Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Na(C12H8N2)3](C3H2N3S3), contains an Na+ centre which is ionicly bonded to three 1,10-phenanthroline (phen) ligands and one tri­thio­cyanurate(1−) (ttcH2) anion. In the crystal structure, the anions are linked via hydrogen bonds to form linear chains. The S and H atoms of the ttcH2 anion participate in intermolecular N—H...S hydrogen bonding, with N...S distances of 3.298 (2) and 3.336 (2) Å. The phen ligands are almost parallel, with dihedral angles of 3.92 (5), 11.75 (5) and 15.45 (5)°; moreover, they are nearly perpendicular to the ttcH2 chains, with angles of 81.94 (7), 85.86 (7) and 85.96 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103017773/gg1175sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103017773/gg1175Isup2.hkl
Contains datablock I

CCDC reference: 224493

Comment top

Trithiocyanuric acid (2,4,6-trimercaptotriazine, ttcH3) and its trisodium salt are very important compounds because they are used for the precipitation of many heavy metals from waste water (Henke et al., 2000; Matlock et al., 2001, 2002). Moreover, the resulting precipitates can be subsequently converted, by increasing the pH of the solution, to useful sulfides and non-toxic cyanuric acid (Bailey et al., 2001). Trithiocyanuric acid also shows antitoxoplasmal activity and it is more effective than 5-fluorouracil and emimicin (Iltzsch & Tankersley, 1994). An important factor in the synthesis of compounds with ttcH3 is the pH value (Krepps et al., 2001; Cecconi et al., 2003; Mahon et al., 2003). Moreover, up to six atoms of ttcH3 can be used for coordination to metal centres. Thus miscellaneous types of compounds can be synthesized, which can be mononuclear as well as polynuclear, with the trithiocyanurato anion acting as a bridge. Some structures of complexes of the trithiocyanurate anion with group I and II metals have been published recently, e.g. LiI (Clegg et al., 1998; Armstrong et al., 2000), NaI and KI (Cecconi et al., 2003; Mahon et al., 2003), and CaII, SrII, BaII and MgII (Henke & Atwood, 1998; Henke et al., 2001). The title compound,, (I), was prepared as a byproduct during our efforts to synthesize a MgII complex with ttcH3 and 1,10-phenanthroline (phen). \sch

Compound (I) consists of [Na(phen)3]+ and [ttcH2] moieties. The NaI ion is six-coordinated by the N atoms of three phen ligands. The Na—N distances vary from 2.430 (2) to 2.656 (3) Å and compare well with the average length of 2.54 Å for Na—N distances in related compounds in the Cambridge Structural Database (version 5.24.1; Allen, 2002). All the phen ligands are nearly coplanar (the average and maximum deviations of contributing atoms from the least-squares planes are 0.04 and 0.08 Å, respectively) and they are almost parallel. The angles between phen A (atoms N1,···,C14) and phen B (atoms N15,···,C28), phen A and phen C (atoms N29,···,C42), and phen B and phen C are 11.75 (5), 3.92 (5) and 15.45 (5)°, respectively. The average intermolecular distance between phen ligands (A—B, A—C, B—C) in the [Na(phen)3] units is 3.5 Å [symmetry codes: x + 1/2,1/2 − y,1/2 + z for A—B; x − 1/2,1/2 − y,1/2 + z for A—C].

The six-membered ring of the [ttcH2] anion is also almost planar; the average and maximum deviations of contributing atoms from the least-squares planes are 0.04 and 0.06 Å, respectively. The Cremer-Pople puckering parameters (Cremer & Pople, 1975) for the ring are Q = 0.102 (2) Å, θ = 93.0(1.3)° and ϕ2 = −27.4(1.3)°. Atoms S1 and S2 are significantly shifted from the mean plane through the ring, with displacements of 0.2170 (7) and −0.2280 (7) Å, respectively. The [ttcH2] group is almost perpendicular to the phen planes, with angles between ttcH2 and phen ligands A, B and C of 85.96 (7), 81.94 (7) and 85.86 (7)°, respectively.

In the crystal lattice of (I), the ttcH2 molecular units are linked into one-dimensional chains by relatively strong intermolecular N—H···S hydrogen bonds.

Experimental top

A solution of 1,10-phenanthroline monohydrate (phen·H2O; 0.4 g, 2 mmol) in ethanol (30 ml) was added to an ethanolic solution (50 ml) of anhydrous magnesium(II) perchlorate (0.22 g, 1 mmol) with stirring at room temperature. The trisodium salt of trithiocyanuric acid nonahydrate (ttcNa3·9H2O; 0.4 g, 1 mmol) was dissolved in water (5 ml) and added dropwise to this stirred solution. The solution turned light-yellow in colour and was left for crystallization at ambient temperature. Initially, light-yellow crystals of (I) were obtained after 2 d. These were filtered off, washed with a small amount of ethanol and dried in air. The composition of this compound was proved by X-ray analysis. From the filtrate, a light-yellow precipitate was obtained after 2 d, and the composition of this compound was characterized by elemental analysis (EA1108 CHNS Analyzer, Fisons Instruments, Beverly, Massachusetts, USA) as [Mg(phen)3](ttcH). The Mg content was determined by chelatometric titration (found: C 63.1, H 3.4, N 16.8, S 12.8, Mg 3.4%; calculated: C 63.3, H 3.4, N 17.0, S 13.0, Mg 3.3%).

Refinement top

All H atoms were localized in a differential map of electron density and refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (ORTEPIII; Johnson & Burnett, 1996) showing the atom-numbering scheme. Displacement ellipsoids at drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain of [ttcH2] and [Na(phen)3]+ moieties [symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, −y, 1 − z; (iii) x + 1/2, 1/2 − y, 1/2 + z; (iv) x − 1/2, 1/2 − y, 1/2 + z].
Tris(1,10-phenanthroline)sodium 2,4,6-trimercapto-1,3,5-triazin-1-ide top
Crystal data top
[Na(C12H8N2)3](C3H2N3S3)F(000) = 1528
Mr = 739.86Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5117 reflections
a = 11.1273 (9) Åθ = 2.5–26.4°
b = 23.8687 (15) ŵ = 0.28 mm1
c = 12.9417 (7) ÅT = 293 K
β = 94.584 (6)°Prism, yellow
V = 3426.2 (4) Å30.6 × 0.5 × 0.4 mm
Z = 4
Data collection top
Kuma KM-4 with CCD area detector
diffractometer
5060 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Enhance (Oxford Diffraction) monochromatorθmax = 25.0°, θmin = 3.6°
Detector resolution: 16.3 pixels mm-1h = 813
rotation method, ω scansk = 2828
14962 measured reflectionsl = 1515
5915 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0575P)2 + 3.8P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5915 reflectionsΔρmax = 0.25 e Å3
574 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (4)
Crystal data top
[Na(C12H8N2)3](C3H2N3S3)V = 3426.2 (4) Å3
Mr = 739.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1273 (9) ŵ = 0.28 mm1
b = 23.8687 (15) ÅT = 293 K
c = 12.9417 (7) Å0.6 × 0.5 × 0.4 mm
β = 94.584 (6)°
Data collection top
Kuma KM-4 with CCD area detector
diffractometer
5060 reflections with I > 2σ(I)
14962 measured reflectionsRint = 0.019
5915 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130All H-atom parameters refined
S = 0.99Δρmax = 0.25 e Å3
5915 reflectionsΔρmin = 0.29 e Å3
574 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04604 (7)0.03936 (3)0.20068 (5)0.0493 (2)
S20.50057 (6)0.00250 (3)0.33277 (5)0.04571 (19)
S30.16741 (7)0.00943 (4)0.59633 (5)0.0580 (2)
Na0.60691 (11)0.23038 (4)0.16665 (8)0.0499 (3)
N10.6137 (2)0.30852 (9)0.28737 (16)0.0431 (5)
C20.6154 (3)0.36202 (12)0.2604 (2)0.0522 (7)
C30.6130 (3)0.40646 (12)0.3296 (2)0.0515 (7)
C40.6086 (3)0.39520 (11)0.4315 (2)0.0491 (7)
C50.6085 (2)0.33937 (11)0.4647 (2)0.0412 (6)
C60.6099 (2)0.29703 (10)0.38971 (18)0.0358 (5)
C70.6065 (2)0.23900 (10)0.42107 (18)0.0360 (5)
N80.6051 (2)0.19858 (9)0.34766 (17)0.0439 (5)
C90.5991 (3)0.14594 (12)0.3792 (2)0.0525 (7)
C100.5947 (3)0.12978 (13)0.4818 (2)0.0565 (8)
C110.5985 (3)0.17010 (12)0.5560 (2)0.0538 (7)
C120.6040 (2)0.22658 (11)0.52709 (19)0.0427 (6)
C130.6053 (3)0.27086 (13)0.6010 (2)0.0542 (7)
C140.6067 (3)0.32448 (13)0.5714 (2)0.0541 (7)
N150.7390 (2)0.26272 (10)0.02512 (18)0.0517 (6)
C160.7491 (3)0.31478 (13)0.0077 (3)0.0625 (8)
C170.7804 (3)0.32943 (15)0.1054 (3)0.0652 (9)
C180.8013 (3)0.28801 (15)0.1738 (3)0.0588 (8)
C190.7913 (2)0.23223 (12)0.1432 (2)0.0461 (6)
C200.7619 (2)0.22130 (11)0.04182 (19)0.0403 (6)
C210.7576 (2)0.16390 (11)0.00682 (19)0.0392 (6)
N220.7348 (2)0.15386 (9)0.09291 (17)0.0492 (6)
C230.7375 (3)0.10111 (13)0.1236 (3)0.0568 (8)
C240.7600 (3)0.05586 (13)0.0609 (3)0.0587 (8)
C250.7791 (3)0.06537 (13)0.0396 (3)0.0571 (8)
C260.7790 (2)0.12058 (12)0.0764 (2)0.0457 (6)
C270.8038 (3)0.13373 (16)0.1800 (2)0.0596 (8)
C280.8114 (3)0.18678 (16)0.2117 (2)0.0604 (8)
N290.4351 (2)0.16575 (10)0.09219 (18)0.0518 (6)
C300.4273 (3)0.11227 (13)0.1174 (3)0.0599 (8)
C310.4212 (3)0.06853 (14)0.0472 (3)0.0641 (9)
C320.4242 (3)0.08067 (13)0.0547 (3)0.0604 (8)
C330.4268 (2)0.13634 (12)0.0870 (2)0.0481 (6)
C340.4324 (2)0.17825 (11)0.0104 (2)0.0420 (6)
C350.4326 (2)0.23641 (11)0.0405 (2)0.0440 (6)
N360.4405 (2)0.27609 (10)0.0341 (2)0.0558 (6)
C370.4345 (3)0.32924 (14)0.0038 (3)0.0670 (9)
C380.4229 (3)0.34606 (16)0.0987 (3)0.0718 (10)
C390.4178 (3)0.30656 (16)0.1739 (3)0.0669 (9)
C400.4225 (3)0.24953 (13)0.1472 (2)0.0515 (7)
C410.4163 (3)0.20588 (17)0.2215 (3)0.0645 (9)
C420.4211 (3)0.15191 (16)0.1934 (3)0.0626 (8)
C430.1561 (2)0.02471 (10)0.29068 (19)0.0372 (5)
N440.27230 (18)0.01851 (9)0.27136 (15)0.0375 (5)
C450.3548 (2)0.01003 (10)0.34987 (18)0.0352 (5)
N460.32209 (19)0.01210 (9)0.45126 (16)0.0375 (5)
C470.2059 (2)0.01347 (10)0.47500 (18)0.0378 (5)
N480.1252 (2)0.01806 (10)0.39225 (16)0.0429 (5)
H20.617 (3)0.3690 (15)0.188 (3)0.076 (10)*
H30.610 (3)0.4425 (14)0.303 (2)0.062 (9)*
H40.607 (3)0.4252 (13)0.485 (2)0.061 (9)*
H90.594 (3)0.1188 (14)0.324 (3)0.066 (9)*
H100.592 (3)0.0902 (14)0.499 (3)0.067 (9)*
H110.595 (3)0.1600 (13)0.631 (3)0.065 (9)*
H130.605 (3)0.2602 (14)0.673 (3)0.074 (10)*
H140.610 (3)0.3550 (14)0.619 (3)0.064 (9)*
H160.729 (3)0.3449 (15)0.041 (3)0.075 (10)*
H170.791 (4)0.3682 (17)0.127 (3)0.093 (12)*
H180.819 (3)0.2971 (15)0.242 (3)0.082 (11)*
H230.726 (3)0.0961 (14)0.195 (3)0.069 (10)*
H240.766 (3)0.0192 (15)0.093 (3)0.067 (10)*
H250.797 (3)0.0347 (17)0.085 (3)0.087 (12)*
H270.812 (3)0.1029 (16)0.223 (3)0.082 (11)*
H280.826 (3)0.1957 (16)0.279 (3)0.084 (11)*
H300.427 (3)0.1037 (15)0.193 (3)0.078 (11)*
H310.417 (3)0.0312 (16)0.074 (3)0.073 (10)*
H320.420 (3)0.0524 (14)0.105 (3)0.067 (10)*
H370.437 (3)0.3575 (16)0.065 (3)0.082 (11)*
H380.415 (3)0.3860 (16)0.114 (3)0.083 (11)*
H390.409 (3)0.3154 (15)0.250 (3)0.075 (10)*
H410.412 (4)0.2170 (17)0.291 (3)0.095 (13)*
H420.416 (3)0.1208 (14)0.246 (3)0.066 (9)*
H460.376 (3)0.0091 (12)0.502 (2)0.046 (8)*
H480.045 (3)0.0165 (13)0.403 (2)0.059 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0489 (4)0.0574 (4)0.0407 (4)0.0005 (3)0.0012 (3)0.0101 (3)
S20.0397 (4)0.0616 (4)0.0372 (3)0.0030 (3)0.0113 (3)0.0022 (3)
S30.0445 (4)0.0992 (6)0.0316 (3)0.0014 (4)0.0111 (3)0.0006 (4)
Na0.0762 (8)0.0392 (6)0.0360 (5)0.0006 (5)0.0146 (5)0.0035 (4)
N10.0578 (14)0.0370 (11)0.0359 (11)0.0002 (10)0.0117 (10)0.0012 (9)
C20.071 (2)0.0421 (15)0.0459 (16)0.0018 (13)0.0173 (14)0.0040 (12)
C30.0618 (19)0.0355 (14)0.0581 (18)0.0010 (13)0.0111 (14)0.0008 (13)
C40.0560 (17)0.0389 (14)0.0536 (17)0.0032 (12)0.0116 (13)0.0116 (13)
C50.0408 (14)0.0411 (14)0.0424 (14)0.0031 (11)0.0082 (11)0.0073 (11)
C60.0362 (13)0.0371 (13)0.0347 (12)0.0001 (10)0.0067 (10)0.0029 (10)
C70.0370 (13)0.0374 (13)0.0343 (12)0.0005 (10)0.0065 (10)0.0025 (10)
N80.0554 (14)0.0361 (11)0.0413 (12)0.0013 (10)0.0105 (10)0.0032 (9)
C90.072 (2)0.0379 (14)0.0483 (16)0.0001 (13)0.0106 (14)0.0023 (12)
C100.074 (2)0.0412 (16)0.0553 (18)0.0020 (14)0.0103 (15)0.0085 (13)
C110.069 (2)0.0499 (16)0.0425 (16)0.0008 (14)0.0038 (14)0.0101 (13)
C120.0471 (15)0.0466 (14)0.0345 (13)0.0003 (11)0.0037 (11)0.0003 (11)
C130.072 (2)0.0583 (18)0.0323 (14)0.0044 (15)0.0047 (13)0.0032 (13)
C140.070 (2)0.0537 (17)0.0393 (15)0.0063 (14)0.0073 (13)0.0141 (13)
N150.0684 (16)0.0431 (13)0.0454 (13)0.0016 (11)0.0159 (11)0.0048 (10)
C160.082 (2)0.0459 (17)0.0618 (19)0.0037 (15)0.0225 (17)0.0002 (15)
C170.074 (2)0.0553 (19)0.068 (2)0.0000 (16)0.0152 (17)0.0143 (16)
C180.0573 (19)0.071 (2)0.0488 (17)0.0022 (15)0.0107 (14)0.0136 (16)
C190.0386 (14)0.0617 (17)0.0384 (14)0.0022 (12)0.0051 (11)0.0011 (12)
C200.0368 (13)0.0479 (14)0.0364 (13)0.0020 (11)0.0032 (10)0.0029 (11)
C210.0334 (13)0.0450 (14)0.0393 (13)0.0028 (10)0.0039 (10)0.0065 (11)
N220.0643 (15)0.0426 (12)0.0416 (12)0.0035 (11)0.0101 (11)0.0025 (10)
C230.068 (2)0.0492 (17)0.0538 (18)0.0038 (14)0.0067 (15)0.0042 (14)
C240.0596 (19)0.0401 (16)0.076 (2)0.0063 (13)0.0025 (16)0.0022 (15)
C250.0524 (18)0.0480 (17)0.071 (2)0.0061 (13)0.0067 (15)0.0166 (15)
C260.0368 (14)0.0516 (16)0.0489 (15)0.0021 (11)0.0050 (12)0.0136 (12)
C270.062 (2)0.072 (2)0.0460 (16)0.0059 (16)0.0126 (14)0.0209 (16)
C280.061 (2)0.082 (2)0.0399 (16)0.0054 (16)0.0145 (14)0.0063 (16)
N290.0632 (16)0.0483 (13)0.0441 (13)0.0033 (11)0.0053 (11)0.0037 (10)
C300.067 (2)0.0528 (18)0.059 (2)0.0025 (15)0.0038 (16)0.0096 (15)
C310.064 (2)0.0465 (18)0.081 (2)0.0014 (15)0.0007 (17)0.0051 (17)
C320.0539 (19)0.0493 (17)0.078 (2)0.0026 (14)0.0048 (16)0.0120 (17)
C330.0379 (14)0.0564 (16)0.0505 (16)0.0002 (12)0.0064 (12)0.0072 (13)
C340.0347 (13)0.0480 (15)0.0438 (14)0.0008 (11)0.0062 (11)0.0002 (12)
C350.0370 (14)0.0509 (15)0.0447 (14)0.0017 (11)0.0061 (11)0.0032 (12)
N360.0670 (17)0.0459 (13)0.0552 (15)0.0007 (11)0.0081 (12)0.0014 (11)
C370.075 (2)0.0484 (18)0.077 (2)0.0031 (16)0.0063 (18)0.0050 (17)
C380.068 (2)0.055 (2)0.093 (3)0.0032 (17)0.0048 (19)0.025 (2)
C390.064 (2)0.075 (2)0.061 (2)0.0039 (17)0.0028 (16)0.0233 (18)
C400.0428 (15)0.0637 (18)0.0479 (16)0.0022 (13)0.0031 (12)0.0098 (14)
C410.066 (2)0.088 (3)0.0397 (16)0.0064 (18)0.0050 (14)0.0017 (16)
C420.062 (2)0.078 (2)0.0493 (17)0.0057 (17)0.0104 (15)0.0132 (17)
C430.0445 (14)0.0316 (12)0.0356 (12)0.0045 (10)0.0049 (10)0.0031 (10)
N440.0384 (12)0.0434 (11)0.0312 (10)0.0031 (9)0.0065 (9)0.0010 (9)
C450.0413 (13)0.0325 (12)0.0330 (12)0.0033 (10)0.0100 (10)0.0008 (9)
N460.0353 (12)0.0464 (12)0.0313 (11)0.0007 (9)0.0049 (9)0.0006 (9)
C470.0393 (14)0.0406 (13)0.0342 (13)0.0024 (10)0.0075 (10)0.0003 (10)
N480.0357 (12)0.0596 (14)0.0340 (11)0.0002 (10)0.0067 (9)0.0057 (10)
Geometric parameters (Å, º) top
S1—C431.658 (3)C21—C261.404 (3)
S2—C451.682 (2)N22—C231.320 (4)
S3—C471.663 (2)C23—C241.386 (4)
Na—N12.430 (2)C23—H230.96 (3)
Na—N82.464 (2)C24—C251.353 (5)
Na—N152.558 (3)C24—H240.97 (3)
Na—N222.548 (2)C25—C261.401 (4)
Na—N292.582 (3)C25—H250.97 (4)
Na—N362.656 (3)C26—C271.426 (4)
N1—C21.324 (3)C27—C281.336 (5)
N1—C61.357 (3)C27—H270.93 (4)
C2—C31.390 (4)C28—H280.93 (4)
C2—H20.96 (4)N29—C301.322 (4)
C3—C41.351 (4)N29—C341.359 (3)
C3—H30.93 (3)C30—C311.382 (5)
C4—C51.400 (4)C30—H301.00 (4)
C4—H41.00 (3)C31—C321.354 (5)
C5—C61.402 (3)C31—H310.96 (4)
C5—C141.428 (4)C32—C331.394 (4)
C6—C71.445 (3)C32—H320.93 (3)
C7—N81.353 (3)C33—C341.406 (4)
C7—C121.406 (3)C33—C421.423 (4)
N8—C91.325 (3)C34—C351.442 (4)
C9—C101.387 (4)C35—N361.350 (4)
C9—H90.97 (3)C35—C401.412 (4)
C10—C111.358 (4)N36—C371.328 (4)
C10—H100.97 (3)C37—C381.382 (5)
C11—C121.402 (4)C37—H371.03 (4)
C11—H111.00 (3)C38—C391.352 (5)
C12—C131.425 (4)C38—H380.98 (4)
C13—C141.336 (4)C39—C401.404 (5)
C13—H130.97 (4)C39—H391.00 (4)
C14—H140.95 (3)C40—C411.415 (5)
N15—C161.321 (4)C41—C421.338 (5)
N15—C201.352 (3)C41—H410.94 (4)
C16—C171.383 (5)C42—H421.00 (3)
C16—H161.00 (4)C43—N441.345 (3)
C17—C181.360 (5)C43—N481.394 (3)
C17—H170.98 (4)N44—C451.329 (3)
C18—C191.396 (4)C45—N461.390 (3)
C18—H180.94 (4)N46—C471.353 (3)
C19—C201.402 (4)N46—H460.85 (3)
C19—C281.430 (4)C47—N481.346 (3)
C20—C211.445 (4)N48—H480.91 (3)
C21—N221.356 (3)
N1—Na—N868.13 (7)C23—N22—Na124.8 (2)
N1—Na—N22143.27 (9)C21—N22—Na112.46 (16)
N8—Na—N22100.51 (8)N22—C23—C24124.6 (3)
N1—Na—N15103.81 (8)N22—C23—H23114 (2)
N8—Na—N15145.34 (10)C24—C23—H23121 (2)
N22—Na—N1565.03 (8)C25—C24—C23118.8 (3)
N1—Na—N29133.04 (9)C25—C24—H24123 (2)
N8—Na—N2996.25 (8)C23—C24—H24118 (2)
N22—Na—N2981.43 (8)C24—C25—C26119.2 (3)
N15—Na—N29111.33 (8)C24—C25—H25121 (2)
N1—Na—N3694.83 (8)C26—C25—H25120 (2)
N8—Na—N36133.03 (9)C25—C26—C21118.1 (3)
N22—Na—N36115.73 (8)C25—C26—C27122.1 (3)
N15—Na—N3679.90 (8)C21—C26—C27119.8 (3)
N29—Na—N3663.08 (8)C28—C27—C26121.3 (3)
C2—N1—C6117.0 (2)C28—C27—H27123 (2)
C2—N1—Na124.83 (18)C26—C27—H27115 (2)
C6—N1—Na118.08 (16)C27—C28—C19120.8 (3)
N1—C2—C3124.4 (3)C27—C28—H28122 (2)
N1—C2—H2115 (2)C19—C28—H28117 (2)
C3—C2—H2120 (2)C30—N29—C34117.2 (3)
C4—C3—C2118.8 (3)C30—N29—Na123.1 (2)
C4—C3—H3123 (2)C34—N29—Na101.03 (17)
C2—C3—H3118 (2)N29—C30—C31124.6 (3)
C3—C4—C5119.3 (3)N29—C30—H30116 (2)
C3—C4—H4122.7 (18)C31—C30—H30119 (2)
C5—C4—H4118.0 (18)C32—C31—C30118.4 (3)
C4—C5—C6118.3 (2)C32—C31—H31124 (2)
C4—C5—C14122.3 (2)C30—C31—H31118 (2)
C6—C5—C14119.5 (2)C31—C32—C33119.9 (3)
N1—C6—C5122.2 (2)C31—C32—H32121 (2)
N1—C6—C7118.1 (2)C33—C32—H32119 (2)
C5—C6—C7119.7 (2)C32—C33—C34117.9 (3)
N8—C7—C12122.3 (2)C32—C33—C42122.6 (3)
N8—C7—C6119.0 (2)C34—C33—C42119.5 (3)
C12—C7—C6118.6 (2)N29—C34—C33121.9 (3)
C9—N8—C7117.2 (2)N29—C34—C35118.4 (2)
C9—N8—Na126.16 (18)C33—C34—C35119.7 (2)
C7—N8—Na116.57 (16)N36—C35—C40122.7 (3)
N8—C9—C10124.4 (3)N36—C35—C34118.9 (2)
N8—C9—H9114.1 (19)C40—C35—C34118.4 (3)
C10—C9—H9121.4 (19)C37—N36—C35117.4 (3)
C11—C10—C9118.6 (3)C37—N36—Na126.8 (2)
C11—C10—H10122 (2)C35—N36—Na100.13 (17)
C9—C10—H10120 (2)N36—C37—C38124.0 (4)
C10—C11—C12119.5 (3)N36—C37—H37114 (2)
C10—C11—H11120.8 (19)C38—C37—H37122 (2)
C12—C11—H11119.7 (19)C39—C38—C37118.9 (3)
C11—C12—C7117.9 (2)C39—C38—H38123 (2)
C11—C12—C13122.2 (3)C37—C38—H38118 (2)
C7—C12—C13119.9 (2)C38—C39—C40120.0 (3)
C14—C13—C12121.2 (3)C38—C39—H39124 (2)
C14—C13—H13122 (2)C40—C39—H39116 (2)
C12—C13—H13117 (2)C39—C40—C35117.0 (3)
C13—C14—C5121.1 (3)C39—C40—C41123.2 (3)
C13—C14—H14123.3 (19)C35—C40—C41119.8 (3)
C5—C14—H14116 (2)C42—C41—C40121.7 (3)
C16—N15—C20117.2 (3)C42—C41—H41122 (3)
C16—N15—Na125.6 (2)C40—C41—H41116 (3)
C20—N15—Na112.75 (17)C41—C42—C33120.8 (3)
N15—C16—C17124.5 (3)C41—C42—H42122.0 (19)
N15—C16—H16116 (2)C33—C42—H42117.2 (19)
C17—C16—H16119 (2)N44—C43—N48118.4 (2)
C18—C17—C16118.7 (3)N44—C43—S1124.02 (18)
C18—C17—H17118 (2)N48—C43—S1117.55 (19)
C16—C17—H17123 (2)C45—N44—C43119.3 (2)
C17—C18—C19119.2 (3)N44—C45—N46120.0 (2)
C17—C18—H18120 (2)N44—C45—S2122.74 (18)
C19—C18—H18121 (2)N46—C45—S2117.28 (19)
C18—C19—C20118.2 (3)C47—N46—C45122.8 (2)
C18—C19—C28121.9 (3)C47—N46—H46117 (2)
C20—C19—C28119.9 (3)C45—N46—H46120 (2)
N15—C20—C19122.3 (2)N48—C47—N46114.2 (2)
N15—C20—C21118.7 (2)N48—C47—S3123.39 (19)
C19—C20—C21119.1 (2)N46—C47—S3122.39 (19)
N22—C21—C26122.3 (2)C47—N48—C43124.1 (2)
N22—C21—C20118.6 (2)C47—N48—H48118 (2)
C26—C21—C20119.1 (2)C43—N48—H48118 (2)
C23—N22—C21117.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N46—H46···S2i0.85 (3)2.46 (3)3.298 (2)170 (3)
N48—H48···S3ii0.91 (3)2.44 (3)3.336 (2)165 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Na(C12H8N2)3](C3H2N3S3)
Mr739.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1273 (9), 23.8687 (15), 12.9417 (7)
β (°) 94.584 (6)
V3)3426.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerKuma KM-4 with CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14962, 5915, 5060
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 0.99
No. of reflections5915
No. of parameters574
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1996), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—C431.658 (3)Na—N362.656 (3)
S2—C451.682 (2)C43—N441.345 (3)
S3—C471.663 (2)C43—N481.394 (3)
Na—N12.430 (2)N44—C451.329 (3)
Na—N82.464 (2)C45—N461.390 (3)
Na—N152.558 (3)N46—C471.353 (3)
Na—N222.548 (2)C47—N481.346 (3)
Na—N292.582 (3)
N1—Na—N868.13 (7)N29—Na—N3663.08 (8)
N1—Na—N22143.27 (9)N44—C43—N48118.4 (2)
N8—Na—N22100.51 (8)N44—C43—S1124.02 (18)
N1—Na—N15103.81 (8)N48—C43—S1117.55 (19)
N8—Na—N15145.34 (10)C45—N44—C43119.3 (2)
N22—Na—N1565.03 (8)N44—C45—N46120.0 (2)
N1—Na—N29133.04 (9)N44—C45—S2122.74 (18)
N8—Na—N2996.25 (8)N46—C45—S2117.28 (19)
N22—Na—N2981.43 (8)C47—N46—C45122.8 (2)
N15—Na—N29111.33 (8)N48—C47—N46114.2 (2)
N1—Na—N3694.83 (8)N48—C47—S3123.39 (19)
N8—Na—N36133.03 (9)N46—C47—S3122.39 (19)
N22—Na—N36115.73 (8)C47—N48—C43124.1 (2)
N15—Na—N3679.90 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N46—H46···S2i0.85 (3)2.46 (3)3.298 (2)170 (3)
N48—H48···S3ii0.91 (3)2.44 (3)3.336 (2)165 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds