Download citation
Download citation
link to html
Molecules of 2-(2-nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R{_2^2}(8) dimers by a single O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.623 (2) Å and O—H...O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2-(4-nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R{_4^4}(22) rings by a combination of one N—H...O hydrogen bond [H...O = 1.96 Å, N...O = 2.833 (3) Å and N—H...O = 171°] and one O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H...O hydrogen bonds [H...O = 2.09 and 2.16 Å, N...O = 2.873 (4) and 2.902 (3) Å, and N—H...O = 147 and 141°] and two O—H...O hydrogen bonds [H...O = 1.84 and 1.83 Å, O...O = 2.664 (3) and 2.666 (3) Å, and O—H...O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three-dimensional framework by a single C—H...O hydrogen bond [H...O = 2.45 Å, C...O = 3.355 (4) Å and C—­H...O = 160°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027914/gg1204sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027914/gg1204Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027914/gg1204IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027914/gg1204IIIsup4.hkl
Contains datablock III

CCDC references: 233128; 233129; 233130

Comment top

The reaction of C-substituted anilines with phthalic anhydride initially yields N-arylbenzamide-2-carboxylic acids, (A) (see Scheme). Dehydration of this type of intermediate yields N-arylphthalimides, (B), while hydrolysis yields arylammonium hydrogenphthalates, (C). We have recently reported the supramolecular structure of a type (C) salt, 4-iodoanilinium 3-nitrophthalate(1-) (Glidewell et al., 2003), and here we report the molecular and supramolecular structures of two examples of the type (A) intermediate, namely N-(2-nitrophenyl)benzamide-2-carboxylic acid, (I) (Fig. 1) and two polymorphs of N-(4-nitrophenyl)benzamide-2-carboxylic acid, orthorhombic, (II), (Fig. 2) and monoclinic, (III) (Fig. 3). \sch

In each of compounds (I)-(III), the central C11—C17(O17)—N1—C21 fragment of the molecule is essentially planar, with a trans amide conformation. The C11—C16 and C21—C26 rings are considerably rotated away from this plane, as indicated by the key torsion angles (Tables 1, 3 and 5). In (I), the carboxyl and nitro groups make dihedral angles of 29.9 (2) and 36.5 (2)°, respectively, with the adjacent aryl rings, and in (II) the corresponding angles are 12.2 (2) and 11.1 (2)°, respectively. In (III), these dihedral angles are 7.7 (2) and 13.0 (2)°, respectively, in molecule A, and 10.1 (2) and 6.5 (1)°, respectively, in molecule B. The C—O distances in the carboxyl groups are consistent with the location of the fully ordered carboxyl H atoms, as identified from difference maps. The other bond distances and angles show no exceptional features.

In compound (I) (Fig. 1), there is an intramolecular N—H···O hydrogen bond forming an S(6) motif (Bernstein et al., 1995). The supramolecular aggregation is dominated by a single O—H···O hydrogen bond, propagated by aromatic ππ stacking interactions. Carboxyl atom O11 in the molecule at (x, y, z) acts as hydrogen-bond donor to carboxyl atom O12 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric dimer characterized by the usual R22(8) motif and centred at (1/2, 1/2, 1/2) (Fig. 4).

The ππ stacking interaction involves the nitro-substituted ring of the molecule at (x, y, z), which is part of the dimer centred at (1/2, 1/2, 1/2), and the corresponding rings of the molecules at (1/2 + x, y, 3/2 − z) and (x − 1/2, y, 3/2 − z), which themselves are components of the dimers centred at (1, 1/2, 1) and (0, 1/2, 1), respectively. The interplanar angle between adjacent rings of this type is ca 9.5°, with a centroid separation of 3.793 (2) Å and an interplanar spacing of ca 3.42 Å. Propagation by inversion of this interaction also links the (1/2, 1/2, 1/2) dimer to those centred at (0, 1/2, 0) and (1, 1/2, 0), and hence the R22(8) dimers are linked into an (010) sheet (Fig. 5).

Whereas the supramolecular structure of (I) is controlled by a combination of O—H···O hydrogen bonds and aromatic ππ stacking interactions, while the N—H bond participates only in an intramolecular hydrogen bond, the supramolecular aggregation in the polymorphic compounds (II) and (III) is controlled by a combination of N—H···O and O—H···O hydrogen bonds. While ππ stacking interactions and X—H···π(arene) hydrogen bonds (X is C, N or O) are all absent from the structures of (II) and (III), there are two C—H···O hydrogen bonds present in (III).

In compound (II), the amidic atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to carboxyl atom O12 in the molecule at (x − 1, y, z), so generating by translation a C(7) chain running parallel to the [100] direction. At the same time, carboxyl atom O11 at (x, y, z) acts as hydrogen-bond donor to amidic atom O17 in the molecule at (1 − x, 1/2 + y, 1/2 − z), so producing a spiral C(7) chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/4). It is noteworthy that the carboxyl group in (II) forms neither of the motifs so characteristic of simple carboxylic acids, namely the R22(8) dimer [cf. compound (I)] and the C(4) chain. Likewise, the amide group in (II) does not form the C(4) chain often found in simple carboxylic amides, but instead each of the two hydrogen bonds in (II) utilizes a donor and an acceptor from the different functional groups, acid and amide, within the molecule.

The combination of the two C(7) chains in (II) generates an (001) sheet in the form of a hydrogen-bonded (4,4) net (Batten & Robson 1998) built from a single type of R44(22) ring (Fig. 6). This sheet lies in the domain −0.03 < z < 0.53 and a second such sheet lies in the domain 0.47 < z < 1.03, but there are no direction-specific interactions between adjacent sheets.

The supramolecular structure of the monoclinic form, (III), consists of sheets generated by a combination of O—H···O and N—H···O hydrogen bonds, linked into a three-dimensional framework by a single rather strong C—H···O hydrogen bond (Table 6). Carboxyl atom O11A acts as hydrogen-bond donor to amidic atom O17B within the asymmetric unit (Fig. 3) and, in a similar fashion, carboxyl atom O11B in the type B molecule at (x, y, z) acts as hydrogen-bond donor to amidic atom O17A in the type A molecule at (x, 1 + y, z). These two hydrogen bonds thus generate by translation a C22(14) chain running parallel to the [010] direction (Fig. 7). These translational chains are then linked into (001) sheets by the two N—H···O hydrogen bonds.

Amino atom N1A in the type A molecule at (x, y, z) acts as hydrogen-bond donor to carboxyl atom O12B in the type B molecule at (1/2 − x, y − 1/2, 1/2 − z), so producing a second C22(14) chain parallel to [010], this time generated by the 21 screw axis along (1/4, y, 1/4) (Fig. 8). Similarly, amino atom N1B at (x, y, z) acts as hydrogen-bond donor to carboxyl atom O12A at (3/2 − x, 1/2 + y, 1/2 − z), so producing a third C22(14) chain, this time generated by the 21 screw axis along (3/4, y, 1/4).

The combination of these three C22(14) chains generates an (001) sheet lying in the domain −0.02 < z < 0.52, and a second such sheet, related to the first by inversion, lies in the domain 0.48 < z < 1.02. The sheet is reinforced by a C—H···O hydrogen bond (Table 6) and adjacent sheets are linked by a second C—H···O hydrogen bond. Atom C23B in the type B molecule at (x, y, z), which lies in the −0.02 < z < 0.52 sheet, acts as hydrogen-bond donor to nitro atom O41A in the type A molecule at (1/2 + x, 1/2 − y, 1/2 + z), which forms part of the sheet in the domain 0.48 < z < 1.02. Propagation of this interaction by the space group then generates a single three-dimensional framework.

Experimental top

Samples of both acids were prepared by heating, under reflux, chloroform solutions containing equimolar mixtures of phthalic anhydride and the appropriate nitroaniline. The reactions were monitored by thin-layer chromatography and when they were complete, the mixtures were cooled and the solvent was removed. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol for (I) and (II), and in acetone for (III). Melting point for (I) 426–428 K; for (II) 475–477 K with liberation of water, followed rapidly by re-solidification on formation of N-(4-nitrophenyl)phthalimide and subsequent re-melting at 528–531 K; for (III) 471–473 K with liberation of water, followed rapidly by re-solidification as for (II).

Refinement top

For compounds (I), (II) and (III), the space groups Pbca, P212121 and P21/n, respectively, were uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with distances C—H = 0.95, N—H = 0.88 and O—H = 0.84 Å. In the absence of significant anomalous scattering, the absolute configuration of (II) could not be established. However, this has no chemical significance and the Friedel equivalents were merged. Conventional refinement of (II) led to R = 0.0945 with maximum residual density of 1.632, and examination of the refined structure of (II) using PLATON (Spek, 2003) revealed two voids, each of volume ca 89 Å3, centred at approximately (0, 1/4, 1/2) and (0, 3/4 0). The electron density within these voids could not be interpreted in terms of any sensible model of solvent molecules, and accordingly the reflection data were subjected to the SQUEEZE option in PLATON before the final refinements. This procedure suggested the presence of only 6–7 electrons per unit cell within the voids. Examination of the refined structure of (III) using PLATON also revealed two symmetry-related void spaces per unit cell, each of approximate volume 63 Å3, centred at (0, 1/2, 0) and (1/2, 0, 1/2), although the residual densities from the refinement were very low. Accordingly, a supernumerary O atom was placed near the centre of the void and its site-occupancy factor was refined, giving a value of 0.045 (6), indicative of negligible electron density within the void.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I), (II); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (III). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I), (II); OSCAIL and SHELXL97 (Sheldrick, 1997) for (III). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The two independent molecules in compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing formation of a centrosymmetric R22(8) dimer. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5] Fig. 5. Stereoview of part of the crystal structure of (I), showing the linking of the hydrogen-bonded dimers into an (010) sheet by means of the aromatic ππ stacking interaction. For the sake of clarity, H atoms bonded to C or N atoms have been omitted.
[Figure 6] Fig. 6. Stereoview of part of the crystal structure of (II), showing the formation of an (001) sheet of R44(22) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the C22(14) chain generated by translation. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (x, 1 + y, z) and (x, y − 1, z), respectively.
[Figure 8] Fig. 8. Stereoview of part of the crystal structure of (III), showing the C22(14) chains generated by translation and by the 21 screw axis along (1/4, y, 1/4). For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) 2-(2-nitrophenylaminocarbonyl)benzoic acid top
Crystal data top
C14H10N2O5F(000) = 1184
Mr = 286.24Dx = 1.523 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2848 reflections
a = 7.2761 (2) Åθ = 3.2–27.5°
b = 14.8881 (5) ŵ = 0.12 mm1
c = 23.0407 (6) ÅT = 120 K
V = 2495.94 (13) Å3Block, colourless
Z = 80.36 × 0.36 × 0.22 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2848 independent reflections
Radiation source: rotating anode1876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 79
Tmin = 0.955, Tmax = 0.975k = 1919
15224 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
2848 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H10N2O5V = 2495.94 (13) Å3
Mr = 286.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2761 (2) ŵ = 0.12 mm1
b = 14.8881 (5) ÅT = 120 K
c = 23.0407 (6) Å0.36 × 0.36 × 0.22 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2848 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1876 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.975Rint = 0.072
15224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
2848 reflectionsΔρmin = 0.29 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3912 (2)0.66212 (10)0.68329 (6)0.0184 (4)
C110.3660 (2)0.73886 (12)0.59102 (7)0.0178 (4)
C120.4161 (2)0.71745 (12)0.53395 (7)0.0181 (4)
C130.4467 (3)0.78557 (13)0.49395 (8)0.0218 (4)
C140.4313 (3)0.87494 (13)0.51080 (8)0.0251 (5)
C150.3856 (3)0.89625 (13)0.56740 (8)0.0263 (5)
C160.3511 (3)0.82848 (13)0.60725 (8)0.0237 (4)
C170.3014 (3)0.66598 (12)0.63142 (7)0.0188 (4)
C180.4502 (3)0.62202 (12)0.51827 (7)0.0196 (4)
O110.4224 (2)0.60281 (9)0.46339 (5)0.0280 (3)
O120.50338 (18)0.56741 (8)0.55444 (5)0.0260 (3)
O170.17176 (18)0.61778 (9)0.61845 (5)0.0247 (3)
C210.3487 (2)0.60095 (12)0.72837 (7)0.0174 (4)
C220.3474 (2)0.62663 (12)0.78658 (7)0.0178 (4)
C230.3015 (2)0.56789 (13)0.83106 (8)0.0214 (4)
C240.2588 (3)0.48019 (12)0.81765 (8)0.0230 (4)
C250.2599 (3)0.45285 (13)0.76019 (8)0.0231 (4)
C260.3027 (2)0.51244 (12)0.71581 (8)0.0215 (4)
N220.3928 (2)0.71871 (10)0.80312 (7)0.0216 (4)
O210.3086 (2)0.75267 (9)0.84359 (6)0.0332 (4)
O220.51459 (18)0.75869 (8)0.77559 (5)0.0249 (3)
H10.47080.70520.69040.022*
H130.47810.77110.45500.026*
H140.45230.92150.48340.030*
H150.37790.95740.57900.032*
H160.31710.84340.64590.028*
H110.44810.54860.45740.042*
H230.29950.58790.87020.026*
H240.22880.43880.84760.028*
H250.23090.39230.75100.028*
H260.30050.49260.67660.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0210 (8)0.0171 (8)0.0171 (8)0.0037 (7)0.0001 (6)0.0010 (6)
O170.0268 (8)0.0262 (8)0.0212 (7)0.0056 (6)0.0025 (5)0.0024 (6)
C110.0180 (10)0.0186 (10)0.0168 (9)0.0000 (8)0.0011 (7)0.0013 (7)
C120.0186 (10)0.0179 (9)0.0179 (9)0.0002 (8)0.0021 (7)0.0003 (7)
C130.0248 (11)0.0240 (11)0.0165 (9)0.0005 (9)0.0012 (7)0.0020 (7)
C140.0300 (12)0.0207 (11)0.0247 (10)0.0029 (9)0.0004 (8)0.0069 (8)
C150.0342 (12)0.0162 (10)0.0285 (11)0.0010 (9)0.0009 (8)0.0002 (8)
C160.0308 (11)0.0194 (10)0.0209 (10)0.0009 (8)0.0026 (8)0.0021 (8)
C170.0219 (11)0.0175 (10)0.0168 (9)0.0023 (8)0.0020 (7)0.0028 (7)
C180.0198 (10)0.0221 (11)0.0170 (9)0.0002 (8)0.0020 (7)0.0000 (8)
O110.0463 (9)0.0214 (7)0.0165 (7)0.0077 (7)0.0026 (6)0.0047 (5)
O120.0393 (9)0.0208 (7)0.0179 (7)0.0061 (6)0.0005 (6)0.0004 (5)
O170.0268 (8)0.0262 (8)0.0212 (7)0.0056 (6)0.0025 (5)0.0024 (6)
C210.0157 (9)0.0173 (9)0.0190 (9)0.0025 (8)0.0010 (7)0.0026 (7)
C220.0168 (10)0.0146 (9)0.0221 (9)0.0023 (7)0.0011 (7)0.0008 (7)
C230.0217 (11)0.0242 (11)0.0183 (9)0.0023 (8)0.0008 (7)0.0021 (8)
C240.0238 (10)0.0212 (10)0.0239 (10)0.0002 (9)0.0009 (8)0.0072 (8)
C250.0235 (11)0.0162 (9)0.0297 (11)0.0012 (8)0.0008 (8)0.0014 (8)
C260.0235 (11)0.0200 (10)0.0210 (9)0.0020 (8)0.0007 (8)0.0017 (8)
N220.0254 (9)0.0196 (8)0.0197 (8)0.0017 (7)0.0035 (7)0.0013 (7)
O210.0483 (10)0.0249 (8)0.0265 (8)0.0018 (7)0.0097 (6)0.0059 (6)
O220.0298 (8)0.0198 (7)0.0250 (7)0.0051 (6)0.0005 (6)0.0028 (5)
Geometric parameters (Å, º) top
N1—C171.363 (2)C18—O111.312 (2)
N1—C211.416 (2)C18—O121.227 (2)
N1—H10.88O11—H110.84
C17—O171.222 (2)C21—C261.390 (3)
C17—C111.505 (2)C21—C221.395 (2)
C11—C161.390 (3)C22—C231.388 (2)
C11—C121.401 (2)C22—N221.461 (2)
C12—C131.388 (3)C23—C241.377 (3)
C12—C181.487 (2)C23—H230.95
C13—C141.390 (3)C24—C251.385 (3)
C13—H130.95C24—H240.95
C14—C151.383 (3)C25—C261.389 (3)
C14—H140.95C25—H250.95
C15—C161.387 (3)C26—H260.95
C15—H150.95N22—O211.2248 (19)
C16—H160.95N22—O221.2417 (19)
C17—N1—C21124.45 (15)O12—C18—C12121.38 (15)
C17—N1—H1116.7O11—C18—C12114.63 (15)
C21—N1—H1118.4C18—O11—H11109.5
O17—C17—N1124.01 (16)C26—C21—C22117.30 (16)
O17—C17—C11120.89 (16)C26—C21—N1120.64 (15)
N1—C17—C11115.01 (16)C22—C21—N1122.05 (16)
C16—C11—C12119.41 (16)C23—C22—C21122.61 (17)
C16—C11—C17120.08 (15)C23—C22—N22116.94 (15)
C12—C11—C17119.85 (16)C21—C22—N22120.44 (15)
C13—C12—C11119.90 (17)C24—C23—C22119.07 (17)
C13—C12—C18120.67 (16)C24—C23—H23120.5
C11—C12—C18119.26 (15)C22—C23—H23120.5
C12—C13—C14120.06 (17)C23—C24—C25119.46 (17)
C12—C13—H13120.0C23—C24—H24120.3
C14—C13—H13120.0C25—C24—H24120.3
C15—C14—C13120.14 (17)C24—C25—C26121.14 (18)
C15—C14—H14119.9C24—C25—H25119.4
C13—C14—H14119.9C26—C25—H25119.4
C14—C15—C16120.07 (18)C25—C26—C21120.40 (17)
C14—C15—H15120.0C25—C26—H26119.8
C16—C15—H15120.0C21—C26—H26119.8
C15—C16—C11120.39 (17)O21—N22—O22123.22 (15)
C15—C16—H16119.8O21—N22—C22118.22 (15)
C11—C16—H16119.8O22—N22—C22118.56 (14)
O12—C18—O11123.97 (16)
C12—C11—C17—N1127.5 (2)C17—C11—C16—C15170.79 (18)
C11—C17—N1—C21177.8 (2)C13—C12—C18—O12147.44 (19)
C17—N1—C21—C22139.1 (2)C11—C12—C18—O1227.8 (3)
C11—C12—C18—O11153.6 (2)C13—C12—C18—O1131.2 (2)
C21—C22—N22—O21143.3 (2)C17—N1—C21—C2639.6 (3)
C21—N1—C17—O171.2 (3)C26—C21—C22—C230.4 (3)
O17—C17—C11—C16114.8 (2)N1—C21—C22—C23178.34 (17)
N1—C17—C11—C1661.8 (2)C26—C21—C22—N22179.53 (16)
O17—C17—C11—C1255.9 (2)N1—C21—C22—N220.8 (3)
C16—C11—C12—C131.3 (3)C21—C22—C23—C241.3 (3)
C17—C11—C12—C13169.45 (17)N22—C22—C23—C24179.56 (16)
C16—C11—C12—C18173.92 (17)C22—C23—C24—C251.0 (3)
C17—C11—C12—C1815.3 (3)C23—C24—C25—C260.2 (3)
C11—C12—C13—C141.4 (3)C24—C25—C26—C211.1 (3)
C18—C12—C13—C14173.82 (18)C22—C21—C26—C250.8 (3)
C12—C13—C14—C150.0 (3)N1—C21—C26—C25179.56 (16)
C13—C14—C15—C161.4 (3)C23—C22—N22—O2135.9 (2)
C14—C15—C16—C111.4 (3)C23—C22—N22—O22144.11 (16)
C12—C11—C16—C150.0 (3)C21—C22—N22—O2236.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.882.142.719 (2)123
O11—H11···O12i0.841.782.623 (2)178
Symmetry code: (i) x+1, y+1, z+1.
(II) 2-(4-nitrophenylaminocarbonyl)benzoic acid top
Crystal data top
C14H10N2O5F(000) = 592
Mr = 286.24Dx = 1.380 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1820 reflections
a = 3.9188 (2) Åθ = 3.2–27.5°
b = 12.6896 (6) ŵ = 0.11 mm1
c = 27.7029 (16) ÅT = 120 K
V = 1377.61 (12) Å3Needle, colourless
Z = 40.25 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1820 independent reflections
Radiation source: rotating anode1237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 55
Tmin = 0.969, Tmax = 0.996k = 1616
4875 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
1820 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C14H10N2O5V = 1377.61 (12) Å3
Mr = 286.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9188 (2) ŵ = 0.11 mm1
b = 12.6896 (6) ÅT = 120 K
c = 27.7029 (16) Å0.25 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1820 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1237 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.052
4875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1820 reflectionsΔρmin = 0.21 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4342 (8)0.5589 (2)0.70323 (8)0.0303 (7)
C110.5423 (9)0.5098 (2)0.78643 (10)0.0269 (8)
C120.6198 (10)0.6014 (2)0.81186 (10)0.0270 (8)
C130.5374 (10)0.6055 (3)0.86087 (11)0.0348 (9)
C140.3895 (10)0.5198 (3)0.88373 (11)0.0394 (9)
C150.3207 (11)0.4297 (3)0.85830 (11)0.0407 (9)
C160.3992 (10)0.4238 (2)0.80935 (11)0.0335 (8)
C170.6123 (10)0.4948 (3)0.73279 (11)0.0320 (9)
C180.8051 (9)0.6899 (2)0.78949 (10)0.0270 (8)
O110.8145 (7)0.77547 (16)0.81683 (7)0.0388 (7)
O120.9420 (6)0.68670 (16)0.74998 (7)0.0303 (6)
O170.8074 (7)0.42565 (17)0.71936 (7)0.0408 (6)
C210.4494 (9)0.5637 (2)0.65252 (10)0.0294 (8)
C220.5861 (10)0.4840 (3)0.62427 (11)0.0348 (9)
C230.5869 (10)0.4974 (3)0.57478 (11)0.0408 (10)
C240.4558 (10)0.5856 (3)0.55435 (11)0.0380 (9)
C250.3161 (10)0.6659 (3)0.58184 (10)0.0384 (9)
C260.3130 (10)0.6534 (3)0.63148 (10)0.0326 (8)
N240.4617 (9)0.5952 (3)0.50187 (10)0.0490 (9)
O410.2980 (9)0.6661 (3)0.48315 (8)0.0670 (9)
O420.6302 (9)0.5322 (3)0.47881 (9)0.0713 (10)
H10.30110.60270.71910.036*
H130.58330.66780.87870.042*
H140.33570.52360.91710.047*
H150.21910.37110.87410.049*
H160.35460.36090.79180.040*
H110.93030.82230.80300.058*
H220.67680.42200.63850.042*
H230.68070.44400.55480.049*
H250.22540.72740.56710.046*
H260.21660.70680.65130.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0354 (17)0.0342 (16)0.0213 (11)0.0063 (14)0.0026 (12)0.0005 (11)
C170.031 (2)0.033 (2)0.0321 (16)0.0053 (19)0.0054 (16)0.0002 (15)
O170.0467 (17)0.0321 (13)0.0436 (13)0.0134 (14)0.0009 (12)0.0053 (11)
C110.029 (2)0.0275 (18)0.0248 (14)0.0009 (16)0.0014 (14)0.0036 (13)
C120.028 (2)0.0254 (17)0.0273 (15)0.0033 (16)0.0022 (15)0.0057 (13)
C130.038 (2)0.040 (2)0.0263 (16)0.0037 (18)0.0016 (15)0.0015 (15)
C140.044 (3)0.049 (2)0.0248 (14)0.003 (2)0.0025 (17)0.0062 (15)
C150.041 (2)0.041 (2)0.0394 (18)0.010 (2)0.0057 (19)0.0194 (17)
C160.037 (2)0.0275 (18)0.0359 (17)0.0024 (18)0.0105 (17)0.0078 (14)
C180.029 (2)0.0282 (17)0.0241 (14)0.0044 (16)0.0028 (15)0.0010 (14)
O110.0563 (18)0.0265 (12)0.0335 (11)0.0076 (13)0.0133 (12)0.0053 (10)
O120.0360 (15)0.0309 (13)0.0240 (10)0.0023 (11)0.0071 (10)0.0013 (9)
C210.027 (2)0.037 (2)0.0247 (14)0.0039 (18)0.0024 (15)0.0021 (14)
C220.039 (2)0.0323 (19)0.0332 (16)0.0051 (18)0.0027 (18)0.0046 (14)
C230.040 (2)0.052 (2)0.0300 (16)0.001 (2)0.0024 (18)0.0166 (16)
C240.036 (2)0.058 (2)0.0199 (14)0.011 (2)0.0019 (15)0.0013 (16)
C250.043 (2)0.047 (2)0.0253 (14)0.002 (2)0.0010 (17)0.0041 (15)
C260.037 (2)0.0377 (19)0.0235 (14)0.0017 (19)0.0006 (16)0.0034 (13)
N240.043 (2)0.078 (3)0.0253 (15)0.013 (2)0.0015 (15)0.0057 (16)
O410.087 (2)0.089 (2)0.0251 (11)0.013 (2)0.0089 (15)0.0074 (14)
O420.064 (2)0.120 (3)0.0302 (12)0.004 (2)0.0058 (15)0.0213 (15)
Geometric parameters (Å, º) top
N1—C171.349 (4)C18—O111.324 (3)
N1—C211.408 (4)C18—O121.219 (3)
N1—H10.88O11—H110.84
C17—O171.222 (4)C21—C221.386 (4)
C17—C111.523 (4)C21—C261.386 (4)
C11—C161.382 (4)C22—C231.381 (4)
C11—C121.393 (4)C22—H220.95
C12—C131.397 (4)C23—C241.355 (5)
C12—C181.474 (4)C23—H230.95
C13—C141.386 (5)C24—C251.385 (5)
C13—H130.95C24—N241.459 (4)
C14—C151.370 (4)C25—C261.384 (4)
C14—H140.95C25—H250.95
C15—C161.393 (5)C26—H260.95
C15—H150.95N24—O421.218 (4)
C16—H160.95N24—O411.220 (4)
C17—N1—C21127.6 (3)O12—C18—C12124.6 (3)
C17—N1—H1112.6O11—C18—C12113.4 (2)
C21—N1—H1119.8C18—O11—H11109.5
O17—C17—N1124.9 (3)C22—C21—C26120.7 (3)
O17—C17—C11120.0 (3)C22—C21—N1123.3 (3)
N1—C17—C11115.1 (3)C26—C21—N1116.0 (3)
C16—C11—C12121.0 (3)C23—C22—C21118.1 (3)
C16—C11—C17115.0 (3)C23—C22—H22120.9
C12—C11—C17124.0 (3)C21—C22—H22120.9
C11—C12—C13118.2 (3)C24—C23—C22121.0 (3)
C11—C12—C18122.1 (3)C24—C23—H23119.5
C13—C12—C18119.6 (3)C22—C23—H23119.5
C14—C13—C12120.8 (3)C23—C24—C25121.8 (3)
C14—C13—H13119.6C23—C24—N24118.6 (3)
C12—C13—H13119.6C25—C24—N24119.5 (3)
C15—C14—C13120.2 (3)C26—C25—C24117.8 (3)
C15—C14—H14119.9C26—C25—H25121.1
C13—C14—H14119.9C24—C25—H25121.1
C14—C15—C16120.2 (3)C25—C26—C21120.5 (3)
C14—C15—H15119.9C25—C26—H26119.7
C16—C15—H15119.9C21—C26—H26119.7
C11—C16—C15119.6 (3)O42—N24—O41123.1 (3)
C11—C16—H16120.2O42—N24—C24118.4 (4)
C15—C16—H16120.2O41—N24—C24118.5 (3)
O12—C18—O11121.9 (3)
C12—C11—C17—N164.8 (5)C11—C12—C18—O11171.2 (3)
C11—C17—N1—C21179.1 (3)C23—C24—N24—O41168.8 (4)
C17—N1—C21—C2217.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12i0.881.962.833 (3)171
O11—H11···O17ii0.841.782.614 (3)173
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+3/2.
(III) 2-(4-nitrophenylaminocarbonyl)benzoic acid top
Crystal data top
C14H10N2O5F(000) = 1184
Mr = 286.24Dx = 1.474 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5503 reflections
a = 10.2098 (10) Åθ = 3.0–27.4°
b = 9.3749 (8) ŵ = 0.11 mm1
c = 27.409 (2) ÅT = 120 K
β = 100.578 (4)°Plate, colourless
V = 2578.9 (4) Å30.22 × 0.18 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
5503 independent reflections
Radiation source: rotating anode2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1112
Tmin = 0.965, Tmax = 0.989k = 1211
19240 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
5503 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H10N2O5V = 2578.9 (4) Å3
Mr = 286.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.2098 (10) ŵ = 0.11 mm1
b = 9.3749 (8) ÅT = 120 K
c = 27.409 (2) Å0.22 × 0.18 × 0.10 mm
β = 100.578 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5503 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2662 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.989Rint = 0.095
19240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 0.99Δρmax = 0.30 e Å3
5503 reflectionsΔρmin = 0.26 e Å3
381 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11A0.2819 (3)0.0940 (3)0.30113 (9)0.0268 (7)
C12A0.3602 (3)0.2060 (3)0.32469 (9)0.0239 (7)
C13A0.3627 (3)0.2318 (3)0.37481 (10)0.0288 (8)
C14A0.2898 (3)0.1477 (3)0.40118 (10)0.0346 (8)
C15A0.2168 (3)0.0352 (3)0.37854 (10)0.0366 (9)
C16A0.2114 (3)0.0083 (3)0.32880 (10)0.0307 (8)
C18A0.4469 (3)0.2866 (3)0.29669 (10)0.0273 (7)
O11A0.5270 (2)0.3773 (2)0.32449 (7)0.0356 (6)
O12A0.4477 (2)0.2687 (2)0.25270 (6)0.0298 (5)
C17A0.2761 (3)0.0595 (3)0.24733 (10)0.0272 (7)
O17A0.3441 (2)0.0374 (2)0.23465 (6)0.0335 (6)
N1A0.1865 (3)0.1368 (2)0.21587 (8)0.0281 (6)
C21A0.1682 (3)0.1401 (3)0.16406 (10)0.0267 (8)
C22A0.2701 (3)0.1091 (3)0.13835 (10)0.0310 (8)
C23A0.2456 (4)0.1155 (3)0.08729 (11)0.0402 (9)
C24A0.1199 (4)0.1527 (3)0.06263 (11)0.0415 (10)
C25A0.0178 (4)0.1843 (3)0.08723 (10)0.0386 (9)
C26A0.0425 (3)0.1794 (3)0.13827 (10)0.0329 (8)
N24A0.0929 (5)0.1578 (3)0.00837 (11)0.0626 (12)
O41A0.1897 (4)0.1542 (3)0.01303 (9)0.0869 (12)
O42A0.0234 (4)0.1652 (3)0.01317 (9)0.0812 (12)
C11B0.7592 (3)0.5837 (3)0.20613 (10)0.0252 (7)
C12B0.6580 (3)0.6660 (3)0.17796 (9)0.0250 (7)
C13B0.6527 (3)0.6808 (3)0.12706 (10)0.0283 (8)
C14B0.7479 (3)0.6161 (3)0.10455 (10)0.0303 (8)
C15B0.8471 (3)0.5355 (3)0.13237 (10)0.0305 (8)
C16B0.8537 (3)0.5177 (3)0.18256 (10)0.0290 (8)
C18B0.5577 (3)0.7361 (3)0.20288 (10)0.0265 (7)
O11B0.4810 (2)0.8287 (2)0.17438 (6)0.0335 (6)
O12B0.5477 (2)0.7108 (2)0.24543 (7)0.0306 (5)
C17B0.7660 (3)0.5572 (3)0.26046 (10)0.0257 (7)
O17B0.7182 (2)0.4479 (2)0.27463 (6)0.0308 (5)
N1B0.8348 (3)0.6565 (2)0.29067 (8)0.0278 (6)
C21B0.8544 (3)0.6668 (3)0.34262 (9)0.0243 (7)
C22B0.8215 (3)0.5588 (3)0.37331 (10)0.0282 (7)
C23B0.8455 (3)0.5783 (3)0.42414 (10)0.0322 (8)
C24B0.9009 (3)0.7043 (3)0.44392 (10)0.0327 (8)
C25B0.9350 (3)0.8112 (3)0.41438 (10)0.0314 (8)
C26B0.9125 (3)0.7919 (3)0.36378 (10)0.0287 (8)
N24B0.9234 (3)0.7250 (3)0.49769 (9)0.0428 (8)
O41B0.9035 (3)0.6260 (3)0.52431 (8)0.0567 (8)
O42B0.9610 (3)0.8420 (3)0.51405 (8)0.0732 (10)
H13A0.41510.30790.39090.035*
H14A0.28990.16770.43520.042*
H15A0.16970.02470.39730.044*
H16A0.15940.06890.31330.037*
H11A0.58040.41240.30780.043*
H1A0.13320.19160.22950.034*
H22A0.35600.08370.15590.037*
H23A0.31430.09460.06930.048*
H25A0.06800.20890.06940.046*
H26A0.02620.20290.15600.039*
H13B0.58350.73530.10780.034*
H14B0.74480.62740.06990.036*
H15B0.91210.49140.11660.037*
H16B0.92220.46080.20120.035*
H11B0.43550.87480.19160.040*
H1B0.87250.72400.27570.033*
H22B0.78290.47240.35930.034*
H23B0.82380.50530.44530.039*
H25B0.97360.89720.42870.038*
H26B0.93680.86480.34300.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C11A0.022 (2)0.0279 (18)0.0317 (15)0.0041 (15)0.0081 (13)0.0014 (13)
C12A0.018 (2)0.0224 (16)0.0325 (15)0.0055 (14)0.0090 (13)0.0011 (12)
C13A0.026 (2)0.0265 (17)0.0346 (16)0.0005 (15)0.0067 (14)0.0017 (13)
C14A0.033 (3)0.044 (2)0.0294 (15)0.0033 (17)0.0121 (14)0.0026 (14)
C15A0.036 (3)0.040 (2)0.0357 (17)0.0069 (17)0.0128 (15)0.0042 (14)
C16A0.025 (2)0.0298 (18)0.0372 (17)0.0056 (15)0.0056 (14)0.0018 (13)
C18A0.025 (2)0.0253 (17)0.0321 (16)0.0014 (15)0.0056 (13)0.0003 (13)
O11A0.0370 (18)0.0333 (13)0.0406 (11)0.0149 (11)0.0180 (10)0.0067 (10)
O12A0.0240 (16)0.0362 (13)0.0304 (11)0.0018 (10)0.0084 (9)0.0002 (9)
C17A0.021 (2)0.0297 (18)0.0317 (16)0.0039 (15)0.0068 (14)0.0020 (13)
O17A0.0324 (17)0.0328 (13)0.0374 (11)0.0062 (11)0.0118 (10)0.0026 (9)
N1A0.0210 (18)0.0355 (15)0.0285 (12)0.0050 (13)0.0069 (11)0.0033 (11)
C21A0.026 (2)0.0245 (17)0.0309 (15)0.0011 (14)0.0078 (14)0.0006 (12)
C22A0.030 (2)0.0252 (17)0.0401 (17)0.0014 (15)0.0125 (15)0.0001 (13)
C23A0.055 (3)0.0288 (19)0.0430 (18)0.0071 (18)0.0252 (18)0.0031 (14)
C24A0.069 (3)0.0309 (19)0.0270 (16)0.0053 (19)0.0147 (18)0.0022 (13)
C25A0.040 (3)0.039 (2)0.0344 (18)0.0013 (17)0.0007 (15)0.0037 (14)
C26A0.025 (2)0.0370 (19)0.0373 (17)0.0001 (16)0.0078 (14)0.0009 (14)
N24A0.105 (4)0.046 (2)0.0367 (19)0.026 (2)0.013 (2)0.0038 (14)
O41A0.147 (4)0.078 (2)0.0493 (16)0.046 (2)0.0538 (19)0.0176 (14)
O42A0.122 (4)0.074 (2)0.0383 (15)0.029 (2)0.0089 (17)0.0024 (13)
C11B0.021 (2)0.0224 (16)0.0321 (15)0.0033 (14)0.0061 (13)0.0019 (12)
C12B0.020 (2)0.0242 (17)0.0314 (15)0.0017 (14)0.0078 (13)0.0018 (12)
C13B0.031 (2)0.0231 (16)0.0313 (16)0.0000 (15)0.0069 (14)0.0024 (12)
C14B0.036 (3)0.0293 (18)0.0264 (14)0.0013 (16)0.0094 (14)0.0019 (13)
C15B0.027 (2)0.0301 (18)0.0376 (17)0.0006 (16)0.0147 (14)0.0047 (13)
C16B0.021 (2)0.0297 (18)0.0358 (16)0.0017 (15)0.0049 (13)0.0017 (13)
C18B0.023 (2)0.0245 (17)0.0316 (16)0.0022 (15)0.0046 (13)0.0000 (13)
O11B0.0338 (17)0.0349 (13)0.0341 (11)0.0106 (11)0.0126 (10)0.0023 (9)
O12B0.0281 (16)0.0350 (13)0.0313 (11)0.0029 (10)0.0125 (9)0.0025 (9)
C17B0.017 (2)0.0274 (18)0.0340 (16)0.0035 (15)0.0079 (13)0.0009 (13)
O17B0.0305 (16)0.0261 (12)0.0384 (11)0.0017 (11)0.0129 (10)0.0027 (9)
N1B0.0282 (19)0.0266 (14)0.0301 (13)0.0050 (12)0.0090 (11)0.0033 (10)
C21B0.017 (2)0.0271 (17)0.0304 (15)0.0057 (14)0.0069 (12)0.0002 (12)
C22B0.021 (2)0.0280 (17)0.0367 (16)0.0010 (15)0.0091 (13)0.0002 (13)
C23B0.031 (2)0.0335 (19)0.0348 (16)0.0013 (16)0.0125 (14)0.0067 (13)
C24B0.032 (2)0.038 (2)0.0283 (15)0.0019 (17)0.0067 (14)0.0010 (14)
C25B0.025 (2)0.0332 (19)0.0354 (17)0.0019 (15)0.0034 (14)0.0037 (13)
C26B0.020 (2)0.0308 (19)0.0360 (16)0.0005 (15)0.0078 (13)0.0060 (13)
N24B0.045 (2)0.051 (2)0.0319 (15)0.0044 (16)0.0061 (13)0.0007 (14)
O41B0.078 (2)0.0613 (17)0.0337 (12)0.0113 (15)0.0177 (12)0.0048 (12)
O42B0.112 (3)0.0640 (19)0.0414 (14)0.0305 (18)0.0095 (14)0.0094 (12)
Geometric parameters (Å, º) top
C11A—C16A1.393 (4)C11B—C16B1.400 (4)
C11A—C12A1.403 (4)C11B—C12B1.402 (4)
C11A—C17A1.500 (4)C11B—C17B1.499 (4)
C12A—C13A1.391 (4)C12B—C13B1.393 (3)
C12A—C18A1.481 (4)C12B—C18B1.485 (4)
C13A—C14A1.377 (4)C13B—C14B1.383 (4)
C13A—H13A0.95C13B—H13B0.95
C14A—C15A1.372 (4)C14B—C15B1.377 (4)
C14A—H14A0.95C14B—H14B0.95
C15A—C16A1.377 (4)C15B—C16B1.375 (4)
C15A—H15A0.95C15B—H15B0.95
C16A—H16A0.95C16B—H16B0.95
C18A—O11A1.321 (3)C18B—O11B1.324 (3)
C18A—O12A1.219 (3)C18B—O12B1.213 (3)
O11A—H11A0.84O11B—H11B0.84
C17A—O17A1.231 (3)C17B—O17B1.229 (3)
C17A—N1A1.348 (4)C17B—N1B1.353 (4)
N1A—C21A1.398 (3)N1B—C21B1.404 (3)
N1A—H1A0.88N1B—H1B0.88
C21A—C22A1.389 (4)C21B—C26B1.392 (4)
C21A—C26A1.396 (4)C21B—C22B1.396 (4)
C22A—C23A1.377 (4)C22B—C23B1.382 (4)
C22A—H22A0.95C22B—H22B0.95
C23A—C24A1.381 (5)C23B—C24B1.377 (4)
C23A—H23A0.95C23B—H23B0.95
C24A—C25A1.373 (5)C24B—C25B1.373 (4)
C24A—N24A1.462 (4)C24B—N24B1.462 (4)
C25A—C26A1.376 (4)C25B—C26B1.376 (4)
C25A—H25A0.95C25B—H25B0.95
C26A—H26A0.95C26B—H26B0.95
N24A—O42A1.227 (5)N24B—O41B1.220 (3)
N24A—O41A1.238 (4)N24B—O42B1.220 (3)
C16A—C11A—C12A119.3 (2)C16B—C11B—C12B119.3 (2)
C16A—C11A—C17A118.7 (3)C16B—C11B—C17B118.3 (3)
C12A—C11A—C17A122.0 (3)C12B—C11B—C17B122.2 (3)
C13A—C12A—C11A119.4 (3)C13B—C12B—C11B119.7 (3)
C13A—C12A—C18A121.2 (3)C13B—C12B—C18B120.9 (3)
C11A—C12A—C18A119.2 (2)C11B—C12B—C18B119.4 (2)
C14A—C13A—C12A120.3 (3)C14B—C13B—C12B120.1 (3)
C14A—C13A—H13A119.8C14B—C13B—H13B119.9
C12A—C13A—H13A119.8C12B—C13B—H13B119.9
C15A—C14A—C13A120.3 (3)C15B—C14B—C13B120.0 (3)
C15A—C14A—H14A119.9C15B—C14B—H14B120.0
C13A—C14A—H14A119.9C13B—C14B—H14B120.0
C14A—C15A—C16A120.5 (3)C16B—C15B—C14B121.1 (3)
C14A—C15A—H15A119.7C16B—C15B—H15B119.5
C16A—C15A—H15A119.7C14B—C15B—H15B119.5
C15A—C16A—C11A120.2 (3)C15B—C16B—C11B119.8 (3)
C15A—C16A—H16A119.9C15B—C16B—H16B120.1
C11A—C16A—H16A119.9C11B—C16B—H16B120.1
O12A—C18A—O11A122.9 (3)O12B—C18B—O11B123.5 (3)
O12A—C18A—C12A123.7 (3)O12B—C18B—C12B122.8 (3)
O11A—C18A—C12A113.3 (2)O11B—C18B—C12B113.7 (2)
C18A—O11A—H11A109.5C18B—O11B—H11B109.5
O17A—C17A—N1A124.6 (2)O17B—C17B—N1B124.9 (2)
O17A—C17A—C11A121.0 (3)O17B—C17B—C11B120.3 (2)
N1A—C17A—C11A114.3 (3)N1B—C17B—C11B114.7 (2)
C17A—N1A—C21A127.6 (2)C17B—N1B—C21B129.0 (2)
C17A—N1A—H1A116.2C17B—N1B—H1B115.5
C21A—N1A—H1A116.2C21B—N1B—H1B115.5
C22A—C21A—C26A120.1 (3)C26B—C21B—C22B119.4 (2)
C22A—C21A—N1A122.5 (3)C26B—C21B—N1B116.8 (2)
C26A—C21A—N1A117.3 (3)C22B—C21B—N1B123.8 (3)
C23A—C22A—C21A119.5 (3)C23B—C22B—C21B119.6 (3)
C23A—C22A—H22A120.2C23B—C22B—H22B120.2
C21A—C22A—H22A120.2C21B—C22B—H22B120.2
C22A—C23A—C24A119.2 (3)C24B—C23B—C22B119.6 (3)
C22A—C23A—H23A120.4C24B—C23B—H23B120.2
C24A—C23A—H23A120.4C22B—C23B—H23B120.2
C25A—C24A—C23A122.3 (3)C25B—C24B—C23B121.6 (3)
C25A—C24A—N24A118.3 (4)C25B—C24B—N24B119.2 (3)
C23A—C24A—N24A119.4 (3)C23B—C24B—N24B119.2 (3)
C24A—C25A—C26A118.6 (3)C24B—C25B—C26B119.0 (3)
C24A—C25A—H25A120.7C24B—C25B—H25B120.5
C26A—C25A—H25A120.7C26B—C25B—H25B120.5
C25A—C26A—C21A120.2 (3)C25B—C26B—C21B120.7 (3)
C25A—C26A—H26A119.9C25B—C26B—H26B119.7
C21A—C26A—H26A119.9C21B—C26B—H26B119.7
O42A—N24A—O41A124.0 (3)O41B—N24B—O42B122.7 (3)
O42A—N24A—C24A118.4 (4)O41B—N24B—C24B119.3 (3)
O41A—N24A—C24A117.6 (4)O42B—N24B—C24B118.1 (3)
C16A—C11A—C12A—C13A2.0 (4)C16B—C11B—C12B—C13B0.1 (4)
C17A—C11A—C12A—C13A179.2 (3)C17B—C11B—C12B—C13B176.6 (3)
C16A—C11A—C12A—C18A173.2 (3)C16B—C11B—C12B—C18B180.0 (3)
C17A—C11A—C12A—C18A4.1 (4)C17B—C11B—C12B—C18B3.3 (4)
C11A—C12A—C13A—C14A0.5 (4)C11B—C12B—C13B—C14B0.9 (4)
C18A—C12A—C13A—C14A174.6 (3)C18B—C12B—C13B—C14B179.2 (3)
C12A—C13A—C14A—C15A1.8 (5)C12B—C13B—C14B—C15B0.9 (4)
C13A—C14A—C15A—C16A2.6 (5)C13B—C14B—C15B—C16B0.0 (5)
C14A—C15A—C16A—C11A1.1 (5)C14B—C15B—C16B—C11B0.8 (4)
C12A—C11A—C16A—C15A1.2 (5)C12B—C11B—C16B—C15B0.7 (4)
C17A—C11A—C16A—C15A178.6 (3)C17B—C11B—C16B—C15B177.5 (3)
C13A—C12A—C18A—O12A179.5 (3)C13B—C12B—C18B—O12B169.7 (3)
C11A—C12A—C18A—O12A5.5 (4)C11B—C12B—C18B—O12B10.2 (4)
C13A—C12A—C18A—O11A2.7 (4)C13B—C12B—C18B—O11B10.5 (4)
C11A—C12A—C18A—O11A172.4 (3)C11B—C12B—C18B—O11B169.6 (3)
C16A—C11A—C17A—O17A79.0 (4)C16B—C11B—C17B—O17B81.3 (4)
C12A—C11A—C17A—O17A98.3 (4)C12B—C11B—C17B—O17B95.4 (3)
C16A—C11A—C17A—N1A97.4 (3)C16B—C11B—C17B—N1B94.6 (3)
C12A—C11A—C17A—N1A85.3 (4)C12B—C11B—C17B—N1B88.7 (4)
O17A—C17A—N1A—C21A11.3 (5)O17B—C17B—N1B—C21B7.6 (5)
C11A—C17A—N1A—C21A172.5 (3)C11B—C17B—N1B—C21B176.7 (3)
C17A—N1A—C21A—C22A26.3 (4)C17B—N1B—C21B—C26B170.5 (3)
C17A—N1A—C21A—C26A155.2 (3)C17B—N1B—C21B—C22B10.8 (5)
C26A—C21A—C22A—C23A0.9 (4)C26B—C21B—C22B—C23B0.8 (4)
N1A—C21A—C22A—C23A179.5 (3)N1B—C21B—C22B—C23B179.5 (3)
C21A—C22A—C23A—C24A0.0 (4)C21B—C22B—C23B—C24B0.3 (5)
C22A—C23A—C24A—C25A0.2 (5)C22B—C23B—C24B—C25B0.9 (5)
C22A—C23A—C24A—N24A179.2 (3)C22B—C23B—C24B—N24B178.8 (3)
C23A—C24A—C25A—C26A0.5 (5)C23B—C24B—C25B—C26B0.3 (5)
N24A—C24A—C25A—C26A179.9 (3)N24B—C24B—C25B—C26B179.4 (3)
C24A—C25A—C26A—C21A1.4 (4)C24B—C25B—C26B—C21B0.8 (5)
C22A—C21A—C26A—C25A1.6 (4)C22B—C21B—C26B—C25B1.4 (5)
N1A—C21A—C26A—C25A179.7 (3)N1B—C21B—C26B—C25B179.8 (3)
C25A—C24A—N24A—O42A12.5 (5)C25B—C24B—N24B—O41B174.0 (3)
C23A—C24A—N24A—O42A166.9 (3)C23B—C24B—N24B—O41B6.3 (5)
C25A—C24A—N24A—O41A167.6 (3)C25B—C24B—N24B—O42B6.3 (5)
C23A—C24A—N24A—O41A13.0 (5)C23B—C24B—N24B—O42B173.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O12Bi0.882.092.873 (4)147
N1B—H1B···O12Aii0.882.162.902 (3)141
O11A—H11A···O17B0.841.842.664 (3)166
O11B—H11B···O17Aiii0.841.832.666 (3)174
C16A—H16A···O12Ai0.952.463.368 (3)159
C23B—H23B···O41Aiv0.952.453.355 (4)160
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H10N2O5C14H10N2O5C14H10N2O5
Mr286.24286.24286.24
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, P212121Monoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)7.2761 (2), 14.8881 (5), 23.0407 (6)3.9188 (2), 12.6896 (6), 27.7029 (16)10.2098 (10), 9.3749 (8), 27.409 (2)
α, β, γ (°)90, 90, 9090, 90, 9090, 100.578 (4), 90
V3)2495.94 (13)1377.61 (12)2578.9 (4)
Z848
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.110.11
Crystal size (mm)0.36 × 0.36 × 0.220.25 × 0.08 × 0.040.22 × 0.18 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.955, 0.9750.969, 0.9960.965, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15224, 2848, 1876 4875, 1820, 1237 19240, 5503, 2662
Rint0.0720.0520.095
(sin θ/λ)max1)0.6490.6490.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 0.98 0.055, 0.123, 1.09 0.069, 0.166, 0.99
No. of reflections284818205503
No. of parameters191191381
No. of restraints010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.290.21, 0.210.30, 0.26

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
C18—O111.312 (2)C18—O121.227 (2)
C12—C11—C17—N1127.5 (2)C11—C12—C18—O11153.6 (2)
C11—C17—N1—C21177.8 (2)C21—C22—N22—O21143.3 (2)
C17—N1—C21—C22139.1 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O220.882.142.719 (2)123
O11—H11···O12i0.841.782.623 (2)178
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
C18—O111.324 (3)C18—O121.219 (3)
C12—C11—C17—N164.8 (5)C11—C12—C18—O11171.2 (3)
C11—C17—N1—C21179.1 (3)C23—C24—N24—O41168.8 (4)
C17—N1—C21—C2217.7 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12i0.881.962.833 (3)171
O11—H11···O17ii0.841.782.614 (3)173
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+3/2.
Selected geometric parameters (Å, º) for (III) top
C18A—O11A1.321 (3)C18B—O11B1.324 (3)
C18A—O12A1.219 (3)C18B—O12B1.213 (3)
C12A—C11A—C17A—N1A85.3 (4)C12B—C11B—C17B—N1B88.7 (4)
C11A—C17A—N1A—C21A172.5 (3)C11B—C17B—N1B—C21B176.7 (3)
C17A—N1A—C21A—C22A26.3 (4)C17B—N1B—C21B—C22B10.8 (5)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O12Bi0.882.092.873 (4)147
N1B—H1B···O12Aii0.882.162.902 (3)141
O11A—H11A···O17B0.841.842.664 (3)166
O11B—H11B···O17Aiii0.841.832.666 (3)174
C23B—H23B···O41Aiv0.952.453.355 (4)160
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds