Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, (η6-p-cymene)[(di­phenyl­phos­phino­fluorido)­tri­fluoro­borato-κ2P,F][(di­phenyl­phos­phin­oyl­fluorido)­tri­fluoro­borato-κO]ruthenium(II), [Ru(C12H10BF4OP)(C12H10BF4P)(C10H14)], the hybrid Ph2PFBF3 ligand is bidentate (κ2P,F) and thus forms a five-membered chelate ring. The Ph2PFBF3 ligand is unusually ligated to the metal through the P atom of the PPh2 moiety and through one of the F atoms of the BF4 moiety. The phosphine-oxidized Ph2P(O)FBF3 ligand is bonded to the Ru atom via the O atom. The Ru centre has a pseudo-octahedral coordination environment, in which the phenyl ring occupies three of the corners of the distorted octahedron. The Ru—O, Ru—F and Ru—P bond lengths are 2.107 (3), 2.135 (4) and 2.3145 (15) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103005808/gg1160sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103005808/gg1160Isup2.hkl
Contains datablock I

CCDC reference: 211736

Comment top

The chemistry of half-sandwich (η6-arene)ruthenium(II) complexes is currently of much interest because of the numerous applications in new catalytic systems for a variety of organic transformation reactions (Noyori, 1994). Ruthenium-based catalytic systems are found to be effective in the hydrogenation of ketones for the synthesis of chiral alcohols (Bernard et al., 2000). Studies by Noyori and coworkers have shown that the transfer hydrogenation of prochiral ketones can be achieved by high enantiomeric excess by tailoring the chiral ruthenium catalysts; accordingly, investigations of chiral ruthenium catalysts are now common (Yamakawa et al., 2000). In the course of our research on ruthenium complexes with S and Se donor ligands, we are interested in preparing some new bulk ligands by the hybridization of different atoms (Zhang et al., 2002). The most intriguing properties of alkylphosphine ligands are related to the strong σ-donor P atom and electron-donating alkyl groups, which can stabilize the 16 e ruthenium species ?so that they? convert to their 18 e congeners by oxidative addition at the metal centre (Halpern, 1970). Tetrafluoroborate as a ligand in the reactive complexes can be easily replaced by π and σ donors, suggesting that it is a very good leaving group (Appel & Beck, 1985). Thus, we attempted the reaction of Ph2PCl and Ag[BF4] in order to isolate the hybrid phosphine-fluoro ligand Ph2PFBF3 with one P—F bond (Scheme 1). In order to reveal coordination modes of this ligand in the ruthenium complexes, we prepared the title complex, (I), and carried out a diffraction analysis. In this paper, we report our initial findings on the structure of [(η6-p-cymene)Ru(η2-Ph2PFBF3—P,F)(η1-Ph2P(O)FBF3—O)]. To our knowledge, this is the first structural example of a transition metal complex containing the hybrid ligand Ph2PFBF3.

In the neutral complex, (I), the Ru atom exhibits a distorted octahedral coordination sphere, with the phenyl ring of p-cymene ligand formally occupying three octahedral sites. The structure of (I) is depicted in Fig. 1. The O atom of Ph2P(O)FBF3 and the Ph2PFBF3 chelate bidentate ligand, bonded to the metal center through the P? and F atoms complete the coordination sphere, which may infer that the Ru atom exhibits a chiral centre. The hybrid Ph2PFBF3 ligand is unusually η2-ligated to the metal by the P atom in the PPh2 moiety and one of the F atoms in the BF4 moiety. This novel coordination mode is the first example of a ruthenium complex system. Ph2PFBF3 acts as a bidentate ligand to form a five-membered chelate ring with a bite angle of 78.48 (12)°, which is obviously more acute than that found for the Me2PCHCHPMe2 bidentate phosphino ligand in Ru(II) complexes (Field et al., 1994). The Ru—C(ring) distances span the range 2.158 (5)–2.245 (7) Å and agree well with those found in other p-(cymene)ruthenium(II) complexes, [(p-cymene)RuCl(Me2PCH2CH2SMe)][BPh4] [2.198 (5)–2.267 (6) Å; Suzuki et al., 1996] and [(p-cymene)RuCl2(PH2Cy) [2.175 (4)—2.238 (5) Å; Van der Maelen Uría et al., 1994]. Note that the longest Ru—C bond [Ru(1)—C(6) = 2.245 (7) Å] is trans with respect to the P atom, which results from the strong trans influence of the PPh2 group. The Ru—O bond length of 2.107 (3) Å in (I) indicates considerable single- bond character. The Ru—F bond length of 2.135 (4) Å in (I) is significantly ? compared with those in cis-[Ru(dmpe)2F(F···HF)] [2.101 (3) and 2.168 (3) Å] (Kirkham et al., 2001). The Ru—P bond distance of 2.3147 (15) Å is normal, and also agrees excellently with those in other related complexes (Suzuki et al., 1996; Van der Maelen Uría et al., 1994).

The P2—F5 bond length of the coordinated chelate ligand [1.582 (4) Å] is slightly longer than the P1—F1 bond length of the terminal coordination ligand [1.552 (4) Å]. There are three types of B—F bonds in (I), viz. the B-µ-F(P) bond [B2—F5 = 1.485 (8) Å and B1—F1 = 1.472 (8) Å], the B-µ-F(Ru) bond [B2—F6 = 1.452 (8) Å] and the terminal B—F bond [1.344 (9)—1.399 (8) Å]. On the other hand, the B2—F5—P2 angle [120.2 (4)°] is smaller than the B1—F1—P1 angle [134.8 (4)°] and that in the reported complex [Mo(η5-C9H7)(CO)2{P-η3-{tBu}CPC(tBu)PFBF3}] [131.1 (6)°; Hitchcock et al., 1994]. Thus, it is reasonable ?to say? that the coordination of the Ph2PFBF3 chleate ligand to the Ru atom results in the elongation of the P—F and B-µ-F(P) bonds and the reduction of the B—F—P angle (Barthazy et al., 2000). Angles involving the P atoms reflect a tetrahedral geometry, and it is also noteworthy that the Ru—P—C and O—P—F angles are larger than the F—P—C angles.

Experimental top

Preparations of ligands (see Reaction Scheme): Treatment of Ph2PCl in dry CH2Cl2 with an equal equivalent of Ag[BF4] resulted in a light yellow solution with a white precipitate. The solution was filtered to remove the AgCl precipitate and the solvent was pumped off to give a yellow oily product, viz. Ph2PFBF3. Spectroscopic analysis; 1H NMR (CDCl3, p.p.m.): δ −7.12—7.75 (m, Ph); 31P{1H} NMR (CDCl3, p.p.m.): δ −76.5; 19F NMR (CDCl3, p.p.m.): δ −187.2 (d, J = 118 Hz, PFB), −319.3 (BF3); MS (EI): m/z 273 (M+ + 1); IR (Nujol, cm−1): ν (B—F) 1154(s), 901(s), 856(s) and 712(m). The oily Ph2PFBF3 was dissolved in CH2Cl2, affording the oxo-phosphino compound Ph2P(O)FBF3. Spectrocopic analysis; 1H NMR (CDCl3, p.p.m.): δ 7.09—7.77 (m, Ph); 31P{1H} NMR (CDCl3, p.p.m.): δ 84.1; 19F NMR (CDCl3, p.p.m.): δ −164.6 (d, J = 96 Hz, PFB), −302.7 (BF3); MS (EI): m/z 288 (M+); IR (Nujol, cm−1): ν(B—F) 1148(s), 892(s), 843(s) and 716(m); ν(P=O) 1016(versus).

Synthesis of (I): Ph2PFBF3 (272 mg, 1.0 mmol) was dissolved in CH2Cl2 (5 ml) and the solution was added to a flask containing a solution of [(p-cymene)Ru(acetone)3][BF4] (248 mg, 0.5 mmol) in CH2Cl2 (5 ml). The solution was stirred for 2 h and the solvent was removed in vacuo to 5 ml. Hexane (20 ml) was added to the flask to give an orange precipitate. Recrystallization from CH2Cl2/hexane afforded orange prismatic crystals.

Refinement top

H atoms were treated as riding atoms using the normal SHELXTL parameters.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective view of (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
(η6-p-cymene)[(η2-diphenylphosphino-tetrafluroborate-P,F) (η1-diphenylphosphinoyl-tetrafluroborate-O)]ruthenium(II) top
Crystal data top
C34H34B2F8OP2RuF(000) = 1608
Mr = 795.24Dx = 1.550 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3433 reflections
a = 17.7179 (13) Åθ = 2.2–25.6°
b = 11.2784 (8) ŵ = 0.63 mm1
c = 18.4455 (13) ÅT = 294 K
β = 112.410 (2)°Prism, orange
V = 3407.6 (4) Å30.22 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6382 independent reflections
Radiation source: fine-focus sealed tube5757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
h = 2121
Tmin = 0.294, Tmax = 0.401k = 1113
10808 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
6382 reflectionsΔρmax = 1.07 e Å3
439 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C34H34B2F8OP2RuV = 3407.6 (4) Å3
Mr = 795.24Z = 4
Monoclinic, CcMo Kα radiation
a = 17.7179 (13) ŵ = 0.63 mm1
b = 11.2784 (8) ÅT = 294 K
c = 18.4455 (13) Å0.22 × 0.18 × 0.15 mm
β = 112.410 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6382 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
5757 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 0.401Rint = 0.028
10808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.098Δρmax = 1.07 e Å3
S = 1.08Δρmin = 0.28 e Å3
6382 reflectionsAbsolute structure: (Flack, 1983)
439 parametersAbsolute structure parameter: 0.03 (3)
0 restraints
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 20 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Coverage of the unique set is over 99% complete.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru11.008029 (14)0.91034 (3)0.753220 (14)0.03492 (10)
P11.03990 (9)1.21096 (12)0.74676 (8)0.0453 (3)
P20.90917 (9)0.89087 (13)0.62816 (9)0.0363 (3)
O11.0010 (3)1.0930 (3)0.7276 (2)0.0544 (10)
F11.1286 (2)1.2119 (4)0.8090 (2)0.0808 (11)
F21.1932 (2)1.0854 (3)0.7499 (2)0.0778 (11)
F31.2367 (3)1.0962 (4)0.8809 (3)0.0987 (17)
F41.2568 (3)1.2490 (4)0.8124 (3)0.1009 (14)
F50.9556 (2)0.8941 (3)0.5700 (2)0.0667 (9)
F61.0804 (2)0.9114 (3)0.6835 (3)0.0681 (12)
F71.0638 (3)0.7633 (4)0.5913 (3)0.0968 (14)
F81.0751 (3)0.9530 (5)0.5575 (2)0.0968 (15)
B11.2064 (4)1.1590 (7)0.8140 (4)0.0581 (17)
B21.0458 (4)0.8819 (7)0.6006 (4)0.0567 (17)
C10.9074 (5)0.9995 (7)0.8661 (4)0.083 (2)
H1A0.91580.99620.92060.124*
H1B0.85260.97530.83490.124*
H1C0.91581.07920.85250.124*
C20.9665 (4)0.9181 (6)0.8507 (4)0.061 (2)
C30.9393 (4)0.8108 (5)0.8073 (3)0.0550 (14)
H30.88410.79140.78790.066*
C40.9947 (4)0.7350 (5)0.7937 (3)0.0527 (14)
H40.97590.66560.76530.063*
C51.0784 (4)0.7615 (5)0.8221 (3)0.0505 (13)
C61.1059 (4)0.8638 (6)0.8694 (4)0.0527 (16)
H61.16150.87980.89220.063*
C71.0520 (4)0.9390 (5)0.8818 (3)0.0570 (15)
H71.07191.00660.91180.068*
C81.1357 (4)0.6794 (6)0.8043 (4)0.0732 (19)
H81.11160.65810.74860.088*
C91.1451 (7)0.5656 (7)0.8535 (7)0.130 (4)
H9A1.18510.57850.90540.196*
H9B1.16250.50150.82920.196*
H9C1.09370.54600.85650.196*
C101.2201 (6)0.7326 (9)0.8217 (7)0.122 (4)
H10A1.21460.80490.79270.184*
H10B1.25270.67740.80660.184*
H10C1.24600.74900.87680.184*
C110.9849 (3)1.3030 (5)0.7890 (3)0.0514 (14)
C120.9190 (4)1.3693 (6)0.7414 (4)0.0675 (17)
H120.90491.37090.68740.081*
C130.8738 (5)1.4338 (7)0.7752 (5)0.086 (2)
H130.82991.47990.74410.103*
C140.8942 (6)1.4291 (8)0.8536 (5)0.088 (2)
H140.86321.47140.87570.106*
C150.9581 (6)1.3647 (8)0.9004 (5)0.086 (2)
H150.97061.36160.95410.103*
C161.0046 (5)1.3041 (6)0.8684 (4)0.069 (2)
H161.05041.26280.90110.082*
C171.0381 (4)1.2780 (5)0.6577 (4)0.0501 (15)
C180.9862 (6)1.2374 (7)0.5867 (4)0.095 (3)
H180.95341.17210.58490.114*
C190.9808 (9)1.2895 (9)0.5182 (5)0.133 (5)
H190.94171.26450.47070.160*
C201.0315 (10)1.3751 (12)0.5202 (7)0.131 (5)
H201.03351.40220.47340.157*
C211.0812 (7)1.4258 (11)0.5887 (9)0.137 (5)
H211.11081.49400.58890.164*
C221.0865 (6)1.3720 (8)0.6589 (6)0.103 (3)
H221.12331.40070.70650.124*
C230.8352 (3)1.0094 (4)0.5970 (3)0.0417 (11)
C240.8079 (4)1.0628 (7)0.6481 (4)0.069 (2)
H240.82631.03750.70000.083*
C250.7511 (5)1.1574 (7)0.6223 (5)0.082 (2)
H250.73281.19500.65740.099*
C260.7240 (4)1.1925 (6)0.5474 (5)0.075 (2)
H260.68671.25450.53070.090*
C270.7498 (5)1.1401 (7)0.4969 (4)0.081 (2)
H270.73081.16610.44520.097*
C280.8054 (4)1.0455 (6)0.5206 (4)0.0682 (17)
H280.82191.00760.48430.082*
C290.8497 (3)0.7549 (4)0.6028 (3)0.0387 (10)
C300.7750 (4)0.7450 (6)0.6097 (4)0.0586 (15)
H300.75450.80940.62770.070*
C310.7306 (4)0.6421 (7)0.5904 (4)0.0743 (19)
H310.68110.63610.59660.089*
C320.7595 (5)0.5500 (6)0.5625 (4)0.0723 (19)
H320.72840.48130.54730.087*
C330.8338 (5)0.5557 (6)0.5563 (4)0.076 (2)
H330.85360.49060.53810.092*
C340.8791 (4)0.6581 (5)0.5770 (3)0.0627 (16)
H340.93010.66170.57350.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03313 (17)0.03417 (17)0.03948 (18)0.0038 (2)0.01610 (13)0.0002 (2)
P10.0444 (7)0.0391 (7)0.0533 (8)0.0020 (6)0.0198 (6)0.0037 (6)
P20.0338 (8)0.0366 (7)0.0403 (8)0.0036 (6)0.0161 (6)0.0012 (6)
O10.059 (2)0.0356 (18)0.064 (3)0.0019 (17)0.019 (2)0.0023 (15)
F10.062 (2)0.087 (3)0.090 (3)0.0006 (19)0.024 (2)0.019 (2)
F20.056 (2)0.095 (3)0.092 (3)0.0144 (19)0.039 (2)0.036 (2)
F30.089 (4)0.105 (4)0.090 (4)0.030 (3)0.021 (3)0.017 (3)
F40.072 (3)0.093 (3)0.153 (4)0.040 (2)0.060 (3)0.034 (3)
F50.057 (2)0.077 (2)0.069 (2)0.0075 (17)0.0288 (18)0.0010 (18)
F60.049 (2)0.082 (3)0.080 (3)0.0043 (17)0.031 (2)0.0038 (19)
F70.066 (2)0.094 (3)0.128 (4)0.012 (2)0.035 (2)0.048 (3)
F80.074 (3)0.160 (4)0.067 (2)0.047 (3)0.038 (2)0.006 (2)
B10.039 (4)0.066 (5)0.070 (5)0.007 (3)0.023 (3)0.014 (4)
B20.043 (4)0.079 (5)0.056 (4)0.010 (3)0.027 (3)0.006 (3)
C10.081 (5)0.113 (6)0.072 (4)0.025 (4)0.048 (4)0.004 (4)
C20.062 (5)0.083 (5)0.051 (4)0.008 (3)0.035 (4)0.012 (3)
C30.050 (3)0.064 (4)0.056 (3)0.011 (3)0.027 (3)0.018 (3)
C40.064 (4)0.045 (3)0.047 (3)0.008 (3)0.019 (3)0.010 (2)
C50.055 (3)0.044 (3)0.049 (3)0.003 (2)0.016 (3)0.007 (2)
C60.045 (4)0.062 (4)0.045 (3)0.004 (3)0.011 (3)0.001 (3)
C70.073 (4)0.061 (4)0.035 (3)0.015 (3)0.017 (3)0.001 (2)
C80.073 (5)0.069 (4)0.070 (4)0.023 (3)0.019 (4)0.009 (3)
C90.152 (10)0.070 (6)0.160 (10)0.044 (6)0.048 (8)0.025 (6)
C100.092 (7)0.115 (8)0.178 (10)0.042 (6)0.071 (7)0.021 (7)
C110.044 (3)0.040 (3)0.066 (4)0.004 (2)0.017 (3)0.009 (2)
C120.066 (4)0.074 (4)0.065 (4)0.018 (3)0.028 (3)0.002 (3)
C130.064 (5)0.091 (6)0.101 (6)0.026 (4)0.029 (4)0.009 (4)
C140.086 (6)0.100 (6)0.093 (6)0.003 (5)0.050 (5)0.029 (5)
C150.102 (7)0.096 (6)0.068 (5)0.009 (5)0.042 (5)0.012 (4)
C160.067 (5)0.077 (5)0.060 (4)0.006 (4)0.022 (4)0.010 (4)
C170.057 (4)0.039 (3)0.066 (4)0.007 (3)0.036 (3)0.002 (3)
C180.158 (8)0.070 (5)0.056 (4)0.023 (5)0.040 (5)0.003 (3)
C190.245 (15)0.074 (6)0.085 (6)0.015 (7)0.068 (8)0.006 (5)
C200.182 (13)0.131 (11)0.122 (9)0.045 (9)0.106 (10)0.051 (8)
C210.103 (8)0.126 (9)0.198 (13)0.009 (6)0.074 (9)0.090 (10)
C220.087 (6)0.099 (6)0.114 (7)0.030 (5)0.028 (5)0.043 (5)
C230.033 (3)0.036 (3)0.053 (3)0.0016 (19)0.012 (2)0.001 (2)
C240.065 (5)0.081 (5)0.062 (4)0.030 (4)0.025 (4)0.003 (3)
C250.069 (5)0.085 (5)0.085 (5)0.033 (4)0.019 (4)0.020 (4)
C260.056 (4)0.054 (4)0.096 (5)0.014 (3)0.007 (4)0.005 (4)
C270.088 (5)0.080 (5)0.064 (4)0.016 (4)0.017 (4)0.027 (4)
C280.073 (5)0.075 (4)0.056 (4)0.019 (4)0.023 (3)0.008 (3)
C290.039 (3)0.037 (2)0.039 (2)0.0073 (19)0.012 (2)0.005 (2)
C300.054 (3)0.062 (4)0.067 (4)0.023 (3)0.031 (3)0.008 (3)
C310.059 (4)0.083 (5)0.076 (4)0.030 (4)0.020 (3)0.001 (4)
C320.077 (5)0.054 (4)0.070 (4)0.026 (3)0.010 (4)0.000 (3)
C330.095 (6)0.051 (4)0.080 (5)0.012 (4)0.031 (4)0.021 (3)
C340.059 (4)0.064 (4)0.072 (4)0.013 (3)0.032 (3)0.013 (3)
Geometric parameters (Å, º) top
Ru1—O12.107 (3)C10—H10B0.9600
Ru1—F62.135 (4)C10—H10C0.9600
Ru1—C42.159 (5)C11—C161.370 (9)
Ru1—C32.159 (5)C11—C121.383 (8)
Ru1—C52.186 (5)C12—C131.392 (10)
Ru1—C22.189 (6)C12—H120.9300
Ru1—C72.220 (5)C13—C141.350 (11)
Ru1—C62.245 (6)C13—H130.9300
Ru1—P22.3145 (15)C14—C151.345 (12)
P1—O11.478 (4)C14—H140.9300
P1—F11.554 (4)C15—C161.366 (10)
P1—C111.792 (6)C15—H150.9300
P1—C171.797 (6)C16—H160.9300
P2—F51.581 (4)C17—C221.359 (10)
P2—C231.806 (5)C17—C181.361 (9)
P2—C291.817 (5)C18—C191.364 (11)
F1—B11.472 (8)C18—H180.9300
F2—B11.389 (8)C19—C201.309 (17)
F3—B11.345 (9)C19—H190.9300
F4—B11.360 (8)C20—C211.360 (17)
F5—B21.485 (8)C20—H200.9300
F6—B21.452 (8)C21—C221.400 (14)
F7—B21.401 (8)C21—H210.9300
F8—B21.364 (8)C22—H220.9300
C1—C21.500 (9)C23—C241.354 (9)
C1—H1A0.9600C23—C281.365 (7)
C1—H1B0.9600C24—C251.418 (9)
C1—H1C0.9600C24—H240.9300
C2—C71.419 (10)C25—C261.339 (10)
C2—C31.430 (9)C25—H250.9300
C3—C41.395 (8)C26—C271.323 (10)
C3—H30.9300C26—H260.9300
C4—C51.403 (8)C27—C281.405 (9)
C4—H40.9300C27—H270.9300
C5—C61.416 (9)C28—H280.9300
C5—C81.501 (9)C29—C341.371 (8)
C6—C71.360 (9)C29—C301.381 (7)
C6—H60.9300C30—C311.370 (8)
C7—H70.9300C30—H300.9300
C8—C101.526 (12)C31—C321.343 (10)
C8—C91.544 (11)C31—H310.9300
C8—H8A0.9800C32—C331.365 (11)
C9—H9A0.9600C32—H320.9300
C9—H9B0.9600C33—C341.375 (9)
C9—H9C0.9600C33—H330.9300
C10—H10A0.9600C34—H340.9300
O1—Ru1—F681.78 (15)C5—C6—H6119.6
O1—Ru1—C4165.64 (19)Ru1—C6—H6133.3
F6—Ru1—C4112.55 (18)C6—C7—C2122.6 (6)
O1—Ru1—C3128.1 (2)C6—C7—Ru173.3 (4)
F6—Ru1—C3148.8 (2)C2—C7—Ru170.1 (3)
C4—Ru1—C337.7 (2)C6—C7—H7118.7
O1—Ru1—C5148.56 (19)C2—C7—H7118.7
F6—Ru1—C590.82 (19)Ru1—C7—H7130.9
C4—Ru1—C537.7 (2)C5—C8—C10113.7 (6)
C3—Ru1—C568.2 (2)C5—C8—C9108.3 (7)
O1—Ru1—C297.8 (2)C10—C8—C9109.0 (7)
F6—Ru1—C2164.1 (2)C5—C8—H8A108.6
C4—Ru1—C268.7 (2)C10—C8—H8A108.6
C3—Ru1—C238.4 (2)C9—C8—H8A108.6
C5—Ru1—C281.3 (2)C8—C9—H9A109.5
O1—Ru1—C793.68 (18)C8—C9—H9B109.5
F6—Ru1—C7126.6 (2)H9A—C9—H9B109.5
C4—Ru1—C778.7 (2)C8—C9—H9C109.5
C3—Ru1—C767.2 (2)H9A—C9—H9C109.5
C5—Ru1—C766.4 (2)H9B—C9—H9C109.5
C2—Ru1—C737.5 (3)C8—C10—H10A109.5
O1—Ru1—C6113.6 (2)C8—C10—H10B109.5
F6—Ru1—C698.8 (2)H10A—C10—H10B109.5
C4—Ru1—C666.6 (2)C8—C10—H10C109.5
C3—Ru1—C678.7 (2)H10A—C10—H10C109.5
C5—Ru1—C637.2 (2)H10B—C10—H10C109.5
C2—Ru1—C666.7 (3)C16—C11—C12118.8 (6)
C7—Ru1—C635.5 (2)C16—C11—P1120.7 (5)
O1—Ru1—P284.93 (11)C12—C11—P1120.4 (5)
F6—Ru1—P278.48 (12)C11—C12—C13119.3 (6)
C4—Ru1—P296.71 (16)C11—C12—H12120.4
C3—Ru1—P293.74 (16)C13—C12—H12120.4
C5—Ru1—P2123.63 (15)C14—C13—C12119.6 (7)
C2—Ru1—P2117.3 (2)C14—C13—H13120.2
C7—Ru1—P2154.51 (18)C12—C13—H13120.2
C6—Ru1—P2160.86 (18)C15—C14—C13121.6 (8)
O1—P1—F1115.5 (2)C15—C14—H14119.2
O1—P1—C11110.1 (3)C13—C14—H14119.2
F1—P1—C11103.9 (2)C14—C15—C16119.5 (7)
O1—P1—C17108.4 (3)C14—C15—H15120.2
F1—P1—C17109.4 (3)C16—C15—H15120.2
C11—P1—C17109.3 (3)C11—C16—C15121.1 (7)
F5—P2—C23105.6 (2)C11—C16—H16119.5
F5—P2—C29104.2 (2)C15—C16—H16119.5
C23—P2—C29105.3 (2)C22—C17—C18118.0 (7)
F5—P2—Ru1106.39 (16)C22—C17—P1121.5 (6)
C23—P2—Ru1115.38 (17)C18—C17—P1120.5 (5)
C29—P2—Ru1118.74 (17)C17—C18—C19121.9 (8)
P1—O1—Ru1147.6 (3)C17—C18—H18119.0
B1—F1—P1134.7 (4)C19—C18—H18119.0
B2—F5—P2120.2 (4)C20—C19—C18119.1 (11)
B2—F6—Ru1121.5 (3)C20—C19—H19120.4
F3—B1—F4112.2 (6)C18—C19—H19120.4
F3—B1—F2110.2 (6)C19—C20—C21122.1 (10)
F4—B1—F2109.1 (6)C19—C20—H20119.0
F3—B1—F1107.9 (6)C21—C20—H20119.0
F4—B1—F1107.6 (6)C20—C21—C22117.9 (10)
F2—B1—F1109.8 (5)C20—C21—H21121.0
F8—B2—F7109.5 (6)C22—C21—H21121.0
F8—B2—F6112.2 (5)C17—C22—C21120.2 (10)
F7—B2—F6108.9 (6)C17—C22—H22119.9
F8—B2—F5108.5 (5)C21—C22—H22119.9
F7—B2—F5107.7 (5)C24—C23—C28119.1 (5)
F6—B2—F5109.9 (5)C24—C23—P2121.1 (5)
C2—C1—H1A109.5C28—C23—P2119.8 (4)
C2—C1—H1B109.5C23—C24—C25119.8 (7)
H1A—C1—H1B109.5C23—C24—H24120.1
C2—C1—H1C109.5C25—C24—H24120.1
H1A—C1—H1C109.5C26—C25—C24119.9 (7)
H1B—C1—H1C109.5C26—C25—H25120.1
C7—C2—C3116.5 (6)C24—C25—H25120.1
C7—C2—C1122.5 (7)C27—C26—C25120.7 (6)
C3—C2—C1120.9 (7)C27—C26—H26119.6
C7—C2—Ru172.4 (4)C25—C26—H26119.6
C3—C2—Ru169.7 (3)C26—C27—C28120.7 (6)
C1—C2—Ru1131.1 (5)C26—C27—H27119.7
C4—C3—C2120.6 (6)C28—C27—H27119.7
C4—C3—Ru171.1 (3)C23—C28—C27119.8 (6)
C2—C3—Ru171.9 (3)C23—C28—H28120.1
C4—C3—H3119.7C27—C28—H28120.1
C2—C3—H3119.7C34—C29—C30118.1 (5)
Ru1—C3—H3129.8C34—C29—P2120.1 (4)
C3—C4—C5121.2 (5)C30—C29—P2121.7 (4)
C3—C4—Ru171.2 (3)C31—C30—C29121.4 (6)
C5—C4—Ru172.2 (3)C31—C30—H30119.3
C3—C4—H4119.4C29—C30—H30119.3
C5—C4—H4119.4C32—C31—C30119.3 (7)
Ru1—C4—H4129.7C32—C31—H31120.4
C4—C5—C6118.1 (6)C30—C31—H31120.4
C4—C5—C8119.6 (5)C31—C32—C33121.1 (6)
C6—C5—C8122.3 (6)C31—C32—H32119.5
C4—C5—Ru170.1 (3)C33—C32—H32119.5
C6—C5—Ru173.6 (4)C32—C33—C34119.7 (7)
C8—C5—Ru1129.0 (4)C32—C33—H33120.1
C7—C6—C5120.8 (6)C34—C33—H33120.1
C7—C6—Ru171.3 (4)C29—C34—C33120.4 (6)
C5—C6—Ru169.1 (3)C29—C34—H34119.8
C7—C6—H6119.6C33—C34—H34119.8

Experimental details

Crystal data
Chemical formulaC34H34B2F8OP2Ru
Mr795.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)294
a, b, c (Å)17.7179 (13), 11.2784 (8), 18.4455 (13)
β (°) 112.410 (2)
V3)3407.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.294, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
10808, 6382, 5757
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.08
No. of reflections6382
No. of parameters439
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.28
Absolute structure(Flack, 1983)
Absolute structure parameter0.03 (3)

Computer programs: SMART (Bruker, 1998), SMART, SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ru1—O12.107 (3)P1—F11.554 (4)
Ru1—F62.135 (4)P2—F51.581 (4)
Ru1—C42.159 (5)F1—B11.472 (8)
Ru1—C32.159 (5)F2—B11.389 (8)
Ru1—C52.186 (5)F3—B11.345 (9)
Ru1—C22.189 (6)F4—B11.360 (8)
Ru1—C72.220 (5)F5—B21.485 (8)
Ru1—C62.245 (6)F6—B21.452 (8)
Ru1—P22.3145 (15)F7—B21.401 (8)
P1—O11.478 (4)F8—B21.364 (8)
O1—Ru1—F681.78 (15)F1—P1—C11103.9 (2)
O1—Ru1—C4165.64 (19)O1—P1—C17108.4 (3)
F6—Ru1—C4112.55 (18)F1—P1—C17109.4 (3)
O1—Ru1—C3128.1 (2)F5—P2—Ru1106.39 (16)
F6—Ru1—C3148.8 (2)C23—P2—Ru1115.38 (17)
O1—Ru1—C5148.56 (19)C29—P2—Ru1118.74 (17)
F6—Ru1—C590.82 (19)P1—O1—Ru1147.6 (3)
O1—Ru1—C297.8 (2)B1—F1—P1134.7 (4)
F6—Ru1—C2164.1 (2)B2—F5—P2120.2 (4)
O1—Ru1—C793.68 (18)B2—F6—Ru1121.5 (3)
F6—Ru1—C7126.6 (2)F3—B1—F4112.2 (6)
O1—Ru1—C6113.6 (2)F3—B1—F2110.2 (6)
F6—Ru1—C698.8 (2)F4—B1—F2109.1 (6)
O1—Ru1—P284.93 (11)F3—B1—F1107.9 (6)
F6—Ru1—P278.48 (12)F4—B1—F1107.6 (6)
C4—Ru1—P296.71 (16)F2—B1—F1109.8 (5)
C3—Ru1—P293.74 (16)F8—B2—F7109.5 (6)
C5—Ru1—P2123.63 (15)F8—B2—F6112.2 (5)
C2—Ru1—P2117.3 (2)F7—B2—F6108.9 (6)
C7—Ru1—P2154.51 (18)F8—B2—F5108.5 (5)
C6—Ru1—P2160.86 (18)F7—B2—F5107.7 (5)
O1—P1—F1115.5 (2)F6—B2—F5109.9 (5)
O1—P1—C11110.1 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds