9B109.0C8—C22—H22B109.5
C8—C9—H9B109.0H22A—C22—H22B109.5
H9A—C9—H9B107.8C8—C22—H22C109.5
C5—C10—O1122.49 (12)H22A—C22—H22C109.5
C5—C10—C9126.53 (13)H22B—C22—H22C109.5
C10—O1—C2—N1164.20 (13)C2—O1—C10—C519.6 (2)
C10—O1—C2—C316.2 (2)C2—O1—C10—C9159.47 (12)
N1—C2—C3—C18.7 (2)C8—C9—C10—C517.8 (2)
O1—C2—C3—C1171.78 (13)C8—C9—C10—O1163.21 (12)
N1—C2—C3—C4170.47 (15)C5—C4—C11—C1221.74 (18)
O1—C2—C3—C49.1 (2)C3—C4—C11—C1299.52 (15)
C2—C3—C4—C527.62 (17)C5—C4—C11—C20160.86 (11)
C1—C3—C4—C5153.24 (13)C3—C4—C11—C2077.89 (15)
C2—C3—C4—C1197.34 (15)C20—C11—C12—C130.2 (2)
C1—C3—C4—C1181.80 (16)C4—C11—C12—C13177.21 (13)
C3—C4—C5—C1024.51 (17)C11—C12—C13—C141.9 (2)
C11—C4—C5—C1099.78 (15)C12—C13—C14—C151.2 (2)
C3—C4—C5—C6153.60 (12)C13—C14—C15—C16179.01 (15)
C11—C4—C5—C682.11 (15)C13—C14—C15—C201.5 (2)
C10—C5—C6—O2178.06 (14)C14—C15—C16—C17178.57 (16)
C4—C5—C6—O23.8 (2)C20—C15—C16—C170.9 (2)
C10—C5—C6—C75.12 (19)C15—C16—C17—C181.1 (3)
C4—C5—C6—C7173.06 (12)C16—C17—C18—C191.1 (3)
O2—C6—C7—C8147.84 (15)C17—C18—C19—C200.8 (3)
C5—C6—C7—C835.37 (19)C18—C19—C20—C152.7 (2)
C6—C7—C8—C2167.28 (17)C18—C19—C20—C11176.96 (14)
C6—C7—C8—C954.13 (17)C14—C15—C20—C19176.73 (13)
C6—C7—C8—C22172.41 (13)C16—C15—C20—C192.7 (2)
C21—C8—C9—C1076.59 (15)C14—C15—C20—C113.6 (2)
C7—C8—C9—C1044.62 (16)C16—C15—C20—C11176.97 (13)
C22—C8—C9—C10163.85 (12)C12—C11—C20—C19177.41 (13)
C6—C5—C10—O1175.18 (12)C4—C11—C20—C195.12 (19)
C4—C5—C10—O13.0 (2)C12—C11—C20—C152.90 (19)
C6—C5—C10—C93.7 (2)C4—C11—C20—C15174.57 (12)
C4—C5—C10—C9178.13 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.193.033 (2)166
Symmetry code: (i) x+1, y, z+1.

Experimental details

(IIIa)(IIIb)
Crystal data
Chemical formulaC20H16N2O2C22H20N2O2
Mr316.35344.40
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)295298
a, b, c (Å)6.4410 (13), 9.6330 (19), 24.911 (5)7.456 (3), 14.854 (7), 16.133 (9)
β (°) 92.98 (3) 96.16 (2)
V3)1543.5 (5)1776.4 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.08
Crystal size (mm)0.50 × 0.40 × 0.300.55 × 0.45 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3619, 3318, 2287 4563, 4255, 3299
Rint0.0610.015
(sin θ/λ)max1)0.6390.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.157, 1.05 0.048, 0.132, 1.08
No. of reflections33184255
No. of parameters217237
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.240.24, 0.18

Computer programs: CAD-4 Software (Enraf–Nonuis, 1989), CAD-4 Software, SHELXTL (Sheldrick, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL, SHELXL97.

Selected geometric parameters (Å, º) for (IIIa) top
O1—C21.370 (2)N2—C11.143 (3)
O1—C101.384 (2)C1—C31.417 (2)
O2—C61.215 (2)C2—C31.341 (3)
N1—C21.353 (2)
C2—O1—C10118.46 (14)C2—C3—C4123.70 (16)
N2—C1—C3178.9 (2)C1—C3—C4118.78 (15)
C3—C2—N1128.06 (17)O2—C6—C5120.05 (18)
C3—C2—O1122.50 (17)O2—C6—C7121.70 (18)
N1—C2—O1109.40 (16)C5—C6—C7118.20 (17)
C2—C3—C1117.36 (17)
C2—C3—C4—C57.6 (3)C3—C4—C5—C108.1 (3)
C2—C3—C4—C11114.1 (2)C3—C4—C11—C1257.8 (2)
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.223.016 (3)153
N1—H1B···O1ii0.862.383.226 (3)170
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z.
Selected geometric parameters (Å, º) for (IIIb) top
O1—C21.3695 (18)N2—C11.147 (2)
O1—C101.3821 (17)C1—C31.414 (2)
O2—C61.2228 (18)C2—C31.352 (2)
N1—C21.345 (2)
C2—O1—C10117.57 (11)C1—C3—C4119.86 (13)
N2—C1—C3178.0 (2)O2—C6—C5120.70 (13)
N1—C2—C3128.74 (14)O2—C6—C7121.98 (13)
N1—C2—O1109.98 (13)C5—C6—C7117.25 (12)
C3—C2—O1121.28 (13)C5—C10—O1122.49 (12)
C2—C3—C1118.51 (14)C5—C10—C9126.53 (13)
C2—C3—C4121.63 (12)O1—C10—C9110.97 (12)
C2—C3—C4—C527.62 (17)C3—C4—C5—C1024.51 (17)
C2—C3—C4—C1197.34 (15)C3—C4—C11—C1299.52 (15)
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.193.033 (2)166
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds