Download citation
Download citation
link to html
The X-ray crystal structures are reported of four novel and potentially O,N,S-tridentate donor ligands that demonstrate antitumour activity. These ligands are 1-[(4-methyl­thio­semicarbazono)methyl]-2-naphthol, C13H13N3OS, (III), 1-[(4-ethylthio­semicarbazono)­methyl]-2-naphthol, C14H15N3OS, (IV), 1-[(4-phenyl­thio­semicarbazono)­methyl]-2-naphthol, C18H15N3OS, (V), and 1-[(4,4-di­methyl­thio­semicarbazono)­methyl]-2-naphthol di­methyl sulfoxide solvate, C14H15N3OS·C2H6OS, (VI). These chelators are N4-substituted thio­semicarbazones, each based on the same parent aldehyde, namely 2-­zhydroxynaphthalene-1-carboxaldehyde isonicotinoylhydrazone. Conformational variations within this series are discussed in relation to the optimum conformation for metal-ion binding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021401/gg1180sup1.cif
Contains datablocks global, IV, V, VI, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021401/gg1180IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021401/gg1180IVsup3.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021401/gg1180Vsup4.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021401/gg1180VIsup5.hkl
Contains datablock VI

CCDC references: 226129; 226130; 226131; 226132

Comment top

Due to its critical role in DNA synthesis and proliferation, iron is a potential target for the treatment of cancer (Richardson, 2002). To this end, the cellular antiproliferative effects of a number of Fe-specific chelators and their complexes have been examined. A class of chelators with pronounced, and selective, activity against tumour cells are the thiosemicarbazones. The mechanism by which these compounds act is still not well understood, but chelation of intracellular Fe and other metal ions is believed to be important. A pertinent example is 3-aminopyridine-2-carbaldehyde thiosemicarbazone, (I) (also known as Triapine), which is a potent inhibitor of ribonucleotide reductase (Finch et al., 1999), an enzyme which catalyzes the rate-limiting step in DNA synthesis.

Recently, we reported (Lovejoy & Richardson, 2002) the antiproliferative activity of a series of novel thiosemicarbazones based on 2-hydroxy-1-naphthaldehyde, and found that many of them were highly active against neoplastic cellular proliferation but had much less effect on normal cells. Interestingly, structural variations at the thiosemicarbazide moiety have a marked effect on biological activity. For example, the N2-methyl substituted thiosemicarbazone (II) exhibits poor antiproliferative activity (Lovejoy & Richardson, 2002), and we have reported the crystal structure of this compound (Lovejoy et al., 2000). The absence of an ionisable H atom on N2 and the consequential lowering of Fe binding affinity were attributed to this feature. Herein, we report the crystal structures of four N4-substituted thiosemicarbazones, (III)-(VI), each derived from the same parent aldehyde (2-hydroxy-1-naphthaldehyde) and all displaying high antiproliferative activity (Lovejoy & Richardson, 2002). In each case, N2 is protonated, but the conformation of the thiosemicarbazide group varies across the series. \sch

Selected bond lengths and angles are shown in Tables 1, 3, 5 and 7 for compounds (III)-(VI), respectively. It can be seen that there is little variation in the bond lengths within this series, but there are some subtle distinctions between their overall structures, as discussed below, particularly with regard to hydrogen bonding.

The structure of (III) (Fig. 1 and Table 1) reveals an almost planar molecule, with all non-H atoms within 0.04 Å of the least-squares plane, and the dihedral angles are all within 2° of either 0 or 180°. Intramolecular hydrogen bonding is a feature of the structure. The hydroxyl group is hydrogen-bonded to the adjacent imine N atom (Table 2). A weaker and more acute hydrogen bond is formed between the imine N atom and the adjacent NH group. In this conformation, the S atom is anti to atom N1 and is able to form a hydrogen bond with the remaining hydrazide H atom. This interaction creates a polymeric hydrogen-bonded chain, shown in the packing diagram of (III) (Fig. 2).

The N-ethyl analogue, (IV) (Fig. 3 and Table 3), exhibits a similar conformation and intramolecular hydrogen-bonding interactions to the N-methyl analogue, (III) (Table 4). Again, an intermolecular hydrogen bond involving the S atom is observed in (IV). In contrast with the hydrogen-bonded polymer found in (III), the intermolecular hydrogen bonds in (IV) result in C2-symmetric dimers, as shown in Fig. 4. The molecule of (IV) is somewhat less planar than that of (III); the largest torsion angle deviation from either 0 or 180° is 7.6 (3)° for N3—C12—N2—N1, which may be attributed to the distortion resulting from the cyclic intermolecular hydrogen-bonding motif.

A similar structure is again seen in the N-phenyl compound, (V) (Fig. 5 and Table 5), although the phenyl ring is rotated by ca 37° out of the plane defined by the rest of the molecule to minimize ortho H-atom repulsions with atoms S1 and H3A (the H atom attached to N3). The relevant intramolecular hydrogen bonds (Table 6) are again similar in (V). Like (IV), the N-phenyl analogue forms C2-symmetric hydrogen-bonded dimers (Fig. 6). The unique intermolecular interaction again involves the S atom as acceptor.

The structure of the N-dimethylated analogue, (VI), is unique among the compounds reported here. The potentially coordinating atoms O1, N1 and S1 are adjacent and define a syn conformation (Fig. 7 and Table 7). In this case, there are only two significant hydrogen bonds and both are intramolecular (Table 8), involving the hydroxyl group and the syn N1 and S1 atoms. The structure of (VI) also contains a molecule of dimethyl sulfoxide (DMSO; not shown), which is disordered about a pseudo mirror plane that includes the two methyl C atoms. There are no significant intermolecular hydrogen bonds in (VI), except that between the minor (15%) DMSO contributor and the NH group.

It is known from the coordination chemistry of similar thiosemicarbazones (Gyepes et al., 1981; Soriano-García et al., 1985; Zimmer et al., 1991) that they bind as meridional O,N,S chelators (in the syn conformation shown in the Scheme above), while the terminal N3 atom does not participate in coordinate bonding. Of the four structures presented here, only (VI) is preorganized for metal binding, while the other compounds must undergo a 180° rotation of the N2—C12 bond.

In conclusion, there are two factors which result in the conformational differences between (VI) (syn) and the group of (III), (IV) and (V) (anti). The N3—H3A···N1 intramolecular hydrogen-bond interaction seen in compounds (III), (IV) and (V), albeit weak, appears to favour the anti conformer. In (VI), this hydrogen bond is not possible and the anti conformer is further destabilized by steric clashing between the N-methyl groups and the hydroxyl group, and the syn conformer ensues.

Tables 2, 4, 6 should be 'Hydrogen bonding and contact geometry.

Experimental top

All compounds were prepared by Schiff base condensation of 2-hydroxy-1-naphthaldehyde with the appropriate thiosemicarbazide in refluxing ethanol. The compounds precipitated readily from the reaction mixture and were found to be pure by elemental analysis and NMR. Crystals of (III) were obtained from a saturated dimethylformamide solution, (IV) and (V) were crystallized from ethanol solutions, and (VI) was crystallized from a concentrated dimethyl sulfoxide solution.

Refinement top

In each structure, the H atoms attached to N and O atoms were located from difference maps and refined without any constraints on their positional or isotropic displacement parameters. H atoms on C atoms? 14 Friedel pairs were measured for the structure of (III) and the absolute structure determination is indicated by the derived Flack value (Bernardinelli & Flack, 1985) of 0.01 (13).

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (III), showing the atom-numbering scheme and with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A diagram of the hydrogen-bonded chain in (III) with the unit cell. H atoms on C atoms have been omitted for clarity. Atom S1' is at the symmetry position (1 − x, y + 1/2, 1 − z).
[Figure 3] Fig. 3. A view of the molecule of (IV), showing the atom-numbering scheme and with 30% probability displacement ellipsoids.
[Figure 4] Fig. 4. A diagram of the hydrogen-bonded dimer of (IV). H atoms on C atoms have been omitted for clarity. Atom S1' is at the symmetry position (1 − x, y, 3/2 − z).
[Figure 5] Fig. 5. A view of the molecule of (V), showing the atom-numbering scheme and with 30% probability displacement ellipsoids.
[Figure 6] Fig. 6. A diagram of the hydrogen-bonded dimer of (V). H atoms on C atoms have been omitted for clarity. Atom S1' is at the symmetry position (1 − x, y, 3/2 − z).
[Figure 7] Fig. 7. A view of the molecule of (VI), showing the atom-numbering scheme and with 30% probability displacement ellipsoids. For clarity, the dimethyl sulfoxide solvent molecule is not shown.
(III) 1-[(4-methylthiosemicarbazono)methyl]-2-naphthol top
Crystal data top
C13H13N3OSF(000) = 272
Mr = 259.32Dx = 1.43 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.293 (1) Åθ = 10.5–16.0°
b = 5.1612 (3) ŵ = 0.26 mm1
c = 12.563 (1) ÅT = 296 K
β = 91.31 (2)°Prism, yellow
V = 602.40 (9) Å30.5 × 0.17 × 0.1 mm
Z = 2
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
960 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
non–profiled ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.912, Tmax = 0.971l = 1414
1262 measured reflections3 standard reflections every 120 min
1185 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0084P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1185 reflectionsΔρmax = 0.14 e Å3
176 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Bernardinelli & Flack (1985)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (13)
Crystal data top
C13H13N3OSV = 602.40 (9) Å3
Mr = 259.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.293 (1) ŵ = 0.26 mm1
b = 5.1612 (3) ÅT = 296 K
c = 12.563 (1) Å0.5 × 0.17 × 0.1 mm
β = 91.31 (2)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
960 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.912, Tmax = 0.9713 standard reflections every 120 min
1262 measured reflections intensity decay: 2%
1185 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.14 e Å3
S = 1.06Δρmin = 0.16 e Å3
1185 reflectionsAbsolute structure: Bernardinelli & Flack (1985)
176 parametersAbsolute structure parameter: 0.01 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7189 (3)1.2636 (7)0.7834 (2)0.0316 (7)
C20.6973 (3)1.2471 (7)0.8929 (2)0.0370 (8)
C30.7709 (3)1.4128 (10)0.9641 (2)0.0449 (8)
H30.75531.39861.03670.054*
C40.8635 (3)1.5918 (8)0.9288 (2)0.0420 (8)
H40.91141.69810.97770.05*
C50.8896 (3)1.6221 (7)0.8192 (2)0.0347 (7)
C60.9850 (3)1.8124 (7)0.7823 (2)0.0411 (9)
H61.03041.92240.83110.049*
C71.0123 (3)1.8391 (7)0.6774 (3)0.0446 (9)
H71.07691.96390.65450.054*
C80.9418 (3)1.6760 (8)0.6037 (3)0.0437 (9)
H80.95951.69460.53160.052*
C90.8475 (3)1.4902 (7)0.6359 (2)0.0393 (9)
H90.8021.38470.58540.047*
C100.8180 (3)1.4559 (6)0.7452 (2)0.0297 (7)
C110.6458 (3)1.0903 (7)0.7094 (2)0.0344 (8)
H110.66221.10930.63710.041*
C120.4029 (3)0.5752 (7)0.6778 (2)0.0322 (7)
C130.2726 (4)0.3358 (7)0.8131 (3)0.0491 (10)
H13A0.17920.36890.78180.074*
H13B0.26660.33860.88920.074*
H13C0.30590.1690.79050.074*
N10.5593 (2)0.9109 (7)0.73939 (17)0.0350 (6)
N20.4992 (3)0.7659 (6)0.65886 (19)0.0378 (7)
N30.3719 (3)0.5329 (6)0.7795 (2)0.0393 (7)
O10.6057 (3)1.0745 (6)0.93639 (18)0.0474 (6)
S10.32963 (8)0.4069 (2)0.57655 (6)0.0454 (3)
H1A0.566 (5)0.993 (13)0.874 (4)0.12 (2)*
H2A0.518 (3)0.806 (7)0.589 (2)0.041 (9)*
H3A0.417 (4)0.622 (9)0.827 (3)0.064 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (15)0.0314 (19)0.0318 (14)0.0035 (15)0.0005 (12)0.0044 (15)
C20.0369 (16)0.036 (2)0.0383 (16)0.0003 (17)0.0017 (13)0.0008 (17)
C30.0576 (18)0.049 (2)0.0285 (14)0.005 (2)0.0004 (13)0.002 (2)
C40.0491 (18)0.041 (2)0.0357 (17)0.0047 (19)0.0031 (14)0.0063 (18)
C50.0325 (15)0.0331 (19)0.0383 (15)0.0058 (16)0.0026 (12)0.0039 (16)
C60.0416 (18)0.036 (2)0.0454 (18)0.0065 (16)0.0055 (14)0.0030 (16)
C70.0428 (17)0.039 (2)0.0518 (18)0.0024 (16)0.0007 (14)0.0049 (16)
C80.0448 (18)0.048 (3)0.0388 (16)0.0023 (18)0.0054 (14)0.0004 (17)
C90.0421 (17)0.040 (2)0.0357 (16)0.0030 (17)0.0008 (13)0.0058 (16)
C100.0322 (14)0.024 (2)0.0326 (14)0.0083 (14)0.0009 (11)0.0003 (14)
C110.0386 (15)0.034 (2)0.0310 (15)0.0027 (17)0.0013 (13)0.0004 (15)
C120.0295 (14)0.033 (2)0.0339 (15)0.0043 (16)0.0018 (12)0.0029 (15)
C130.056 (2)0.045 (3)0.0464 (18)0.0097 (18)0.0121 (16)0.0063 (17)
N10.0387 (12)0.0340 (14)0.0323 (12)0.0031 (16)0.0009 (10)0.0016 (16)
N20.0427 (15)0.0430 (18)0.0278 (13)0.0111 (15)0.0006 (11)0.0011 (14)
N30.0462 (16)0.0417 (18)0.0303 (14)0.0052 (14)0.0047 (12)0.0013 (13)
O10.0546 (13)0.0503 (17)0.0376 (12)0.0130 (14)0.0047 (11)0.0012 (13)
S10.0512 (5)0.0498 (6)0.0350 (4)0.0126 (5)0.0009 (3)0.0055 (5)
Geometric parameters (Å, º) top
C1—C21.397 (4)C8—H80.9300
C1—C101.444 (4)C9—C101.417 (4)
C1—C111.447 (4)C9—H90.9300
C2—O11.356 (4)C11—N11.288 (4)
C2—C31.404 (5)C11—H110.9300
C3—C41.345 (5)C12—N31.333 (4)
C3—H30.9300C12—N21.355 (4)
C4—C51.412 (4)C12—S11.672 (3)
C4—H40.9300C13—N31.443 (4)
C5—C61.409 (4)C13—H13A0.9600
C5—C101.420 (4)C13—H13B0.9600
C6—C71.355 (5)C13—H13C0.9600
C6—H60.9300N1—N21.367 (4)
C7—C81.402 (5)N2—H2A0.92 (3)
C7—H70.9300N3—H3A0.85 (4)
C8—C91.367 (5)O1—H1A0.95 (5)
C2—C1—C10118.4 (3)C8—C9—H9119.5
C2—C1—C11121.2 (3)C10—C9—H9119.5
C10—C1—C11120.3 (2)C9—C10—C5117.5 (3)
O1—C2—C1122.8 (3)C9—C10—C1123.1 (3)
O1—C2—C3116.4 (3)C5—C10—C1119.4 (2)
C1—C2—C3120.7 (3)N1—C11—C1122.9 (3)
C4—C3—C2120.9 (3)N1—C11—H11118.5
C4—C3—H3119.5C1—C11—H11118.5
C2—C3—H3119.5N3—C12—N2116.4 (3)
C3—C4—C5121.6 (3)N3—C12—S1123.4 (3)
C3—C4—H4119.2N2—C12—S1120.2 (2)
C5—C4—H4119.2N3—C13—H13A109.5
C6—C5—C4121.5 (3)N3—C13—H13B109.5
C6—C5—C10119.6 (3)H13A—C13—H13B109.5
C4—C5—C10118.9 (3)N3—C13—H13C109.5
C7—C6—C5121.7 (3)H13A—C13—H13C109.5
C7—C6—H6119.2H13B—C13—H13C109.5
C5—C6—H6119.2C11—N1—N2115.1 (2)
C6—C7—C8119.0 (3)C12—N2—N1121.8 (2)
C6—C7—H7120.5C12—N2—H2A118 (2)
C8—C7—H7120.5N1—N2—H2A120 (2)
C9—C8—C7121.3 (3)C12—N3—C13123.3 (3)
C9—C8—H8119.4C12—N3—H3A118 (3)
C7—C8—H8119.4C13—N3—H3A119 (3)
C8—C9—C10120.9 (3)C2—O1—H1A101 (3)
C10—C1—C2—O1179.5 (3)C6—C5—C10—C90.3 (4)
C11—C1—C2—O11.5 (5)C4—C5—C10—C9179.5 (3)
C10—C1—C2—C30.3 (5)C6—C5—C10—C1179.2 (3)
C11—C1—C2—C3178.7 (3)C4—C5—C10—C11.0 (4)
O1—C2—C3—C4179.6 (3)C2—C1—C10—C9179.7 (3)
C1—C2—C3—C40.2 (5)C11—C1—C10—C91.2 (4)
C2—C3—C4—C50.5 (6)C2—C1—C10—C50.3 (4)
C3—C4—C5—C6179.0 (3)C11—C1—C10—C5179.3 (3)
C3—C4—C5—C101.1 (5)C2—C1—C11—N10.9 (5)
C4—C5—C6—C7178.8 (3)C10—C1—C11—N1178.1 (3)
C10—C5—C6—C71.0 (5)C1—C11—N1—N2179.7 (3)
C5—C6—C7—C81.1 (5)N3—C12—N2—N11.3 (4)
C6—C7—C8—C90.6 (5)S1—C12—N2—N1178.7 (2)
C7—C8—C9—C100.1 (5)C11—N1—N2—C12178.1 (3)
C8—C9—C10—C50.2 (4)N2—C12—N3—C13179.5 (3)
C8—C9—C10—C1179.7 (3)S1—C12—N3—C130.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.95 (5)1.75 (5)2.641 (3)155 (5)
N3—H3A···N10.85 (4)2.29 (4)2.671 (4)107 (3)
N2—H2A···S1i0.92 (3)2.60 (3)3.467 (3)158 (2)
Symmetry code: (i) x+1, y+1/2, z+1.
(IV) 1-[(4-ethylthiosemicarbazono)methyl]-2-naphthol top
Crystal data top
C14H15N3OSF(000) = 1152
Mr = 273.35Dx = 1.329 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21 reflections
a = 26.608 (8) Åθ = 11.0–14.0°
b = 7.0551 (6) ŵ = 0.23 mm1
c = 18.918 (5) ÅT = 296 K
β = 129.71 (1)°Prism, yellow
V = 2732.0 (11) Å30.5 × 0.5 × 0.5 mm
Z = 8
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1847 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
non–profiled ω scansh = 031
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.698, Tmax = 0.883l = 2217
2466 measured reflections3 standard reflections every 120 min
2410 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.4628P]
where P = (Fo2 + 2Fc2)/3
2410 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H15N3OSV = 2732.0 (11) Å3
Mr = 273.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.608 (8) ŵ = 0.23 mm1
b = 7.0551 (6) ÅT = 296 K
c = 18.918 (5) Å0.5 × 0.5 × 0.5 mm
β = 129.71 (1)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1847 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.698, Tmax = 0.8833 standard reflections every 120 min
2466 measured reflections intensity decay: 1%
2410 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2410 reflectionsΔρmin = 0.21 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74168 (8)0.4910 (3)0.97852 (12)0.0323 (4)
C20.77555 (9)0.5070 (3)1.07198 (13)0.0363 (4)
C30.84101 (10)0.5649 (3)1.13317 (14)0.0455 (5)
H30.86290.57011.19590.055*
C40.87240 (10)0.6134 (3)1.10104 (15)0.0483 (5)
H40.91550.65471.14210.058*
C50.84120 (9)0.6026 (3)1.00670 (15)0.0427 (5)
C60.87402 (12)0.6544 (4)0.9734 (2)0.0578 (6)
H60.91670.69921.01420.069*
C70.84451 (14)0.6401 (4)0.8833 (2)0.0671 (7)
H70.86680.67540.86250.081*
C80.78082 (13)0.5727 (4)0.82158 (18)0.0631 (7)
H80.76090.56130.75970.076*
C90.74709 (11)0.5227 (3)0.85109 (15)0.0483 (5)
H90.70460.47760.80870.058*
C100.77540 (9)0.5381 (3)0.94379 (13)0.0356 (4)
C110.67393 (9)0.4318 (3)0.91622 (13)0.0346 (4)
H110.65280.42080.85390.041*
C120.54281 (9)0.2883 (3)0.90517 (13)0.0382 (5)
C130.54078 (11)0.2611 (4)1.03312 (15)0.0520 (6)
H13A0.53440.12481.02790.062*
H13B0.49840.3211.00060.062*
C140.58437 (13)0.3175 (4)1.13218 (16)0.0637 (7)
H14A0.56490.27911.15860.096*
H14B0.590.45251.13710.096*
H14C0.62610.2571.16440.096*
N10.64227 (7)0.3942 (2)0.94472 (11)0.0366 (4)
N20.57843 (8)0.3377 (3)0.87986 (12)0.0407 (4)
N30.56957 (9)0.3178 (3)0.99193 (13)0.0481 (5)
O10.74878 (8)0.4638 (3)1.11118 (10)0.0505 (4)
S10.46774 (2)0.19586 (10)0.82647 (4)0.0532 (2)
H1A0.7074 (14)0.436 (4)1.065 (2)0.073 (9)*
H2A0.5643 (12)0.304 (3)0.8232 (18)0.057 (7)*
H3A0.6065 (13)0.352 (4)1.0253 (18)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (10)0.0312 (10)0.0353 (10)0.0023 (8)0.0217 (9)0.0027 (8)
C20.0393 (11)0.0333 (10)0.0379 (10)0.0038 (8)0.0254 (9)0.0031 (8)
C30.0374 (11)0.0462 (12)0.0374 (10)0.0030 (9)0.0168 (9)0.0019 (9)
C40.0301 (10)0.0459 (13)0.0548 (13)0.0019 (9)0.0205 (10)0.0049 (10)
C50.0369 (11)0.0373 (11)0.0590 (13)0.0026 (9)0.0330 (10)0.0032 (10)
C60.0485 (13)0.0557 (15)0.0861 (18)0.0010 (11)0.0508 (13)0.0034 (13)
C70.0737 (17)0.0702 (17)0.099 (2)0.0059 (14)0.0747 (17)0.0152 (16)
C80.0761 (17)0.0747 (18)0.0639 (15)0.0082 (14)0.0566 (15)0.0121 (13)
C90.0477 (12)0.0589 (14)0.0469 (12)0.0021 (11)0.0341 (10)0.0064 (10)
C100.0363 (10)0.0315 (10)0.0443 (11)0.0049 (8)0.0282 (9)0.0049 (8)
C110.0350 (10)0.0371 (11)0.0340 (9)0.0009 (8)0.0232 (8)0.0013 (8)
C120.0364 (10)0.0399 (11)0.0418 (11)0.0012 (9)0.0266 (9)0.0001 (9)
C130.0532 (13)0.0645 (15)0.0519 (12)0.0096 (11)0.0399 (11)0.0010 (11)
C140.0713 (16)0.0751 (18)0.0501 (13)0.0014 (14)0.0413 (13)0.0026 (13)
N10.0322 (8)0.0402 (9)0.0392 (9)0.0040 (7)0.0237 (7)0.0023 (7)
N20.0320 (8)0.0532 (11)0.0376 (9)0.0077 (8)0.0225 (7)0.0051 (8)
N30.0393 (10)0.0664 (13)0.0441 (10)0.0186 (10)0.0291 (9)0.0106 (9)
O10.0512 (9)0.0679 (11)0.0380 (8)0.0067 (8)0.0311 (8)0.0004 (7)
S10.0357 (3)0.0780 (5)0.0436 (3)0.0158 (3)0.0242 (3)0.0066 (3)
Geometric parameters (Å, º) top
C1—C21.384 (3)C9—H90.9300
C1—C111.449 (3)C11—N11.285 (2)
C1—C101.449 (2)C11—H110.9300
C2—O11.351 (2)C12—N31.323 (3)
C2—C31.402 (3)C12—N21.353 (2)
C3—C41.354 (3)C12—S11.683 (2)
C3—H30.9300C13—N31.455 (3)
C4—C51.410 (3)C13—C141.496 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.413 (3)C13—H13B0.9700
C5—C101.423 (3)C14—H14A0.9600
C6—C71.350 (4)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.391 (4)N1—N21.373 (2)
C7—H70.9300N2—H2A0.91 (3)
C8—C91.372 (3)N3—H3A0.79 (3)
C8—H80.9300O1—H1A0.89 (3)
C9—C101.402 (3)
C2—C1—C11121.28 (16)C9—C10—C1123.75 (18)
C2—C1—C10118.30 (17)C5—C10—C1118.77 (17)
C11—C1—C10120.42 (16)N1—C11—C1121.79 (17)
O1—C2—C1122.79 (17)N1—C11—H11119.1
O1—C2—C3115.17 (17)C1—C11—H11119.1
C1—C2—C3122.02 (18)N3—C12—N2117.07 (18)
C4—C3—C2120.03 (19)N3—C12—S1123.53 (15)
C4—C3—H3120.0N2—C12—S1119.40 (15)
C2—C3—H3120.0N3—C13—C14110.23 (19)
C3—C4—C5121.44 (19)N3—C13—H13A109.6
C3—C4—H4119.3C14—C13—H13A109.6
C5—C4—H4119.3N3—C13—H13B109.6
C4—C5—C6121.3 (2)C14—C13—H13B109.6
C4—C5—C10119.39 (18)H13A—C13—H13B108.1
C6—C5—C10119.4 (2)C13—C14—H14A109.5
C7—C6—C5121.2 (2)C13—C14—H14B109.5
C7—C6—H6119.4H14A—C14—H14B109.5
C5—C6—H6119.4C13—C14—H14C109.5
C6—C7—C8119.9 (2)H14A—C14—H14C109.5
C6—C7—H7120.0H14B—C14—H14C109.5
C8—C7—H7120.0C11—N1—N2116.94 (16)
C9—C8—C7120.7 (2)C12—N2—N1120.32 (17)
C9—C8—H8119.7C12—N2—H2A119.6 (15)
C7—C8—H8119.7N1—N2—H2A118.1 (15)
C8—C9—C10121.4 (2)C12—N3—C13124.81 (19)
C8—C9—H9119.3C12—N3—H3A116.5 (19)
C10—C9—H9119.3C13—N3—H3A117.8 (19)
C9—C10—C5117.48 (18)C2—O1—H1A105.4 (18)
C11—C1—C2—O12.0 (3)C6—C5—C10—C92.4 (3)
C10—C1—C2—O1178.99 (18)C4—C5—C10—C11.9 (3)
C11—C1—C2—C3179.69 (18)C6—C5—C10—C1178.10 (19)
C10—C1—C2—C30.7 (3)C2—C1—C10—C9178.15 (19)
O1—C2—C3—C4179.4 (2)C11—C1—C10—C92.8 (3)
C1—C2—C3—C42.2 (3)C2—C1—C10—C51.4 (3)
C2—C3—C4—C51.6 (3)C11—C1—C10—C5177.65 (17)
C3—C4—C5—C6179.6 (2)C2—C1—C11—N10.9 (3)
C3—C4—C5—C100.4 (3)C10—C1—C11—N1178.08 (18)
C4—C5—C6—C7178.6 (2)C1—C11—N1—N2179.47 (17)
C10—C5—C6—C71.4 (4)N3—C12—N2—N17.6 (3)
C5—C6—C7—C80.3 (4)S1—C12—N2—N1172.97 (15)
C6—C7—C8—C90.9 (4)C11—N1—N2—C12177.31 (18)
C7—C8—C9—C100.1 (4)N2—C12—N3—C13175.3 (2)
C8—C9—C10—C51.7 (3)S1—C12—N3—C135.3 (3)
C8—C9—C10—C1178.7 (2)C14—C13—N3—C12179.9 (2)
C4—C5—C10—C9177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.89 (3)1.80 (3)2.605 (2)151 (3)
N3—H3A···N10.79 (3)2.27 (3)2.653 (2)110 (2)
N2—H2A···S1i0.91 (3)2.50 (3)3.409 (2)176 (2)
Symmetry code: (i) x+1, y, z+3/2.
(V) 1-[(4-phenylthiosemicarbazono)methyl]-2-naphthol top
Crystal data top
C18H15N3OSF(000) = 1344
Mr = 321.39Dx = 1.34 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 19.243 (4) Åθ = 9.7–14.3°
b = 6.7948 (6) ŵ = 0.21 mm1
c = 24.471 (6) ÅT = 296 K
β = 95.48 (1)°Prism, yellow
V = 3185.0 (11) Å30.5 × 0.4 × 0.3 mm
Z = 8
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1425 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
non–profiled ω/2θ scansh = 022
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.911, Tmax = 0.936l = 2928
2834 measured reflections3 standard reflections every 120 min
2747 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.9608P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H15N3OSV = 3185.0 (11) Å3
Mr = 321.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.243 (4) ŵ = 0.21 mm1
b = 6.7948 (6) ÅT = 296 K
c = 24.471 (6) Å0.5 × 0.4 × 0.3 mm
β = 95.48 (1)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1425 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.911, Tmax = 0.9363 standard reflections every 120 min
2834 measured reflections intensity decay: 5%
2747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.16 e Å3
2747 reflectionsΔρmin = 0.25 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48619 (11)0.2486 (4)0.01483 (9)0.0419 (6)
C20.43538 (13)0.2363 (4)0.02902 (10)0.0501 (6)
C30.36460 (13)0.2115 (4)0.02146 (11)0.0619 (8)
H30.33140.20530.05170.074*
C40.34470 (13)0.1965 (4)0.03009 (12)0.0626 (8)
H40.29790.17570.03470.075*
C50.39304 (13)0.2115 (4)0.07659 (10)0.0505 (7)
C60.37140 (15)0.1996 (4)0.13032 (12)0.0639 (8)
H60.32460.17710.13480.077*
C70.41766 (18)0.2204 (5)0.17500 (12)0.0751 (10)
H70.40260.21370.210.09*
C80.48783 (17)0.2518 (5)0.16862 (11)0.0763 (9)
H80.51940.26680.19960.092*
C90.51119 (15)0.2611 (4)0.11772 (10)0.0626 (8)
H90.55840.28150.11460.075*
C100.46500 (12)0.2402 (4)0.06970 (9)0.0469 (6)
C110.55942 (12)0.2633 (4)0.00645 (9)0.0461 (6)
H110.5920.26390.0370.055*
C120.68278 (12)0.2865 (4)0.09027 (10)0.0502 (7)
C130.65146 (13)0.3281 (4)0.19175 (10)0.0520 (7)
C140.70859 (15)0.4233 (5)0.20872 (11)0.0662 (8)
H140.74260.47550.18320.079*
C150.71459 (18)0.4402 (5)0.26474 (13)0.0759 (9)
H150.75330.50320.27670.091*
C170.60859 (17)0.2716 (5)0.28513 (12)0.0856 (11)
H170.57490.21880.31070.103*
C180.60151 (14)0.2537 (5)0.22952 (11)0.0682 (8)
H180.56260.19090.21790.082*
C160.66484 (19)0.3663 (6)0.30226 (13)0.0841 (11)
H160.66920.38040.33960.101*
N10.58142 (10)0.2756 (3)0.04149 (8)0.0464 (5)
N20.65255 (11)0.2785 (4)0.04284 (9)0.0527 (6)
N30.63899 (12)0.3115 (4)0.13526 (8)0.0552 (7)
O10.45075 (11)0.2448 (4)0.08171 (7)0.0691 (6)
S10.76909 (3)0.25906 (17)0.08846 (3)0.0886 (4)
H1A0.4938 (17)0.258 (5)0.0812 (12)0.086 (11)*
H2A0.6754 (15)0.274 (4)0.0133 (12)0.076 (10)*
H3A0.5987 (15)0.312 (4)0.1284 (11)0.070 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (12)0.0411 (15)0.0411 (12)0.0035 (12)0.0044 (9)0.0003 (13)
C20.0495 (14)0.0547 (18)0.0456 (14)0.0078 (14)0.0023 (10)0.0025 (13)
C30.0443 (14)0.083 (2)0.0567 (16)0.0034 (15)0.0031 (11)0.0020 (16)
C40.0394 (14)0.074 (2)0.075 (2)0.0029 (14)0.0103 (13)0.0048 (16)
C50.0514 (15)0.0462 (18)0.0555 (15)0.0059 (13)0.0137 (12)0.0038 (13)
C60.0633 (17)0.069 (2)0.0635 (18)0.0033 (15)0.0251 (15)0.0048 (16)
C70.092 (2)0.086 (3)0.0515 (17)0.003 (2)0.0286 (16)0.0059 (17)
C80.083 (2)0.104 (3)0.0410 (15)0.003 (2)0.0031 (13)0.0029 (18)
C90.0594 (15)0.083 (2)0.0457 (15)0.0048 (17)0.0063 (12)0.0018 (16)
C100.0506 (14)0.0452 (16)0.0455 (13)0.0043 (14)0.0083 (10)0.0024 (13)
C110.0419 (12)0.0538 (18)0.0423 (13)0.0005 (13)0.0032 (10)0.0008 (13)
C120.0480 (14)0.0597 (19)0.0439 (13)0.0078 (13)0.0101 (11)0.0062 (13)
C130.0535 (15)0.0616 (19)0.0423 (14)0.0042 (14)0.0111 (12)0.0038 (13)
C140.0711 (19)0.074 (2)0.0562 (17)0.0087 (17)0.0185 (14)0.0037 (16)
C150.087 (2)0.078 (2)0.069 (2)0.0049 (19)0.0350 (18)0.0078 (18)
C170.082 (2)0.127 (3)0.0457 (17)0.011 (2)0.0015 (15)0.0085 (19)
C180.0577 (16)0.097 (3)0.0494 (16)0.0063 (18)0.0026 (12)0.0137 (17)
C160.097 (3)0.109 (3)0.0485 (18)0.007 (2)0.0151 (18)0.0134 (19)
N10.0420 (10)0.0555 (15)0.0421 (11)0.0001 (11)0.0069 (8)0.0009 (10)
N20.0409 (11)0.0768 (19)0.0408 (12)0.0032 (12)0.0054 (9)0.0029 (12)
N30.0434 (13)0.0801 (19)0.0429 (13)0.0006 (12)0.0082 (10)0.0040 (11)
O10.0538 (12)0.1139 (19)0.0387 (10)0.0012 (13)0.0006 (8)0.0019 (11)
S10.0412 (4)0.1749 (11)0.0501 (4)0.0072 (5)0.0062 (3)0.0090 (5)
Geometric parameters (Å, º) top
C1—C21.384 (3)C11—H110.9300
C1—C101.441 (3)C12—N31.332 (3)
C1—C111.447 (3)C12—N21.348 (3)
C2—O11.351 (3)C12—S11.668 (2)
C2—C31.402 (3)C13—C181.365 (4)
C3—C41.357 (3)C13—C141.374 (4)
C3—H30.9300C13—N31.430 (3)
C4—C51.403 (4)C14—C151.391 (4)
C4—H40.9300C14—H140.9300
C5—C61.419 (3)C15—C161.358 (4)
C5—C101.424 (3)C15—H150.9300
C6—C71.350 (4)C17—C161.359 (4)
C6—H60.9300C17—C181.386 (4)
C7—C81.390 (4)C17—H170.9300
C7—H70.9300C18—H180.9300
C8—C91.366 (3)C16—H160.9300
C8—H80.9300N1—N21.372 (3)
C9—C101.411 (3)N2—H2A0.81 (3)
C9—H90.9300N3—H3A0.81 (3)
C11—N11.288 (3)O1—H1A0.83 (3)
C2—C1—C10118.6 (2)N1—C11—H11118.6
C2—C1—C11121.3 (2)C1—C11—H11118.6
C10—C1—C11120.1 (2)N3—C12—N2115.2 (2)
O1—C2—C1122.3 (2)N3—C12—S1125.88 (19)
O1—C2—C3115.8 (2)N2—C12—S1118.89 (19)
C1—C2—C3121.9 (2)C18—C13—C14120.1 (2)
C4—C3—C2119.7 (2)C18—C13—N3116.9 (2)
C4—C3—H3120.1C14—C13—N3122.8 (2)
C2—C3—H3120.1C13—C14—C15118.7 (3)
C3—C4—C5121.6 (2)C13—C14—H14120.6
C3—C4—H4119.2C15—C14—H14120.6
C5—C4—H4119.2C16—C15—C14121.1 (3)
C4—C5—C6121.1 (2)C16—C15—H15119.5
C4—C5—C10119.4 (2)C14—C15—H15119.5
C6—C5—C10119.5 (2)C16—C17—C18120.0 (3)
C7—C6—C5121.0 (3)C16—C17—H17120.0
C7—C6—H6119.5C18—C17—H17120.0
C5—C6—H6119.5C13—C18—C17120.2 (3)
C6—C7—C8119.9 (3)C13—C18—H18119.9
C6—C7—H7120.1C17—C18—H18119.9
C8—C7—H7120.1C15—C16—C17119.8 (3)
C9—C8—C7121.1 (3)C15—C16—H16120.1
C9—C8—H8119.4C17—C16—H16120.1
C7—C8—H8119.4C11—N1—N2116.0 (2)
C8—C9—C10121.3 (3)C12—N2—N1122.3 (2)
C8—C9—H9119.4C12—N2—H2A122 (2)
C10—C9—H9119.4N1—N2—H2A116 (2)
C9—C10—C5117.2 (2)C12—N3—C13131.1 (2)
C9—C10—C1124.1 (2)C12—N3—H3A112 (2)
C5—C10—C1118.7 (2)C13—N3—H3A117 (2)
N1—C11—C1122.9 (2)C2—O1—H1A107 (2)
C10—C1—C2—O1179.4 (3)C11—C1—C10—C95.3 (4)
C11—C1—C2—O12.6 (4)C2—C1—C10—C52.5 (4)
C10—C1—C2—C31.5 (4)C11—C1—C10—C5175.5 (2)
C11—C1—C2—C3176.5 (3)C2—C1—C11—N13.5 (4)
O1—C2—C3—C4178.4 (3)C10—C1—C11—N1178.5 (2)
C1—C2—C3—C40.8 (4)C18—C13—C14—C150.6 (5)
C2—C3—C4—C52.1 (5)N3—C13—C14—C15176.9 (3)
C3—C4—C5—C6178.7 (3)C13—C14—C15—C160.7 (5)
C3—C4—C5—C101.0 (4)C14—C13—C18—C170.8 (5)
C4—C5—C6—C7177.9 (3)N3—C13—C18—C17177.4 (3)
C10—C5—C6—C71.8 (4)C16—C17—C18—C131.1 (5)
C5—C6—C7—C80.7 (5)C14—C15—C16—C170.9 (6)
C6—C7—C8—C90.4 (5)C18—C17—C16—C151.1 (6)
C7—C8—C9—C100.4 (5)C1—C11—N1—N2176.8 (2)
C8—C9—C10—C50.7 (4)N3—C12—N2—N16.5 (4)
C8—C9—C10—C1179.9 (3)S1—C12—N2—N1171.86 (19)
C4—C5—C10—C9177.9 (3)C11—N1—N2—C12178.5 (3)
C6—C5—C10—C91.8 (4)N2—C12—N3—C13179.5 (3)
C4—C5—C10—C11.3 (4)S1—C12—N3—C132.3 (5)
C6—C5—C10—C1179.0 (2)C18—C13—N3—C12147.0 (3)
C2—C1—C10—C9176.7 (3)C14—C13—N3—C1236.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.83 (4)1.86 (4)2.620 (3)150 (3)
N3—H3A···N10.81 (3)2.20 (3)2.653 (3)116 (3)
N2—H2A···S1i0.82 (3)2.62 (3)3.425 (3)171 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
(VI) 1-[(4,4-dimethylthiosemicarbazono)methyl]-2-naphthol dimethyl sulfoxide solvate top
Crystal data top
C14H15N3OS·C2H6OSF(000) = 744
Mr = 351.48Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.012 (2) Åθ = 11.3–14.0°
b = 7.8776 (9) ŵ = 0.32 mm1
c = 18.631 (3) ÅT = 296 K
β = 95.78 (1)°Prism, yellow
V = 1754.0 (5) Å30.5 × 0.4 × 0.4 mm
Z = 4
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1929 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.011
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
non–profiled ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.854, Tmax = 0.881l = 2222
3226 measured reflections3 standard reflections every 120 min
3069 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6902P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H15N3OS·C2H6OSV = 1754.0 (5) Å3
Mr = 351.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.012 (2) ŵ = 0.32 mm1
b = 7.8776 (9) ÅT = 296 K
c = 18.631 (3) Å0.5 × 0.4 × 0.4 mm
β = 95.78 (1)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1929 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.011
Tmin = 0.854, Tmax = 0.8813 standard reflections every 120 min
3226 measured reflections intensity decay: 5%
3069 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
3069 reflectionsΔρmin = 0.26 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.92779 (19)0.0640 (3)0.64669 (12)0.0354 (6)
C20.9990 (2)0.0209 (3)0.70724 (13)0.0423 (6)
C30.9589 (2)0.0645 (4)0.76594 (14)0.0505 (7)
H31.00830.09580.80530.061*
C40.8492 (2)0.1007 (4)0.76515 (14)0.0514 (7)
H40.82440.15920.80390.062*
C50.7705 (2)0.0522 (3)0.70690 (14)0.0433 (6)
C60.6552 (2)0.0843 (4)0.70766 (16)0.0564 (8)
H60.62980.14090.74670.068*
C70.5808 (2)0.0338 (4)0.65226 (18)0.0641 (8)
H70.50480.05370.65390.077*
C80.6181 (2)0.0481 (4)0.59287 (16)0.0586 (8)
H80.56660.08220.5550.07*
C90.7294 (2)0.0788 (4)0.58972 (14)0.0460 (7)
H90.75270.1320.54930.055*
C100.80996 (19)0.0312 (3)0.64686 (13)0.0378 (6)
C110.97100 (19)0.1394 (3)0.58415 (12)0.0378 (6)
H110.92230.16940.54420.045*
C121.22536 (19)0.2717 (3)0.52545 (13)0.0391 (6)
C131.3706 (2)0.4062 (4)0.46267 (18)0.0679 (9)
H13A1.38170.52190.47790.102*
H13B1.38690.39520.41350.102*
H13C1.41960.33370.49280.102*
C141.1735 (2)0.4124 (4)0.40950 (15)0.0602 (8)
H14A1.13030.31670.39090.09*
H14B1.21230.46080.37180.09*
H14C1.12460.49590.42690.09*
N11.07608 (16)0.1645 (3)0.58409 (10)0.0393 (5)
N21.11380 (17)0.2365 (3)0.52409 (11)0.0410 (5)
N31.25434 (17)0.3573 (3)0.46842 (12)0.0472 (6)
O11.11013 (16)0.0539 (3)0.71364 (11)0.0531 (5)
S11.31713 (6)0.20829 (11)0.59423 (4)0.0573 (3)
S2A1.13290 (8)0.29251 (14)0.62655 (5)0.0591 (4)0.842 (4)
O2A1.08950 (19)0.3682 (4)0.55516 (13)0.0585 (7)0.842 (4)
S2B1.1653 (5)0.3920 (9)0.6077 (3)0.063 (2)*0.158 (4)
O2B1.0770 (12)0.2710 (19)0.5737 (8)0.055 (4)*0.158 (4)
C151.1292 (3)0.4538 (5)0.69201 (17)0.0773 (11)
H15A1.05280.47810.69920.116*0.842 (4)
H15B1.16840.41630.73670.116*0.842 (4)
H15C1.16420.55450.67590.116*0.842 (4)
H15D1.06380.52430.68610.116*0.158 (4)
H15E1.1130.35240.71760.116*0.158 (4)
H15F1.18910.51440.71880.116*0.158 (4)
C161.2806 (3)0.2804 (5)0.62676 (19)0.0782 (10)
H16A1.29910.19570.59290.117*0.842 (4)
H16B1.30920.38850.61340.117*0.842 (4)
H16C1.31340.25030.67420.117*0.842 (4)
H16D1.3090.24380.5830.117*0.158 (4)
H16E1.3370.3450.6550.117*0.158 (4)
H16F1.26090.18310.65380.117*0.158 (4)
H1A1.128 (3)0.091 (4)0.6773 (17)0.064 (11)*
H2A1.066 (2)0.280 (4)0.4926 (16)0.058 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (13)0.0340 (13)0.0358 (13)0.0031 (10)0.0034 (10)0.0025 (11)
C20.0408 (14)0.0454 (15)0.0402 (14)0.0047 (12)0.0011 (11)0.0036 (12)
C30.0571 (17)0.0589 (18)0.0345 (14)0.0134 (14)0.0008 (12)0.0050 (13)
C40.0630 (19)0.0495 (17)0.0442 (15)0.0064 (14)0.0168 (13)0.0081 (13)
C50.0471 (15)0.0393 (15)0.0447 (15)0.0029 (12)0.0106 (12)0.0029 (12)
C60.0525 (18)0.0572 (19)0.0629 (19)0.0081 (14)0.0227 (15)0.0017 (15)
C70.0399 (16)0.075 (2)0.079 (2)0.0093 (16)0.0103 (16)0.0115 (19)
C80.0387 (15)0.072 (2)0.0639 (19)0.0010 (14)0.0026 (14)0.0063 (17)
C90.0396 (14)0.0562 (17)0.0416 (14)0.0009 (13)0.0010 (11)0.0033 (13)
C100.0382 (13)0.0376 (14)0.0380 (13)0.0005 (11)0.0065 (11)0.0072 (11)
C110.0347 (13)0.0419 (14)0.0355 (13)0.0023 (11)0.0021 (10)0.0005 (11)
C120.0347 (13)0.0392 (14)0.0435 (14)0.0006 (11)0.0043 (11)0.0043 (12)
C130.0483 (17)0.078 (2)0.080 (2)0.0132 (16)0.0189 (16)0.0055 (19)
C140.0573 (18)0.074 (2)0.0501 (17)0.0068 (16)0.0068 (14)0.0154 (16)
N10.0350 (11)0.0448 (13)0.0378 (11)0.0025 (9)0.0025 (9)0.0022 (10)
N20.0360 (11)0.0479 (14)0.0383 (12)0.0016 (10)0.0008 (10)0.0066 (10)
N30.0367 (12)0.0551 (14)0.0504 (13)0.0045 (10)0.0071 (10)0.0060 (11)
O10.0424 (11)0.0715 (14)0.0434 (12)0.0004 (10)0.0056 (9)0.0057 (11)
S10.0388 (4)0.0711 (5)0.0595 (5)0.0012 (4)0.0077 (3)0.0061 (4)
S2A0.0630 (6)0.0563 (7)0.0553 (6)0.0162 (5)0.0077 (4)0.0081 (5)
O2A0.0545 (15)0.0753 (19)0.0418 (14)0.0089 (13)0.0150 (11)0.0018 (13)
C150.065 (2)0.112 (3)0.0529 (19)0.010 (2)0.0012 (15)0.0158 (19)
C160.066 (2)0.090 (3)0.074 (2)0.0208 (19)0.0164 (17)0.018 (2)
Geometric parameters (Å, º) top
C1—C21.387 (3)C14—H14A0.9600
C1—C101.439 (3)C14—H14B0.9600
C1—C111.450 (3)C14—H14C0.9600
C2—O11.354 (3)N1—N21.371 (3)
C2—C31.409 (4)N2—H2A0.85 (3)
C3—C41.347 (4)O1—H1A0.79 (3)
C3—H30.9300S2A—O2A1.502 (3)
C4—C51.418 (4)S2A—C151.765 (3)
C4—H40.9300S2A—C161.777 (3)
C5—C61.410 (4)S2A—H15E1.8003
C5—C101.419 (3)S2A—H16F1.7915
C6—C71.355 (4)S2B—O2B1.517 (18)
C6—H60.9300S2B—C161.648 (6)
C7—C81.393 (4)S2B—C151.740 (6)
C7—H70.9300S2B—H15C1.8038
C8—C91.366 (4)S2B—H16B1.7210
C8—H80.9300C15—H15A0.9600
C9—C101.415 (3)C15—H15B0.9600
C9—H90.9300C15—H15C0.9600
C11—N11.278 (3)C15—H15D0.9600
C11—H110.9300C15—H15E0.9600
C12—N21.366 (3)C15—H15F0.9600
C12—N31.334 (3)C16—H16A0.9600
C12—S11.680 (3)C16—H16B0.9600
C13—N31.463 (3)C16—H16C0.9600
C13—H13A0.9600C16—H16D0.9600
C13—H13B0.9600C16—H16E0.9600
C13—H13C0.9600C16—H16F0.9600
C14—N31.457 (3)
C2—C1—C10118.7 (2)H14A—C14—H14B109.5
C2—C1—C11120.8 (2)N3—C14—H14C109.5
C10—C1—C11120.5 (2)H14A—C14—H14C109.5
O1—C2—C1123.1 (2)H14B—C14—H14C109.5
O1—C2—C3115.7 (2)C11—N1—N2118.2 (2)
C1—C2—C3121.2 (2)C12—N2—N1118.2 (2)
C4—C3—C2120.2 (2)C12—N2—H2A121.8 (19)
C4—C3—H3119.9N1—N2—H2A118.1 (19)
C2—C3—H3119.9C12—N3—C13121.3 (2)
C3—C4—C5121.8 (2)C12—N3—C14122.9 (2)
C3—C4—H4119.1C14—N3—C13115.8 (2)
C5—C4—H4119.1C2—O1—H1A110 (2)
C6—C5—C4121.6 (2)O2A—S2A—C15107.20 (18)
C6—C5—C10119.8 (2)O2A—S2A—C16106.30 (17)
C4—C5—C10118.6 (2)C15—S2A—C1697.56 (16)
C7—C6—C5120.9 (3)O2B—S2B—C16107.0 (7)
C7—C6—H6119.6O2B—S2B—C15109.0 (7)
C5—C6—H6119.6C16—S2B—C15103.6 (3)
C6—C7—C8120.0 (3)S2A—C15—H15A109.3
C6—C7—H7120.0S2B—C15—H15B123.4
C8—C7—H7120.0S2A—C15—H15B109.5
C9—C8—C7120.7 (3)H15A—C15—H15B109.5
C9—C8—H8119.6S2A—C15—H15C109.6
C7—C8—H8119.6H15A—C15—H15C109.5
C8—C9—C10121.3 (3)H15B—C15—H15C109.5
C8—C9—H9119.4S2B—C15—H15D109.6
C10—C9—H9119.4S2B—C15—H15E107.3
C9—C10—C5117.3 (2)H15D—C15—H15E109.5
C9—C10—C1123.3 (2)S2B—C15—H15F111.5
C5—C10—C1119.4 (2)H15D—C15—H15F109.5
N1—C11—C1119.9 (2)H15E—C15—H15F109.5
N1—C11—H11120.1S2A—C16—H16A109.4
C1—C11—H11120.1S2A—C16—H16B109.6
N3—C12—N2114.9 (2)H16A—C16—H16B109.5
N3—C12—S1123.64 (18)S2A—C16—H16C109.4
N2—C12—S1121.41 (19)H16A—C16—H16C109.5
N3—C13—H13A109.5H16B—C16—H16C109.5
N3—C13—H13B109.5S2B—C16—H16D109.9
H13A—C13—H13B109.5S2B—C16—H16E111.5
N3—C13—H13C109.5H16D—C16—H16E109.5
H13A—C13—H13C109.5S2B—C16—H16F107.0
H13B—C13—H13C109.5H16D—C16—H16F109.5
N3—C14—H14A109.5H16E—C16—H16F109.5
N3—C14—H14B109.5
C10—C1—C2—O1176.8 (2)C4—C5—C10—C9179.7 (2)
C11—C1—C2—O13.7 (4)C6—C5—C10—C1179.7 (2)
C10—C1—C2—C34.5 (4)C4—C5—C10—C10.0 (4)
C11—C1—C2—C3175.0 (2)C2—C1—C10—C9176.3 (2)
O1—C2—C3—C4179.0 (3)C11—C1—C10—C94.2 (4)
C1—C2—C3—C42.2 (4)C2—C1—C10—C53.4 (3)
C2—C3—C4—C51.3 (4)C11—C1—C10—C5176.1 (2)
C3—C4—C5—C6177.3 (3)C2—C1—C11—N11.0 (4)
C3—C4—C5—C102.4 (4)C10—C1—C11—N1178.5 (2)
C4—C5—C6—C7178.5 (3)C1—C11—N1—N2179.8 (2)
C10—C5—C6—C71.2 (4)N3—C12—N2—N1173.4 (2)
C5—C6—C7—C81.3 (5)S1—C12—N2—N17.2 (3)
C6—C7—C8—C90.2 (5)C11—N1—N2—C12176.6 (2)
C7—C8—C9—C101.0 (4)N2—C12—N3—C141.1 (4)
C8—C9—C10—C51.1 (4)S1—C12—N3—C14179.5 (2)
C8—C9—C10—C1178.7 (3)N2—C12—N3—C13179.1 (2)
C6—C5—C10—C90.0 (4)S1—C12—N3—C131.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.79 (3)1.88 (3)2.560 (3)145 (3)
O1—H1A···S10.79 (3)3.02 (3)3.705 (2)147 (3)

Experimental details

(III)(IV)(V)(VI)
Crystal data
Chemical formulaC13H13N3OSC14H15N3OSC18H15N3OSC14H15N3OS·C2H6OS
Mr259.32273.35321.39351.48
Crystal system, space groupMonoclinic, P21Monoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)296296296296
a, b, c (Å)9.293 (1), 5.1612 (3), 12.563 (1)26.608 (8), 7.0551 (6), 18.918 (5)19.243 (4), 6.7948 (6), 24.471 (6)12.012 (2), 7.8776 (9), 18.631 (3)
β (°) 91.31 (2) 129.71 (1) 95.48 (1) 95.78 (1)
V3)602.40 (9)2732.0 (11)3185.0 (11)1754.0 (5)
Z2884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.260.230.210.32
Crystal size (mm)0.5 × 0.17 × 0.10.5 × 0.5 × 0.50.5 × 0.4 × 0.30.5 × 0.4 × 0.4
Data collection
DiffractometerEnraf-Nonius TurboCAD-4
diffractometer
Enraf-Nonius TurboCAD-4
diffractometer
Enraf-Nonius TurboCAD-4
diffractometer
Enraf-Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.912, 0.9710.698, 0.8830.911, 0.9360.854, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
1262, 1185, 960 2466, 2410, 1847 2834, 2747, 1425 3226, 3069, 1929
Rint0.0230.0390.0140.011
(sin θ/λ)max1)0.5950.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06 0.040, 0.122, 1.04 0.040, 0.126, 1.00 0.040, 0.120, 1.02
No. of reflections1185241027473069
No. of parameters176184220227
No. of restraints1000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.160.20, 0.210.16, 0.250.20, 0.26
Absolute structureBernardinelli & Flack (1985)???
Absolute structure parameter0.01 (13)???

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (III) top
C2—O11.356 (4)C12—S11.672 (3)
C11—N11.288 (4)C13—N31.443 (4)
C12—N31.333 (4)N1—N21.367 (4)
C12—N21.355 (4)
N1—C11—C1122.9 (3)C12—N2—N1121.8 (2)
N3—C12—N2116.4 (3)C12—N3—C13123.3 (3)
C11—N1—N2115.1 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.95 (5)1.75 (5)2.641 (3)155 (5)
N3—H3A···N10.85 (4)2.29 (4)2.671 (4)107 (3)
N2—H2A···S1i0.92 (3)2.60 (3)3.467 (3)158 (2)
Symmetry code: (i) x+1, y+1/2, z+1.
Selected geometric parameters (Å, º) for (IV) top
C2—O11.351 (2)C12—S11.683 (2)
C11—N11.285 (2)C13—N31.455 (3)
C12—N31.323 (3)N1—N21.373 (2)
C12—N21.353 (2)
N1—C11—C1121.79 (17)C12—N2—N1120.32 (17)
N3—C12—N2117.07 (18)C12—N3—C13124.81 (19)
C11—N1—N2116.94 (16)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.89 (3)1.80 (3)2.605 (2)151 (3)
N3—H3A···N10.79 (3)2.27 (3)2.653 (2)110 (2)
N2—H2A···S1i0.91 (3)2.50 (3)3.409 (2)176 (2)
Symmetry code: (i) x+1, y, z+3/2.
Selected geometric parameters (Å, º) for (V) top
C2—O11.351 (3)C12—S11.668 (2)
C12—N31.332 (3)C13—N31.430 (3)
C12—N21.348 (3)N1—N21.372 (3)
N1—C11—C1122.9 (2)C12—N2—N1122.3 (2)
N3—C12—N2115.2 (2)C12—N3—C13131.1 (2)
C11—N1—N2116.0 (2)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.83 (4)1.86 (4)2.620 (3)150 (3)
N3—H3A···N10.81 (3)2.20 (3)2.653 (3)116 (3)
N2—H2A···S1i0.82 (3)2.62 (3)3.425 (3)171 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
Selected geometric parameters (Å, º) for (VI) top
C2—O11.354 (3)C12—S11.680 (3)
C11—N11.278 (3)C13—N31.463 (3)
C12—N21.366 (3)N1—N21.371 (3)
C12—N31.334 (3)
N1—C11—C1119.9 (2)C12—N2—N1118.2 (2)
N3—C12—N2114.9 (2)C12—N3—C13121.3 (2)
C11—N1—N2118.2 (2)
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.79 (3)1.88 (3)2.560 (3)145 (3)
O1—H1A···S10.79 (3)3.02 (3)3.705 (2)147 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds