Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of the title compound, C16H28N+·Br, were grown from solution in a mixture of acetone and propan-2-ol by slow evaporation. The structure was solved in the polar space group P42bc with five moieties in the asymmetric unit, namely two benzyl­tri­propyl­ammonium cations in general positions, and two Br anions in special Wyckoff positions (4a2.. and 4b2..) and one in a general position. The structure consists of two kinds of molecular columns parallel to c, built of cations connected through C—H...π hydrogen bonds and stabilized by weak C—H...Br interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103018651/gg1174sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103018651/gg1174Isup2.hkl
Contains datablock I

CCDC reference: 224648

Comment top

Quaternary alkyl ammonium cations are the subject of wide interest because they are able to change the nature of the surface of clay minerals, such as montmorillonite or bentonite, from hydrophilic to hydrophobic. The surface of the resultant organoclays can adsorb organic pollutants which have low solubility in water (Lee et al., 1989; Lo et al., 1997; Polubesova et al., 1997). Recently, the cation of the title compound was investigated for its sorption properties on montmorillonite (Lorenc, 2001) and was found to have a significantly lower ability than benzyltrimethylammonium used as a reference cation.

The crystal structure analysis of selected quaternary alkyl ammonium salts was undertaken to find the relationship between the length and conformation of the alkyl chains and the packing properties of the ammonium cations. The other important question we wished to address was how a possible mutual arrangement of the cations could influence their sorption behaviour, either on a montmorillonite or on a bentonite. Here, the tetragonal polar structure of crystals of benzyltripropylammonium bromide, (I), is reported. \sch

The asymmetric part of the unit cell of (I) contains five distinct moieties: two symmetrically independent benzyltripropyloammonium (BTPA) cations, A and B, and three Br anions. The bond lengths and angles of these symmetry-independent molecules are quite similar (Table 1) and the normal probability plot analysis (Abrahams & Keve, 1971; International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) shows that the differences are of a statistical rather than systematic nature. The correlation coefficients between experimental and theoretical distributions are 0.9962 for bond lengths and 0.9903 for bond angles.

The conformation of the BTPA cations in the crystalline state is shown in Fig. 1. Each cation has a synclinal (gauche) conformation of two propyl chains against the benzyl moiety, defined by the C4(benzyl)-N1—C1—C11 and C4(benzyl)-N1—C2—C21 torsion angles for cation A, and C8(benzyl)-N2—C5—C51 and C8(benzyl)-N2—C6—C61 for cation B, with an anti-periplanar conformation for the third propyl substituent in each case (Table 1). All propyl chains have a zigzag-like conformation, with NX—CX—CX1—CX2 torsion angles close to −180°.

The packing in the structure of (I) is given in Fig. 2. The ammonium cations form a framework enclosing two types of molecular columns running along the [001] direction, one at Wyckoff positions 0,0,z (4 a 2..) and the second at 0,1/2,z (4 b 2..). The column at 0,0,z (of 42 symmetry) is built up of translationally repeated kerbs, each containing four BTPA cations of type A, arranged into two dimers rotated relative to each other by 90°. The cations included in these dimers are interconnected by C—H···π interactions (Fig. 3a). Such a kerb is stabilized by Coulombic interactions with the Br1 counterion (Fig. 3c). The second molecular column at 0,1/2,z is also of twofold symmetry but results from crossing two c glide planes. Here, the dimers are formed of type B cations symmetrically independent of the first type but stabilized according to a similar scheme (i.e. C—H···π interactions and Coulombic interactions with the Br2 cation; Fig. 3 b,d). Both columns are joined together into a tetragonal structure via interactions with the Br3 anions in the general position. The geometry of the short C—H···Br contacts and weak C—H..π hydrogen bonds is given in Table 2.

In conclusion, the three propyl-chain substituents of (I), with their specific conformations relative to the benzyl moiety, could sterically hinder the hypothetical direct interaction of N+ cations with the negatively charged surface of montmorillonite particles when adsorbed at the surface of grains or intercalated between silicate particles. Such steric hindrance could be the reason for the much worse sorption properties of BTPA cations on montmorillonite clay than those of the benzyltrimethylammonium cations used as reference (Lorenc, 2001). Additonally, the tendency of BTPA to form molecular columns, through hydrophobic interactions between the cations, hampers their intercalation between montmorillonite particles.

Table 2. Geometry of short C—H···Br contacts and weak C—H···π hydrogen bonds (Å, °). Cg1 is the centroid of the C41/C46 benzene ring and Cg2 the centroid of the C81/C86 ring.

Experimental top

The title salt was obtained using the procedure described by Lorenc (2001) and was recrystallized from solution in a mixture of acetone and propan-2-ol (Ratio?).

Refinement top

The space group P42bc was assigned from the systematic absences observed in the diffraction pattern: hkl - no systematic absences, 0kl k = 2n+1 (h0l h = 2n+1), hhl l = 2n+1, 00 l l = 2n+1, and h00 h = 2n+1 (0k0 k = 2n+1). Among 352 space group extinctions only a few reflections could be considered as observed (7 reflections of type 0kl and 3 reflections of type hhl), with intensities in the range 4–7σ(I). The systematic absences are identical for space groups P42bc and P42/mbc. Nevertheless, all tests [mean ABS(E2-1) of SHELXS97 (Sheldrick, 1997), as well as ABS(E) distribution and the N(z) test of Nonius maXus] clearly indicated that the intensity distribution is acentric. Examination of the structure with PLATON (Spek, 2003) detected no obvious extra crystallographic symmetry. The absolute structure was established by the anomalous dispersion effect of the Br atoms in diffraction measurements on the crystal (3569 Bijvoet pairs) and is described by a Flack parameter of −0.006 (8) (Flack, 1983; Flack & Bernardinelli, 1999, 2000). More than half of the total number of H-atom positions were observed in the Fourier difference map. Nevertheless, in the refinement procedure all H atoms were included from geometrical constraints in a riding model (C—H 0.93–0.97 Å) and were refined with isotropic displacement factors, with Uiso(H) = 1.2Ueq(C). Please check that added text is OK.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric part of the unit cell of (I), showing the conformation of the two independent BTPA cations containing (a) atom N1 and (b) atom N2, and the atom-numbering schemes. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Projection of the structure of (I) on to the ab plane. A cross-section of two types of channels at 00z and 01/2z can be distinguished.
[Figure 3] Fig. 3. C—H···π interactions of type III (Malone et al., 1997) in the dimers formed by (a) cation A (θ = 78.4° and d = 0.62 Å) and (b) cation B (θ = 84.8° and d = 0.28 Å), viewed along [001]. Two types of kerbs at (c) 00z (4a2..) and (d) 01/2z (4 b 2..) are shown along [100].
Benzyltripropylammonium bromide top
Crystal data top
C16H28BrNDx = 1.240 Mg m3
Mr = 314.31Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42bcCell parameters from 7799 reflections
a = 22.4411 (4) Åθ = 1.0–27.5°
c = 13.3749 (2) ŵ = 2.43 mm1
V = 6735.6 (2) Å3T = 293 K
Z = 16Prism, colourless
F(000) = 26560.25 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7591 independent reflections
Radiation source: fine-focus sealed tube5740 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.031
ϕ and ω scans to fill Ewald sphereθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 2929
Tmin = 0.582, Tmax = 0.642k = 2020
14346 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Calculated w = 1/[σ2(Fo2) + (0.0221P)2 + 1.9763P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7591 reflectionsΔρmax = 0.25 e Å3
325 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (8)
Crystal data top
C16H28BrNZ = 16
Mr = 314.31Mo Kα radiation
Tetragonal, P42bcµ = 2.43 mm1
a = 22.4411 (4) ÅT = 293 K
c = 13.3749 (2) Å0.25 × 0.20 × 0.20 mm
V = 6735.6 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
7591 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
5740 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.642Rint = 0.031
14346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.25 e Å3
S = 1.05Δρmin = 0.29 e Å3
7591 reflectionsAbsolute structure: Flack (1983)
325 parametersAbsolute structure parameter: 0.006 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00000.00001.14210 (3)0.05987 (13)
Br20.50000.00000.65200.05580 (12)
Br30.761147 (13)0.187038 (13)1.00905 (5)0.05642 (9)
N11.12528 (10)0.06281 (10)1.39785 (19)0.0438 (5)
C11.07834 (14)0.10733 (14)1.4324 (3)0.0527 (8)
H111.09740.14581.44050.063*
H121.06400.09501.49760.063*
C111.02495 (15)0.11501 (17)1.3637 (3)0.0662 (9)
H1111.00640.07671.35150.079*
H1121.03770.13141.30010.079*
C120.98094 (17)0.15665 (18)1.4130 (4)0.0888 (14)
H1210.94700.16191.37010.107*
H1220.96820.14001.47560.107*
H1230.99960.19451.42460.107*
C21.17915 (14)0.06774 (15)1.4663 (2)0.0483 (8)
H211.19790.10611.45490.058*
H221.20760.03721.44730.058*
C211.16685 (18)0.06171 (19)1.5764 (3)0.0634 (10)
H2111.14090.09371.59840.076*
H2121.14700.02411.58960.076*
C221.2253 (2)0.0643 (2)1.6330 (3)0.0945 (14)
H2211.21770.06071.70340.113*
H2221.25050.03221.61160.113*
H2231.24460.10161.61980.113*
C31.14531 (14)0.07467 (13)1.2911 (2)0.0496 (7)
H311.17760.04761.27530.060*
H321.11250.06541.24650.060*
C311.1660 (2)0.13793 (17)1.2694 (3)0.0722 (11)
H3111.19410.15051.32030.087*
H3121.13220.16481.27130.087*
C321.1950 (2)0.14114 (19)1.1688 (3)0.0837 (12)
H3211.20780.18131.15620.100*
H3221.22890.11501.16730.100*
H3231.16700.12921.11840.100*
C41.09752 (12)0.00034 (13)1.4018 (2)0.0467 (6)
H411.06460.00111.35480.056*
H421.08110.00581.46810.056*
C411.13932 (13)0.05047 (12)1.3787 (2)0.0439 (7)
C421.14464 (14)0.07202 (14)1.2815 (2)0.0516 (8)
H4211.12360.05381.23000.062*
C431.18101 (17)0.12035 (16)1.2606 (3)0.0670 (10)
H4311.18460.13401.19530.080*
C441.21179 (17)0.14816 (15)1.3360 (3)0.0668 (10)
H4411.23670.18011.32150.080*
C451.20582 (18)0.12877 (16)1.4326 (3)0.0721 (10)
H4511.22600.14811.48390.086*
C461.16983 (17)0.08044 (15)1.4536 (3)0.0628 (9)
H4611.16600.06771.51950.075*
N20.62845 (10)0.04681 (10)0.90576 (17)0.0390 (5)
C50.59141 (13)0.09908 (13)0.9408 (2)0.0443 (7)
H510.57650.09021.00720.053*
H520.61720.13360.94640.053*
C510.53898 (14)0.11549 (14)0.8748 (2)0.0560 (8)
H5110.51270.08150.86760.067*
H5120.55310.12670.80890.067*
C520.50548 (16)0.16680 (15)0.9212 (3)0.0695 (10)
H5210.47220.17720.87950.083*
H5220.49130.15540.98610.083*
H5230.53160.20050.92740.083*
C60.68219 (13)0.04064 (15)0.97385 (19)0.0449 (7)
H610.70870.07390.96110.054*
H620.70330.00460.95550.054*
C610.66964 (16)0.03840 (16)1.0846 (2)0.0549 (8)
H6110.65950.07791.10870.066*
H6120.63620.01221.09750.066*
C620.72470 (18)0.0156 (2)1.1387 (3)0.0851 (13)
H6210.71700.01401.20930.102*
H6220.73440.02361.11490.102*
H6230.75750.04201.12620.102*
C70.65076 (13)0.05582 (13)0.7990 (2)0.0433 (6)
H710.61720.05120.75390.052*
H720.67900.02430.78380.052*
C710.68038 (17)0.11522 (16)0.7768 (2)0.0603 (9)
H7110.71110.12320.82600.072*
H7120.65110.14700.78010.072*
C720.70748 (17)0.11280 (17)0.6737 (2)0.0674 (10)
H7210.72660.15010.65920.081*
H7220.73630.08130.67090.081*
H7230.67670.10550.62520.081*
C80.58974 (12)0.00949 (11)0.9083 (2)0.0429 (6)
H810.55880.00560.85820.052*
H820.57040.01170.97310.052*
C810.62231 (12)0.06690 (12)0.8905 (2)0.0458 (7)
C820.62927 (16)0.08891 (14)0.7944 (3)0.0579 (8)
H8210.61370.06790.74040.070*
C830.6593 (2)0.14216 (17)0.7782 (4)0.0829 (14)
H8310.66410.15660.71350.099*
C840.68177 (19)0.17332 (18)0.8575 (4)0.0871 (13)
H8410.70290.20830.84630.105*
C850.6734 (2)0.15356 (17)0.9525 (4)0.0884 (14)
H8510.68770.17581.00610.106*
C860.64384 (17)0.10061 (15)0.9701 (3)0.0687 (10)
H8610.63830.08741.03530.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0755 (3)0.0572 (3)0.0469 (3)0.0120 (3)0.0000.000
Br20.0761 (3)0.0487 (3)0.0426 (3)0.0045 (2)0.0000.000
Br30.05087 (16)0.05375 (17)0.06462 (16)0.00048 (13)0.0020 (2)0.0071 (2)
N10.0414 (13)0.0394 (13)0.0505 (13)0.0076 (10)0.0072 (11)0.0106 (11)
C10.0461 (18)0.0436 (17)0.0685 (19)0.0008 (14)0.0075 (15)0.0161 (15)
C110.051 (2)0.060 (2)0.087 (2)0.0070 (17)0.0059 (18)0.0207 (19)
C120.060 (2)0.070 (3)0.136 (4)0.0137 (19)0.012 (2)0.035 (3)
C20.0384 (17)0.0470 (19)0.0594 (17)0.0070 (14)0.0007 (13)0.0087 (14)
C210.062 (2)0.071 (3)0.0572 (19)0.009 (2)0.0028 (17)0.0169 (18)
C220.077 (3)0.136 (4)0.070 (2)0.007 (3)0.019 (2)0.005 (3)
C30.0518 (19)0.0469 (18)0.0502 (16)0.0047 (15)0.0066 (14)0.0031 (14)
C310.090 (3)0.053 (2)0.074 (2)0.013 (2)0.016 (2)0.0028 (17)
C320.101 (3)0.070 (3)0.080 (3)0.001 (2)0.024 (2)0.017 (2)
C40.0436 (15)0.0428 (15)0.0537 (15)0.0081 (14)0.0069 (14)0.0048 (14)
C410.0421 (16)0.0371 (16)0.0526 (17)0.0087 (12)0.0019 (13)0.0040 (13)
C420.056 (2)0.0481 (19)0.0510 (16)0.0002 (16)0.0027 (15)0.0084 (14)
C430.070 (3)0.055 (2)0.076 (2)0.005 (2)0.0073 (18)0.0167 (17)
C440.056 (2)0.0414 (19)0.103 (3)0.0002 (16)0.001 (2)0.0074 (19)
C450.076 (3)0.050 (2)0.091 (3)0.0030 (19)0.022 (2)0.0029 (19)
C460.084 (3)0.051 (2)0.0529 (18)0.0077 (18)0.0094 (17)0.0012 (16)
N20.0382 (13)0.0399 (13)0.0390 (11)0.0022 (10)0.0022 (10)0.0020 (10)
C50.0438 (17)0.0425 (16)0.0466 (14)0.0030 (13)0.0006 (12)0.0070 (12)
C510.0515 (19)0.0473 (18)0.069 (2)0.0083 (15)0.0063 (16)0.0055 (16)
C520.056 (2)0.060 (2)0.092 (3)0.0136 (18)0.0074 (19)0.0167 (19)
C60.0380 (16)0.0458 (17)0.0509 (17)0.0015 (14)0.0017 (12)0.0014 (13)
C610.055 (2)0.061 (2)0.0490 (17)0.0035 (17)0.0061 (15)0.0019 (16)
C620.072 (3)0.123 (4)0.060 (2)0.019 (2)0.017 (2)0.005 (2)
C70.0454 (17)0.0438 (17)0.0405 (14)0.0027 (13)0.0055 (12)0.0030 (12)
C710.070 (2)0.056 (2)0.0552 (17)0.0167 (17)0.0041 (16)0.0007 (15)
C720.066 (2)0.076 (3)0.0594 (19)0.0124 (19)0.0063 (17)0.0143 (17)
C80.0400 (15)0.0388 (16)0.0501 (15)0.0070 (12)0.0047 (13)0.0014 (12)
C810.0387 (16)0.0390 (15)0.0597 (18)0.0042 (12)0.0029 (14)0.0039 (14)
C820.068 (2)0.0410 (18)0.065 (2)0.0017 (16)0.0114 (17)0.0038 (15)
C830.095 (3)0.046 (2)0.108 (3)0.005 (2)0.033 (3)0.013 (2)
C840.063 (3)0.042 (2)0.156 (4)0.0071 (18)0.006 (3)0.006 (3)
C850.092 (3)0.049 (2)0.124 (4)0.002 (2)0.043 (3)0.007 (2)
C860.083 (3)0.047 (2)0.076 (2)0.0017 (19)0.0170 (18)0.0097 (16)
Geometric parameters (Å, º) top
N1—C11.523 (4)N2—C51.512 (3)
N1—C21.521 (4)N2—C61.518 (3)
N1—C31.521 (4)N2—C71.527 (3)
N1—C41.535 (4)N2—C81.534 (3)
C1—C111.519 (5)C5—C511.517 (4)
C1—H110.9700C5—H510.9700
C1—H120.9700C5—H520.9700
C11—C121.511 (5)C51—C521.508 (4)
C11—H1110.9700C51—H5110.9700
C11—H1120.9700C51—H5120.9700
C12—H1210.9600C52—H5210.9600
C12—H1220.9600C52—H5220.9600
C12—H1230.9600C52—H5230.9600
C2—C211.504 (4)C6—C611.509 (4)
C2—H210.9700C6—H610.9700
C2—H220.9700C6—H620.9700
C21—C221.515 (5)C61—C621.521 (5)
C21—H2110.9700C61—H6110.9700
C21—H2120.9700C61—H6120.9700
C22—H2210.9600C62—H6210.9600
C22—H2220.9600C62—H6220.9600
C22—H2230.9600C62—H6230.9600
C3—C311.522 (5)C7—C711.519 (4)
C3—H310.9700C7—H710.9700
C3—H320.9700C7—H720.9700
C31—C321.496 (5)C71—C721.509 (4)
C31—H3110.9700C71—H7110.9700
C31—H3120.9700C71—H7120.9700
C32—H3210.9600C72—H7210.9600
C32—H3220.9600C72—H7220.9600
C32—H3230.9600C72—H7230.9600
C4—C411.509 (4)C8—C811.500 (4)
C4—H410.9700C8—H810.9700
C4—H420.9700C8—H820.9700
C41—C461.388 (4)C81—C821.386 (4)
C41—C421.393 (4)C81—C861.392 (4)
C42—C431.386 (5)C82—C831.389 (5)
C42—H4210.9300C82—H8210.9300
C43—C441.372 (5)C83—C841.367 (6)
C43—H4310.9300C83—H8310.9300
C44—C451.370 (5)C84—C851.359 (6)
C44—H4410.9300C84—H8410.9300
C45—C461.381 (5)C85—C861.381 (5)
C45—H4510.9300C85—H8510.9300
C46—H4610.9300C86—H8610.9300
C1—N1—C2108.6 (2)C5—N2—C6108.8 (2)
C1—N1—C3112.0 (2)C5—N2—C7111.6 (2)
C2—N1—C3108.5 (2)C6—N2—C7108.2 (2)
C1—N1—C4107.9 (2)C5—N2—C8108.7 (2)
C2—N1—C4111.6 (2)C6—N2—C8111.2 (2)
C3—N1—C4108.2 (2)C7—N2—C8108.4 (2)
N1—C1—C11115.9 (2)N2—C5—C51115.7 (2)
C11—C1—H11108.3N2—C5—H51108.3
N1—C1—H11108.3C51—C5—H51108.3
C11—C1—H12108.3N2—C5—H52108.3
N1—C1—H12108.3C51—C5—H52108.3
H11—C1—H12107.4H51—C5—H52107.4
C12—C11—C1108.8 (3)C52—C51—C5109.4 (3)
C12—C11—H111109.9C52—C51—H511109.8
C1—C11—H111109.9C5—C51—H511109.8
C12—C11—H112109.9C52—C51—H512109.8
C1—C11—H112109.9C5—C51—H512109.8
H111—C11—H112108.3H511—C51—H512108.2
C11—C12—H121109.5C51—C52—H521109.5
C11—C12—H122109.5C51—C52—H522109.5
H121—C12—H122109.5H521—C52—H522109.5
C11—C12—H123109.5C51—C52—H523109.5
H121—C12—H123109.5H521—C52—H523109.5
H122—C12—H123109.5H522—C52—H523109.5
C21—C2—N1115.9 (3)C61—C6—N2116.4 (3)
C21—C2—H21108.3C61—C6—H61108.2
N1—C2—H21108.3N2—C6—H61108.2
C21—C2—H22108.3C61—C6—H62108.2
N1—C2—H22108.3N2—C6—H62108.2
H21—C2—H22107.4H61—C6—H62107.4
C2—C21—C22109.0 (3)C6—C61—C62109.1 (3)
C2—C21—H211109.9C6—C61—H611109.9
C22—C21—H211109.9C62—C61—H611109.9
C2—C21—H212109.9C6—C61—H612109.9
C22—C21—H212109.9C62—C61—H612109.9
H211—C21—H212108.3H611—C61—H612108.3
C21—C22—H221109.5C61—C62—H621109.5
C21—C22—H222109.5C61—C62—H622109.5
H221—C22—H222109.5H621—C62—H622109.5
C21—C22—H223109.5C61—C62—H623109.5
H221—C22—H223109.5H621—C62—H623109.5
H222—C22—H223109.5H622—C62—H623109.5
C31—C3—N1115.7 (2)C71—C7—N2116.2 (2)
N1—C3—H31108.4C71—C7—H71108.2
C31—C3—H31108.4N2—C7—H71108.2
N1—C3—H32108.4C71—C7—H72108.2
C31—C3—H32108.4N2—C7—H72108.2
H31—C3—H32107.4H71—C7—H72107.4
C32—C31—C3110.5 (3)C72—C71—C7108.9 (3)
C32—C31—H311109.6C72—C71—H711109.9
C3—C31—H311109.6C7—C71—H711109.9
C32—C31—H312109.6C72—C71—H712109.9
C3—C31—H312109.6C7—C71—H712109.9
H311—C31—H312108.1H711—C71—H712108.3
C31—C32—H321109.5C71—C72—H721109.5
C31—C32—H322109.5C71—C72—H722109.5
H321—C32—H322109.5H721—C72—H722109.5
C31—C32—H323109.5C71—C72—H723109.5
H321—C32—H323109.5H721—C72—H723109.5
H322—C32—H323109.5H722—C72—H723109.5
C41—C4—N1115.5 (2)C81—C8—N2115.3 (2)
C41—C4—H41108.4C81—C8—H81108.4
N1—C4—H41108.4N2—C8—H81108.4
C41—C4—H42108.4C81—C8—H82108.4
N1—C4—H42108.4N2—C8—H82108.4
H41—C4—H42107.5H81—C8—H82107.5
C42—C41—C46117.6 (3)C82—C81—C86118.5 (3)
C46—C41—C4121.7 (3)C82—C81—C8120.6 (3)
C42—C41—C4120.5 (3)C86—C81—C8120.9 (3)
C43—C42—C41120.7 (3)C81—C82—C83120.4 (4)
C43—C42—H421119.7C81—C82—H821119.8
C41—C42—H421119.7C83—C82—H821119.8
C44—C43—C42120.3 (3)C84—C83—C82119.9 (4)
C44—C43—H431119.8C84—C83—H831120.1
C42—C43—H431119.8C82—C83—H831120.1
C45—C44—C43119.9 (3)C85—C84—C83120.5 (4)
C45—C44—H441120.0C85—C84—H841119.7
C43—C44—H441120.0C83—C84—H841119.7
C44—C45—C46119.9 (3)C84—C85—C86120.4 (4)
C44—C45—H451120.0C84—C85—H851119.8
C46—C45—H451120.0C86—C85—H851119.8
C45—C46—C41121.4 (3)C85—C86—C81120.3 (4)
C45—C46—H461119.3C85—C86—H861119.9
C41—C46—H461119.3C81—C86—H861119.9
C2—N1—C1—C11171.5 (3)C6—N2—C5—C51174.2 (2)
C3—N1—C1—C1151.7 (4)C7—N2—C5—C5154.9 (3)
C4—N1—C1—C1167.3 (4)C8—N2—C5—C5164.6 (3)
N1—C1—C11—C12175.5 (3)N2—C5—C51—C52178.2 (3)
C1—N1—C2—C2153.7 (4)C5—N2—C6—C6151.9 (4)
C3—N1—C2—C21175.7 (3)C7—N2—C6—C61173.2 (3)
C4—N1—C2—C2165.1 (4)C8—N2—C6—C6167.8 (3)
N1—C2—C21—C22176.9 (3)N2—C6—C61—C62164.7 (3)
C1—N1—C3—C3152.9 (4)C5—N2—C7—C7149.4 (3)
C2—N1—C3—C3167.0 (4)C6—N2—C7—C7170.2 (3)
C4—N1—C3—C31171.7 (3)C8—N2—C7—C71169.1 (3)
N1—C3—C31—C32169.4 (3)N2—C7—C71—C72171.7 (3)
C3—N1—C4—C4163.8 (3)C5—N2—C8—C81171.2 (2)
C2—N1—C4—C4155.5 (3)C6—N2—C8—C8151.5 (3)
C1—N1—C4—C41174.8 (3)C7—N2—C8—C8167.4 (3)
N1—C4—C41—C4693.1 (4)N2—C8—C81—C8289.4 (3)
N1—C4—C41—C4292.3 (3)N2—C8—C81—C8693.6 (3)
C46—C41—C42—C432.4 (5)C86—C81—C82—C832.7 (5)
C4—C41—C42—C43177.2 (3)C8—C81—C82—C83179.8 (3)
C41—C42—C43—C440.8 (5)C81—C82—C83—C840.5 (6)
C42—C43—C44—C451.1 (6)C82—C83—C84—C852.0 (7)
C43—C44—C45—C461.4 (6)C83—C84—C85—C862.2 (7)
C44—C45—C46—C410.2 (6)C84—C85—C86—C810.1 (6)
C42—C41—C46—C452.1 (5)C82—C81—C86—C852.5 (5)
C4—C41—C46—C45176.8 (3)C8—C81—C86—C85179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H12···Br1i0.973.224.094 (3)151
C4—H42···Br1i0.972.963.888 (3)161
C4—H41···Br10.973.194.106 (3)157
C8—H81···Br20.973.063.982 (3)159
C8—H82···Br2ii0.972.883.837 (3)169
C61—H612···Br2ii0.973.154.006 (4)148
C7—H71···Br20.973.184.108 (3)161
C82—H821···Br20.933.204.003 (4)146
C6—H61···Br30.972.873.762 (3)153
C71—H711···Br30.973.053.941 (3)153
C1—H11···Br3i0.973.043.964 (3)160
C43—H431···Br3iii0.933.023.905 (4)160
C2—H21···Br3i0.973.083.886 (3)142
C31—H311···Br3i0.973.213.953 (4)134
C45—H451···Br3iv0.933.223.956 (4)138
C12—H121···Cg1iii0.963.073.791 (15)133
C52—H521···Cg2v0.963.063.735 (15)128
Symmetry codes: (i) y+1, x1, z+1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x+2, y, z; (iv) y+3/2, x1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H28BrN
Mr314.31
Crystal system, space groupTetragonal, P42bc
Temperature (K)293
a, c (Å)22.4411 (4), 13.3749 (2)
V3)6735.6 (2)
Z16
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.582, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
14346, 7591, 5740
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.076, 1.05
No. of reflections7591
No. of parameters325
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.29
Absolute structureFlack (1983)
Absolute structure parameter0.006 (8)

Computer programs: COLLECT (Nonius, 1997), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994) and SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C11.523 (4)N2—C51.512 (3)
N1—C21.521 (4)N2—C61.518 (3)
N1—C31.521 (4)N2—C71.527 (3)
N1—C41.535 (4)N2—C81.534 (3)
C1—C111.519 (5)C5—C511.517 (4)
C11—C121.511 (5)C51—C521.508 (4)
C2—C211.504 (4)C6—C611.509 (4)
C21—C221.515 (5)C61—C621.521 (5)
C3—C311.522 (5)C7—C711.519 (4)
C31—C321.496 (5)C71—C721.509 (4)
C1—N1—C2108.6 (2)C5—N2—C6108.8 (2)
C1—N1—C3112.0 (2)C5—N2—C7111.6 (2)
C2—N1—C3108.5 (2)C6—N2—C7108.2 (2)
C1—N1—C4107.9 (2)C5—N2—C8108.7 (2)
C2—N1—C4111.6 (2)C6—N2—C8111.2 (2)
C3—N1—C4108.2 (2)C7—N2—C8108.4 (2)
N1—C1—C11115.9 (2)N2—C5—C51115.7 (2)
C12—C11—C1108.8 (3)C52—C51—C5109.4 (3)
C21—C2—N1115.9 (3)C61—C6—N2116.4 (3)
C2—C21—C22109.0 (3)C6—C61—C62109.1 (3)
C31—C3—N1115.7 (2)C71—C7—N2116.2 (2)
C32—C31—C3110.5 (3)C72—C71—C7108.9 (3)
C41—C4—N1115.5 (2)C81—C8—N2115.3 (2)
C42—C41—C46117.6 (3)C82—C81—C86118.5 (3)
C2—N1—C1—C11171.5 (3)C6—N2—C5—C51174.2 (2)
C3—N1—C1—C1151.7 (4)C7—N2—C5—C5154.9 (3)
C4—N1—C1—C1167.3 (4)C8—N2—C5—C5164.6 (3)
N1—C1—C11—C12175.5 (3)N2—C5—C51—C52178.2 (3)
C1—N1—C2—C2153.7 (4)C5—N2—C6—C6151.9 (4)
C3—N1—C2—C21175.7 (3)C7—N2—C6—C61173.2 (3)
C4—N1—C2—C2165.1 (4)C8—N2—C6—C6167.8 (3)
N1—C2—C21—C22176.9 (3)N2—C6—C61—C62164.7 (3)
C1—N1—C3—C3152.9 (4)C5—N2—C7—C7149.4 (3)
C2—N1—C3—C3167.0 (4)C6—N2—C7—C7170.2 (3)
C4—N1—C3—C31171.7 (3)C8—N2—C7—C71169.1 (3)
N1—C3—C31—C32169.4 (3)N2—C7—C71—C72171.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H42···Br1i0.972.963.888 (3)161
C4—H41···Br10.973.194.106 (3)157
C8—H81···Br20.973.063.982 (3)159
C8—H82···Br2ii0.972.883.837 (3)169
C61—H612···Br2ii0.973.154.006 (4)148
C7—H71···Br20.973.184.108 (3)161
C82—H821···Br20.933.204.003 (4)146
C6—H61···Br30.972.873.762 (3)153
C71—H711···Br30.973.053.941 (3)153
C1—H11···Br3i0.973.043.964 (3)160
C43—H431···Br3iii0.933.023.905 (4)160
C2—H21···Br3i0.973.083.886 (3)142
C31—H311···Br3i0.973.213.953 (4)134
C12—H121···Cg1iii0.963.073.791 (15)133
C52—H521···Cg2iv0.963.063.735 (15)128
Symmetry codes: (i) y+1, x1, z+1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x+2, y, z; (iv) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds