Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound [systematic name: 9,10-di­methoxy-2,3-methyl­ene­dioxy-5,6-di­hydro­dibenzo­[a,g]­quinolizinium form­ate–succinic acid (1/1)], C20H18NO4+·CHO2·C4H6O4, con­tains centrosymmetric pairs of almost planar berberine cations, and hydrogen-bonded (C4H6O4...HCOO)2 rings of succinic acid with formate anions, bonded by O—H...O hydrogen bonds with O...O distances of 2.4886 (15) and 2.5652 (16) Å. Pairs of cations and mol­ecules of succinic acid are connected by non-conventional weak C—H...O hydrogen bonds, with C...O distances of 3.082 (2) and 3.178 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010301789X/gg1177sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010301789X/gg1177Isup2.hkl
Contains datablock I

CCDC reference: 224667

Comment top

Berberine, 9,10-dimethoxy-2,3-methylenedioxy-5,6-dihydrodibenzo[a,g]quinolizine, is an isoquinoline alkaloid of the protoberberine group which is commonly found in the Papaveraceae, Berberidaceae and other plant families (Bentley, 1998). Berberine is known as an antimicrobial agent and is used for the treatment of eye infections, gastrointestinal disorders and other diseases (Schmeller & Wink, 1998; Simeon et al., 1989). Recently, its interactions with nucleic acids and cells have been extensively investigated (Mazzini et al., 2003; Slaninová et al., 2001). The berberine skeleton is rather sensitive to nucleophilic attack, and 8-substituted-7,8-dihydroberberine derivatives, frequently claimed as genuine natural products, are easily formed (Marek et al., 2003). Here, we report the first crystal structure of a quaternary protoberberine alkaloid crystallizing with an organic (succinate? surely formate?) counteranion to give the title adduct, (I). These organic anions could play a significant role in plant tissues. \sch

The structure of the berberine cation in (I) is similar to that in other berberine ions reported in the literature (Abadi et al., 1984; Kariuki & Jones, 1995; Man et al., 2001). The interplanar angles between aromatic rings A/C, A/D and C/D are 13.36 (5), 13.21 (5) and 1.71 (4)°, respectively. The methoxy group at C9 lies almost in the plane of ring D [the deviations of atoms O3 and C16 from this plane are 0.0576 (11) and 0.134 (2) Å], whereas the methoxy group at C9 is almost perpendicular to the same plane [the C15—O3—C9—C10 torsion angle is −80.8 (2)° and the deviation of atom C15 from the plane of ring D is 1.147 (2) Å].

The berberine units are arranged in the centrosymmetric pairs with face-to-face geometry (Marek et al., 2002), forming columns parallel to the crystallographic a axis. The packing slip is probably formed in order to optimize σπ and ππ stacking interactions (Hunter & Sanders, 1990). The formate anions and flexible succinic acid molecules fill up the space between these columns. Pairs of cations ?anions? and molecules, as (C4H6O4···HCOO)2 hydrogen-bonded rings, are held together by several C—H···O contacts. The C—H···O interatomic distances for atoms H8 and H13 are rather short [H···O 2.27 (2) and 2.26 (2) Å, respectively] and should thus be classified as non-conventional weak hydrogen bonds rather than van der Waals contacts (Steiner & Desiraju, 1998; Desiraju & Steiner, 1999), supported by their bond directionalities [161.3(1.5)° and 148 (2)°, respectively] and assumed binding energies (Cannizzaro & Houk, 2002). We attribute these rather short C8—H···O and C13—H···O hydrogen bonds found in the crystal of (I) to the felicitous confluence of the pronounced electron-acceptor properties of the cationic berberine and the electron-donor properties of the anionic hydrogen-bonded (C4H6O4···HCOO)2 macrocycle (Fig. 2 and Table 2).

Experimental top

The title compound was obtained by decomposition of 8-(imidazol-1-yl)-7,8-dihydroberberine and crystallization from undistilled tetrahydrofuran.

Refinement top

All H atoms were located in a difference electron-density map. H atoms in methyl, CH2 and O—H groups were fixed in their theoretical geometrical positions with Ueq driven by the corresponding C or O atoms. Other H atoms were refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the three components of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the standard and non-conventional hydrogen-bonding networks. [Symmetry codes: (i): −x,-y,-z; (ii): −x,-y − 1,-z.]
9,10-dimethoxy-2,3-methylendioxy-5,6-dihydrodibenzo[a,g]quinolizinium formate-succinic acid (1/1) top
Crystal data top
C20H18NO4+·CHO2·C4H6O4Z = 2
Mr = 499.46F(000) = 524
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Melting point: 478(2) - decomposition K
a = 7.9973 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4449 (9) ÅCell parameters from 5207 reflections
c = 12.6115 (12) Åθ = 3.0–28.4°
α = 63.753 (8)°µ = 0.12 mm1
β = 81.410 (8)°T = 100 K
γ = 84.866 (7)°Prism, yellow
V = 1112.74 (19) Å30.6 × 0.5 × 0.4 mm
Data collection top
Kuma KM4 with CCD area-detector
diffractometer
3443 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Enhance (Oxford Diffraction) monochromatorθmax = 25.0°, θmin = 3.1°
Detector resolution: 16.3 pixels mm-1h = 89
rotation method, ω scansk = 1414
5978 measured reflectionsl = 1413
3802 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.075P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3802 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H18NO4+·CHO2·C4H6O4γ = 84.866 (7)°
Mr = 499.46V = 1112.74 (19) Å3
Triclinic, P1Z = 2
a = 7.9973 (8) ÅMo Kα radiation
b = 12.4449 (9) ŵ = 0.12 mm1
c = 12.6115 (12) ÅT = 100 K
α = 63.753 (8)°0.6 × 0.5 × 0.4 mm
β = 81.410 (8)°
Data collection top
Kuma KM4 with CCD area-detector
diffractometer
3443 reflections with I > 2σ(I)
5978 measured reflectionsRint = 0.027
3802 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
3802 reflectionsΔρmin = 0.34 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18951 (13)0.21279 (9)0.50582 (9)0.0175 (2)
O20.24748 (13)0.40990 (10)0.55428 (9)0.0189 (3)
O30.41402 (13)0.01022 (9)0.31041 (9)0.0166 (2)
O40.53375 (13)0.22912 (9)0.36453 (9)0.0173 (2)
O50.33656 (14)0.43595 (10)0.28123 (9)0.0199 (3)
H50.38690.47690.22140.030*
O60.32745 (14)0.29638 (10)0.21295 (10)0.0236 (3)
O70.07654 (15)0.13676 (10)0.19570 (10)0.0238 (3)
O80.08017 (14)0.30820 (10)0.21285 (10)0.0214 (3)
H80.13770.33100.14560.032*
O90.23840 (14)0.40122 (11)0.00933 (10)0.0262 (3)
O100.49024 (14)0.43117 (10)0.10049 (10)0.0219 (3)
C10.03082 (18)0.16941 (13)0.30765 (13)0.0143 (3)
C20.12019 (18)0.24121 (14)0.41355 (13)0.0144 (3)
C30.15317 (18)0.36009 (14)0.44406 (13)0.0152 (3)
C40.09293 (18)0.41347 (13)0.36999 (13)0.0158 (3)
C4a0.00292 (18)0.34328 (13)0.26135 (13)0.0143 (3)
C50.08275 (19)0.39723 (13)0.17891 (13)0.0171 (3)
H5A0.20010.42460.19580.020*
H5B0.01840.46780.19340.020*
C60.08438 (19)0.30612 (13)0.04948 (13)0.0163 (3)
H6A0.03300.28890.02910.020*
H6B0.14900.34000.00260.020*
N70.16287 (15)0.19200 (11)0.02755 (11)0.0127 (3)
C80.24933 (18)0.12948 (13)0.07928 (13)0.0135 (3)
C8a0.31304 (17)0.01648 (13)0.11031 (13)0.0129 (3)
C90.40015 (17)0.05271 (13)0.22521 (13)0.0133 (3)
C100.45689 (17)0.16509 (13)0.25152 (13)0.0139 (3)
C110.43073 (18)0.20956 (13)0.16379 (13)0.0154 (3)
C120.34670 (18)0.14344 (13)0.05248 (13)0.0149 (3)
C12a0.28509 (18)0.02976 (13)0.02333 (13)0.0134 (3)
C130.19578 (18)0.04069 (13)0.08833 (13)0.0136 (3)
C13a0.13174 (17)0.14971 (13)0.11479 (13)0.0129 (3)
C13b0.03178 (17)0.22265 (13)0.22946 (13)0.0129 (3)
C140.29902 (19)0.31021 (14)0.58283 (13)0.0179 (3)
H14A0.28830.33290.66730.021*
H14B0.41840.28640.56950.021*
C150.5788 (2)0.03888 (16)0.33123 (15)0.0249 (4)
H15A0.60210.11100.25950.037*
H15B0.58190.05960.39800.037*
H15C0.66470.02060.35040.037*
C160.58618 (19)0.34835 (14)0.39500 (13)0.0179 (3)
H16A0.67910.34330.35020.027*
H16B0.62440.38890.48060.027*
H16C0.49060.39380.37490.027*
C170.29031 (18)0.33065 (13)0.28304 (13)0.0158 (3)
C180.19097 (19)0.25215 (14)0.38521 (13)0.0189 (3)
H18A0.11220.30230.39640.023*
H18B0.27010.21620.45940.023*
C190.09052 (19)0.15243 (14)0.36290 (13)0.0184 (3)
H19A0.17040.09790.35960.022*
H19B0.02530.10530.43060.022*
C200.03045 (18)0.19915 (13)0.24824 (13)0.0160 (3)
C210.3967 (2)0.39363 (14)0.00260 (14)0.0193 (3)
H10.016 (2)0.0846 (18)0.2852 (16)0.019 (4)*
H40.117 (2)0.4984 (18)0.3905 (16)0.021 (4)*
H8A0.258 (2)0.1652 (16)0.1321 (16)0.018 (4)*
H110.473 (2)0.2885 (17)0.1835 (15)0.017 (4)*
H120.330 (2)0.1755 (17)0.0033 (17)0.024 (5)*
H130.179 (2)0.0122 (17)0.1453 (17)0.024 (5)*
H210.446 (2)0.3555 (17)0.0681 (18)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (5)0.0195 (6)0.0142 (5)0.0040 (4)0.0029 (4)0.0084 (4)
O20.0213 (6)0.0183 (6)0.0142 (5)0.0050 (4)0.0041 (4)0.0056 (4)
O30.0182 (5)0.0192 (6)0.0152 (5)0.0002 (4)0.0018 (4)0.0102 (4)
O40.0220 (6)0.0144 (5)0.0139 (5)0.0047 (4)0.0018 (4)0.0050 (4)
O50.0256 (6)0.0169 (6)0.0183 (5)0.0002 (4)0.0030 (4)0.0087 (4)
O60.0274 (6)0.0235 (6)0.0251 (6)0.0034 (5)0.0081 (5)0.0147 (5)
O70.0290 (6)0.0206 (6)0.0250 (6)0.0037 (5)0.0016 (5)0.0141 (5)
O80.0261 (6)0.0205 (6)0.0188 (6)0.0076 (4)0.0033 (5)0.0103 (5)
O90.0222 (6)0.0329 (7)0.0210 (6)0.0084 (5)0.0010 (5)0.0085 (5)
O100.0206 (6)0.0206 (6)0.0251 (6)0.0012 (4)0.0000 (5)0.0112 (5)
C10.0136 (7)0.0137 (8)0.0152 (7)0.0004 (5)0.0028 (6)0.0055 (6)
C20.0121 (7)0.0193 (8)0.0138 (7)0.0015 (5)0.0034 (6)0.0087 (6)
C30.0125 (7)0.0179 (8)0.0126 (7)0.0009 (5)0.0029 (5)0.0037 (6)
C40.0158 (7)0.0129 (8)0.0172 (7)0.0017 (6)0.0028 (6)0.0048 (6)
C4a0.0120 (7)0.0151 (7)0.0156 (7)0.0005 (5)0.0043 (6)0.0059 (6)
C50.0191 (7)0.0130 (7)0.0183 (8)0.0029 (6)0.0008 (6)0.0065 (6)
C60.0183 (7)0.0146 (7)0.0178 (7)0.0048 (6)0.0005 (6)0.0084 (6)
N70.0126 (6)0.0123 (6)0.0135 (6)0.0005 (5)0.0020 (5)0.0057 (5)
C80.0125 (7)0.0154 (7)0.0136 (7)0.0013 (5)0.0032 (5)0.0071 (6)
C8a0.0105 (7)0.0136 (7)0.0147 (7)0.0016 (5)0.0036 (5)0.0059 (6)
C90.0117 (7)0.0158 (7)0.0134 (7)0.0017 (5)0.0035 (5)0.0068 (6)
C100.0115 (7)0.0152 (7)0.0128 (7)0.0004 (5)0.0018 (5)0.0040 (6)
C110.0156 (7)0.0123 (7)0.0172 (7)0.0005 (6)0.0029 (6)0.0053 (6)
C120.0153 (7)0.0154 (7)0.0163 (7)0.0015 (5)0.0032 (6)0.0091 (6)
C12a0.0111 (6)0.0142 (7)0.0151 (7)0.0023 (5)0.0036 (6)0.0066 (6)
C130.0129 (7)0.0147 (7)0.0142 (7)0.0018 (5)0.0020 (6)0.0075 (6)
C13a0.0116 (7)0.0137 (7)0.0141 (7)0.0020 (5)0.0036 (6)0.0065 (6)
C13b0.0109 (7)0.0141 (7)0.0137 (7)0.0004 (5)0.0033 (5)0.0055 (6)
C140.0183 (7)0.0195 (8)0.0152 (7)0.0047 (6)0.0025 (6)0.0076 (6)
C150.0231 (8)0.0268 (9)0.0286 (9)0.0014 (7)0.0021 (7)0.0174 (7)
C160.0203 (8)0.0144 (7)0.0168 (7)0.0046 (6)0.0007 (6)0.0046 (6)
C170.0135 (7)0.0182 (8)0.0161 (7)0.0039 (6)0.0040 (6)0.0090 (6)
C180.0198 (8)0.0217 (8)0.0157 (7)0.0014 (6)0.0001 (6)0.0092 (6)
C190.0207 (8)0.0166 (8)0.0174 (7)0.0012 (6)0.0044 (6)0.0062 (6)
C200.0145 (7)0.0174 (8)0.0180 (7)0.0033 (6)0.0073 (6)0.0085 (6)
C210.0244 (8)0.0144 (8)0.0207 (8)0.0026 (6)0.0050 (7)0.0082 (6)
Geometric parameters (Å, º) top
O1—C21.3866 (17)N7—C13a1.3987 (19)
O1—C141.4404 (18)C8—C8a1.404 (2)
O2—C31.3761 (18)C8—H8A0.943 (19)
O2—C141.4484 (19)C8a—C91.424 (2)
O3—C91.3794 (17)C8a—C12a1.430 (2)
O3—C151.4402 (19)C9—C101.389 (2)
O4—C101.3659 (18)C10—C111.423 (2)
O4—C161.4437 (18)C11—C121.377 (2)
O5—C171.3206 (19)C11—H110.979 (19)
O5—H50.8400C12—C12a1.411 (2)
O6—C171.2190 (19)C12—H120.94 (2)
O7—C201.2283 (19)C12a—C131.408 (2)
O8—C201.3065 (19)C13—C13a1.374 (2)
O8—H80.8400C13—H130.92 (2)
O9—C211.252 (2)C13a—C13b1.476 (2)
O10—C211.2562 (19)C14—H14A0.9900
C1—C21.366 (2)C14—H14B0.9900
C1—C13b1.426 (2)C15—H15A0.9800
C1—H10.98 (2)C15—H15B0.9800
C2—C31.394 (2)C15—H15C0.9800
C3—C41.380 (2)C16—H16A0.9800
C4—C4a1.405 (2)C16—H16B0.9800
C4—H41.000 (19)C16—H16C0.9800
C4a—C13b1.403 (2)C17—C181.516 (2)
C4a—C51.511 (2)C18—C191.526 (2)
C5—C61.520 (2)C18—H18A0.9900
C5—H5A0.9900C18—H18B0.9900
C5—H5B0.9900C19—C201.518 (2)
C6—N71.4993 (18)C19—H19A0.9900
C6—H6A0.9900C19—H19B0.9900
C6—H6B0.9900C21—H210.93 (2)
N7—C81.3377 (19)
C2—O1—C14104.93 (11)C12a—C12—H12120.5 (12)
C3—O2—C14105.10 (11)C13—C12a—C12122.69 (13)
C9—O3—C15114.34 (11)C13—C12a—C8a118.14 (13)
C10—O4—C16117.29 (11)C12—C12a—C8a119.17 (13)
C17—O5—H5109.5C13a—C13—C12a122.34 (14)
C20—O8—H8109.5C13a—C13—H13119.0 (12)
C2—C1—C13b116.75 (14)C12a—C13—H13118.7 (12)
C2—C1—H1121.2 (10)C13—C13a—N7117.67 (13)
C13b—C1—H1121.9 (10)C13—C13a—C13b123.20 (13)
C1—C2—O1128.14 (14)N7—C13a—C13b119.13 (13)
C1—C2—C3122.41 (13)C4a—C13b—C1120.98 (13)
O1—C2—C3109.44 (12)C4a—C13b—C13a120.00 (13)
O2—C3—C4128.39 (14)C1—C13b—C13a119.00 (13)
O2—C3—C2109.88 (13)O1—C14—O2107.09 (11)
C4—C3—C2121.72 (14)O1—C14—H14A110.3
C3—C4—C4a117.56 (14)O2—C14—H14A110.3
C3—C4—H4122.5 (10)O1—C14—H14B110.3
C4a—C4—H4119.9 (10)O2—C14—H14B110.3
C13b—C4a—C4120.54 (13)H14A—C14—H14B108.6
C13b—C4a—C5118.63 (13)O3—C15—H15A109.5
C4—C4a—C5120.79 (13)O3—C15—H15B109.5
C4a—C5—C6110.77 (12)H15A—C15—H15B109.5
C4a—C5—H5A109.5O3—C15—H15C109.5
C6—C5—H5A109.5H15A—C15—H15C109.5
C4a—C5—H5B109.5H15B—C15—H15C109.5
C6—C5—H5B109.5O4—C16—H16A109.5
H5A—C5—H5B108.1O4—C16—H16B109.5
N7—C6—C5111.03 (12)H16A—C16—H16B109.5
N7—C6—H6A109.4O4—C16—H16C109.5
C5—C6—H6A109.4H16A—C16—H16C109.5
N7—C6—H6B109.4H16B—C16—H16C109.5
C5—C6—H6B109.4O6—C17—O5124.32 (14)
H6A—C6—H6B108.0O6—C17—C18122.24 (14)
C8—N7—C13a122.35 (13)O5—C17—C18113.40 (12)
C8—N7—C6118.18 (12)C17—C18—C19111.96 (12)
C13a—N7—C6119.26 (12)C17—C18—H18A109.2
N7—C8—C8a121.46 (13)C19—C18—H18A109.2
N7—C8—H8A114.9 (11)C17—C18—H18B109.2
C8a—C8—H8A123.6 (11)C19—C18—H18B109.2
C8—C8a—C9121.94 (13)H18A—C18—H18B107.9
C8—C8a—C12a118.01 (13)C20—C19—C18112.97 (12)
C9—C8a—C12a120.03 (13)C20—C19—H19A109.0
O3—C9—C10121.65 (13)C18—C19—H19A109.0
O3—C9—C8a118.87 (13)C20—C19—H19B109.0
C10—C9—C8a119.28 (13)C18—C19—H19B109.0
O4—C10—C9116.61 (13)H19A—C19—H19B107.8
O4—C10—C11123.10 (13)O7—C20—O8124.23 (14)
C9—C10—C11120.27 (13)O7—C20—C19121.21 (14)
C12—C11—C10120.91 (14)O8—C20—C19114.56 (13)
C12—C11—H11119.9 (10)O9—C21—O10125.13 (15)
C10—C11—H11119.2 (10)O9—C21—H21115.6 (12)
C11—C12—C12a120.32 (14)O10—C21—H21119.3 (12)
C11—C12—H12119.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10i0.841.732.5652 (16)176
O8—H8···O90.841.662.4886 (15)169
C13—H13···O70.92 (2)2.26 (2)3.0825 (18)147.9 (16)
C8—H8A···O6ii0.943 (19)2.270 (19)3.1775 (19)161.3 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H18NO4+·CHO2·C4H6O4
Mr499.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9973 (8), 12.4449 (9), 12.6115 (12)
α, β, γ (°)63.753 (8), 81.410 (8), 84.866 (7)
V3)1112.74 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerKuma KM4 with CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5978, 3802, 3443
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.115, 1.03
No. of reflections3802
No. of parameters355
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1996), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C21.3866 (17)C4a—C51.511 (2)
O1—C141.4404 (18)C5—C61.520 (2)
O2—C31.3761 (18)C6—N71.4993 (18)
O2—C141.4484 (19)N7—C81.3377 (19)
O3—C91.3794 (17)N7—C13a1.3987 (19)
O3—C151.4402 (19)C8—C8a1.404 (2)
O4—C101.3659 (18)C8a—C12a1.430 (2)
O4—C161.4437 (18)C12a—C131.408 (2)
C4a—C13b1.403 (2)C13a—C13b1.476 (2)
C9—O3—C15114.34 (11)O3—C9—C10121.65 (13)
C10—O4—C16117.29 (11)O3—C9—C8a118.87 (13)
C8—N7—C13a122.35 (13)O4—C10—C9116.61 (13)
C8—N7—C6118.18 (12)O4—C10—C11123.10 (13)
C13a—N7—C6119.26 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10i0.841.732.5652 (16)176
O8—H8···O90.841.662.4886 (15)169
C13—H13···O70.92 (2)2.26 (2)3.0825 (18)147.9 (16)
C8—H8A···O6ii0.943 (19)2.270 (19)3.1775 (19)161.3 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds