Download citation
Download citation
link to html
The crystal structure of pomiferin, 3-(3,4-di­hydroxy­phenyl)-5-hydroxy-8,8-di­methyl-6-(3-methyl­but-2-enyl)-4H,8H-pyrano[2,3-h]­chromen-4-one, C25H24O6, has been determined. The benzo­pyran­one ring system is nearly planar and the dihedral angle between the phenyl ring and the benzo­pyran­one moiety is 40.85 (4)°. The crystal structure is stabilized by a one-dimensional chain of inter- and intramolecular O—H...O hydrogen bonds, with O...O distances in the range 2.5546 (15)–2.7999 (16) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002300/gg1154sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002300/gg1154Isup2.hkl
Contains datablock I

CCDC reference: 208018

Comment top

The title compound, (I), was originally isolated from the fruit of Maclura pomifera Balf., Moraceae, the Osage orange, a hardwood tree native to the Southwestern United States (Wolfrom et al., 1946). Several flavonoids have also been isolated from the root bark (Delle Monache et al., 1984) and heartwood (Deshpande et al., 1973; Gerber et al., 1986) of the plant, while xanthones (Wolfrom et al., 1965; Cotterile & Scheimann, 1975) and stilbenes (Gerber et al., 1986) have been obtained from the root bark and the heartwood, respectively. The fruit extract, which contains pomiferin, has displayed interesting antimicrobial activity (Mahmoud, 1981). \sch

The structure of pomiferin, a prenylated isoflavone, has been established by spectroscopic methods (Wolfrom et al., 1946; Delle Monache et al., 1984, 1994). Due to its significant antifungal activity and relatively low toxicity, it has been widely used as the potent proprietary remedy Yeast Ease against candida-type yeast infections. We reisolated the title compound, (I), and have determined its X-ray structure in the course of our work on the biochemistry of prenylated isoflavonoids, which have recently been found to be very interesting compounds because of their potential antioxidative and anticancer activity (Comte et al., 2001).

The main part of the molecule of (I) is the isoflavone molecular fragment, consisting mainly of the six-membered rings A, C and B, where the benzopyranone part of the molecule is fused with ring D to form the tricyclic ring system D/A/C. The benzopyranone fragment A/C and ring B are nearly planar (the average deviations of contributing atoms from the least-squares planes are 0.03 and 0.004 Å, respectively), but the six-membered ring D is in a deformed half-chair conformation, with Cremer-Pople puckering parameters (Cremer & Pople, 1975) Q = 0.417 (2) Å, θ = 112.6 (3)° and ϕ2 = −19.5 (2)°. The dihedral angle between the benzopyranone moiety A/C and the phenyl ring B is 40.85 (4)°. Surprisingly, the most structurally similar compound to (I) in the Cambridge Structural Database (Version?; Allen, 2002) is not an isoflavone, but di-O-methylscandenin (Mehdi & Ravikumar, 1992), a complex derivative of 4-hydroxy-3-phenylcoumarin with a completely different chemical genesis.

The hydroxyl group O4 has a gauche arrangement with respect to the torsion angle H4—O4—C5—C4, giving rise to a short [1.67 (2) Å] intramolecular contact between the H atom of the O4 hydroxyl group and the carbonyl atom O2. Similar structural motifs have also been found in other compounds from natural sources, e.g. two isoflavones from Milletia thonningii (Kingsford-Adaboh et al., 2001) and the prenylated flavones morusine and its dimethylether derivative (Uchida et al., 1996).

In the crystal lattice of (I), the molecular units are linked by a one-dimensional chain of relatively strong inter- and intra molecular O—H···O hydrogen bonds (Fig. 2, Table 2).

Experimental top

Pomiferin, together with other substances, was obtained from the fruits of the Osage orange, Maclura pomifera, by extraction with 95% ethanol. After pre-separation by flash chromatography over a column containing silica gel, pure pomiferin was isolated. The purity was proven using high-performance liquid chromatography (HP1100, DAD detector). The compounds were identified by comparing the melting point and the UV, MS, FT—IR and 1H and 13C NMR spectra. The spectroscopic data agreed with those reported in the literature (Delle Monache et al., 1984, 1994). Crystals of (I) were prepared by vapour diffusion methods, where a saturated solution of pomiferin in ethyl acetate was equilibrated against petroleum ether at room temperature. After four weeks, large yellow crystals were obtained.

Refinement top

The H atoms were freely refined with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a molecular chain. Atoms with the labels a, b and c are at the symmetry positions (x, −y, 1/2 + z), (-x, −y, −z) and (x, −y, z − 1/2), respectively.
3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-enyl)-4H,8H- pyrano[2,3-h]chromen-4-one top
Crystal data top
C25H24O6F(000) = 1776
Mr = 420.44Dx = 1.376 Mg m3
Monoclinic, C2/cMelting point: 470.5(5) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.158 (2) ÅCell parameters from 2773 reflections
b = 13.9891 (10) Åθ = 3.3–26.5°
c = 9.9578 (7) ŵ = 0.10 mm1
β = 91.597 (5)°T = 120 K
V = 4060.2 (5) Å3Prism, yellow
Z = 80.5 × 0.5 × 0.3 mm
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
3409 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Enhance (Oxford Diffraction) monochromatorθmax = 25.8°, θmin = 3.3°
Detector resolution: 16.3 pixels mm-1h = 3535
ω scansk = 1617
11311 measured reflectionsl = 1211
3869 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.035P)2 + 4.P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3869 reflectionsΔρmax = 0.21 e Å3
377 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00147 (19)
Crystal data top
C25H24O6V = 4060.2 (5) Å3
Mr = 420.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.158 (2) ŵ = 0.10 mm1
b = 13.9891 (10) ÅT = 120 K
c = 9.9578 (7) Å0.5 × 0.5 × 0.3 mm
β = 91.597 (5)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
3409 reflections with I > 2σ(I)
11311 measured reflectionsRint = 0.049
3869 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.02Δρmax = 0.21 e Å3
3869 reflectionsΔρmin = 0.17 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25443 (4)0.26241 (7)0.28059 (11)0.0203 (3)
O20.19954 (4)0.00574 (8)0.29658 (12)0.0258 (3)
O30.37567 (4)0.17370 (8)0.58226 (10)0.0200 (3)
O40.26055 (4)0.05153 (8)0.47414 (12)0.0255 (3)
O50.04300 (4)0.07614 (9)0.13712 (11)0.0235 (3)
O60.04357 (4)0.00832 (8)0.11638 (11)0.0226 (3)
C10.21611 (5)0.23798 (12)0.20795 (16)0.0202 (3)
C20.19619 (5)0.15150 (11)0.20635 (15)0.0186 (3)
C30.21569 (5)0.07678 (11)0.29275 (15)0.0187 (3)
C40.25561 (5)0.10398 (11)0.37380 (15)0.0179 (3)
C50.27759 (5)0.03787 (11)0.46253 (15)0.0184 (3)
C60.31707 (5)0.06190 (11)0.53551 (15)0.0188 (3)
C70.33570 (5)0.15245 (11)0.51419 (14)0.0174 (3)
C80.31453 (5)0.22233 (11)0.43204 (15)0.0174 (3)
C90.27460 (5)0.19491 (11)0.36318 (14)0.0174 (3)
C100.33457 (5)0.31758 (11)0.42953 (15)0.0189 (3)
C110.37719 (6)0.32919 (12)0.47675 (15)0.0208 (3)
C120.40561 (5)0.24402 (11)0.51903 (15)0.0199 (3)
C130.42695 (6)0.19634 (13)0.39810 (17)0.0253 (4)
C140.44217 (6)0.26784 (13)0.62517 (17)0.0251 (4)
C150.34097 (5)0.01082 (12)0.62519 (16)0.0213 (3)
C160.37070 (5)0.07565 (11)0.54441 (16)0.0213 (3)
C170.41601 (6)0.08309 (11)0.54912 (16)0.0241 (4)
C180.44000 (7)0.15189 (15)0.4592 (2)0.0372 (5)
C190.44712 (6)0.02738 (16)0.6417 (2)0.0340 (5)
C200.15587 (5)0.13151 (11)0.11695 (15)0.0179 (3)
C210.15403 (6)0.16557 (11)0.01475 (16)0.0208 (3)
C220.11633 (6)0.14755 (12)0.09792 (16)0.0216 (3)
C230.08002 (5)0.09536 (11)0.05191 (15)0.0184 (3)
C240.08127 (5)0.06060 (11)0.07890 (15)0.0175 (3)
C250.11895 (5)0.07757 (11)0.16199 (15)0.0185 (3)
H10.2060 (6)0.2924 (13)0.1571 (17)0.023 (4)*
H40.2349 (7)0.0522 (15)0.416 (2)0.045 (6)*
H50.0222 (8)0.0489 (16)0.096 (2)0.042 (6)*
H60.0475 (8)0.0177 (16)0.196 (2)0.050 (6)*
H100.3169 (6)0.3696 (13)0.3977 (18)0.028 (5)*
H110.3920 (6)0.3900 (13)0.4821 (17)0.023 (4)*
H13A0.4479 (7)0.2421 (14)0.3577 (19)0.031 (5)*
H13B0.4030 (6)0.1757 (13)0.3293 (19)0.029 (5)*
H13C0.4450 (6)0.1400 (14)0.4287 (18)0.029 (5)*
H14A0.4282 (6)0.2958 (13)0.705 (2)0.030 (5)*
H14B0.4598 (6)0.2091 (14)0.6511 (18)0.030 (5)*
H14C0.4645 (7)0.3138 (14)0.5872 (19)0.034 (5)*
H15A0.3586 (6)0.0218 (12)0.6968 (17)0.020 (4)*
H15B0.3171 (6)0.0514 (13)0.6679 (18)0.030 (5)*
H160.3532 (6)0.1148 (13)0.4798 (18)0.025 (5)*
H18A0.4616 (7)0.1162 (15)0.401 (2)0.041 (6)*
H18B0.4174 (8)0.1859 (16)0.397 (2)0.051 (6)*
H18C0.4582 (8)0.1979 (17)0.511 (2)0.054 (7)*
H19A0.4697 (8)0.0125 (17)0.593 (2)0.056 (7)*
H19B0.4660 (8)0.0721 (17)0.700 (2)0.060 (7)*
H19C0.4304 (7)0.0197 (15)0.697 (2)0.042 (6)*
H210.1798 (6)0.2009 (13)0.0458 (18)0.025 (5)*
H220.1154 (6)0.1692 (13)0.1879 (18)0.025 (5)*
H250.1200 (6)0.0516 (12)0.2534 (18)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (6)0.0184 (6)0.0232 (6)0.0009 (4)0.0049 (4)0.0026 (4)
O20.0238 (6)0.0203 (6)0.0328 (7)0.0036 (5)0.0069 (5)0.0041 (5)
O30.0188 (6)0.0223 (6)0.0187 (5)0.0026 (4)0.0026 (4)0.0024 (4)
O40.0218 (6)0.0209 (6)0.0334 (7)0.0048 (5)0.0061 (5)0.0079 (5)
O50.0200 (6)0.0350 (7)0.0154 (5)0.0037 (5)0.0036 (5)0.0008 (5)
O60.0180 (5)0.0328 (7)0.0166 (6)0.0040 (5)0.0032 (4)0.0050 (5)
C10.0176 (8)0.0233 (8)0.0196 (8)0.0034 (6)0.0033 (6)0.0016 (6)
C20.0169 (8)0.0207 (8)0.0182 (8)0.0021 (6)0.0018 (6)0.0012 (6)
C30.0175 (8)0.0201 (8)0.0187 (7)0.0011 (6)0.0025 (6)0.0001 (6)
C40.0156 (7)0.0200 (8)0.0183 (7)0.0018 (6)0.0017 (6)0.0002 (6)
C50.0177 (8)0.0176 (8)0.0202 (8)0.0002 (6)0.0038 (6)0.0018 (6)
C60.0180 (8)0.0213 (8)0.0171 (7)0.0024 (6)0.0022 (6)0.0025 (6)
C70.0144 (7)0.0228 (8)0.0150 (7)0.0004 (6)0.0011 (6)0.0020 (6)
C80.0170 (8)0.0188 (8)0.0164 (7)0.0007 (6)0.0021 (6)0.0004 (6)
C90.0170 (7)0.0186 (8)0.0167 (7)0.0042 (6)0.0012 (6)0.0022 (6)
C100.0215 (8)0.0197 (8)0.0155 (7)0.0019 (7)0.0005 (6)0.0014 (6)
C110.0256 (9)0.0189 (8)0.0180 (8)0.0046 (7)0.0013 (6)0.0000 (6)
C120.0178 (8)0.0221 (8)0.0197 (8)0.0033 (6)0.0003 (6)0.0002 (6)
C130.0231 (9)0.0311 (10)0.0219 (8)0.0022 (8)0.0012 (7)0.0004 (7)
C140.0231 (9)0.0276 (9)0.0243 (9)0.0016 (8)0.0034 (7)0.0024 (7)
C150.0203 (8)0.0236 (8)0.0197 (8)0.0020 (7)0.0015 (6)0.0060 (7)
C160.0219 (8)0.0181 (8)0.0236 (8)0.0020 (6)0.0059 (7)0.0030 (7)
C170.0240 (9)0.0220 (8)0.0263 (9)0.0010 (7)0.0010 (7)0.0079 (7)
C180.0296 (10)0.0333 (11)0.0490 (12)0.0041 (9)0.0083 (9)0.0032 (9)
C190.0210 (9)0.0428 (12)0.0376 (11)0.0040 (8)0.0079 (8)0.0075 (9)
C200.0182 (8)0.0173 (8)0.0182 (7)0.0041 (6)0.0008 (6)0.0027 (6)
C210.0196 (8)0.0216 (8)0.0215 (8)0.0002 (7)0.0025 (6)0.0007 (6)
C220.0245 (8)0.0256 (9)0.0148 (8)0.0034 (7)0.0004 (6)0.0024 (6)
C230.0188 (8)0.0207 (8)0.0155 (7)0.0037 (6)0.0040 (6)0.0025 (6)
C240.0177 (8)0.0177 (8)0.0172 (7)0.0020 (6)0.0015 (6)0.0016 (6)
C250.0190 (8)0.0214 (8)0.0149 (8)0.0029 (6)0.0014 (6)0.0006 (6)
Geometric parameters (Å, º) top
O1—C11.3578 (18)C12—C131.524 (2)
O1—C91.3736 (17)C13—H13A0.98 (2)
O2—C31.2477 (19)C13—H13B1.008 (19)
O3—C71.3645 (18)C13—H13C0.991 (19)
O3—C121.4686 (18)C14—H14A0.98 (2)
O4—C51.3519 (18)C14—H14B1.000 (19)
O4—H40.93 (2)C14—H14C1.00 (2)
O5—C231.3809 (18)C15—C161.503 (2)
O5—H50.83 (2)C15—H15A0.979 (17)
O6—C241.3803 (18)C15—H15B1.001 (19)
O6—H60.88 (2)C16—C171.325 (2)
C1—C21.342 (2)C16—H160.978 (18)
C1—H10.957 (18)C17—C191.494 (2)
C2—C31.459 (2)C17—C181.501 (3)
C2—C201.481 (2)C18—H18A1.00 (2)
C3—C41.449 (2)C18—H18B1.01 (2)
C4—C91.393 (2)C18—H18C0.98 (2)
C4—C51.420 (2)C19—H19A1.00 (2)
C5—C61.386 (2)C19—H19B1.00 (2)
C6—C71.397 (2)C19—H19C1.00 (2)
C6—C151.511 (2)C20—C211.395 (2)
C7—C81.406 (2)C20—C251.399 (2)
C8—C91.389 (2)C21—C221.381 (2)
C8—C101.455 (2)C21—H210.958 (19)
C10—C111.326 (2)C22—C231.375 (2)
C10—H100.942 (19)C22—H220.945 (18)
C11—C121.505 (2)C23—C241.390 (2)
C11—H110.954 (18)C24—C251.377 (2)
C12—C141.517 (2)C25—H250.980 (18)
C1—O1—C9118.57 (12)H13B—C13—H13C109.4 (15)
C7—O3—C12116.27 (11)C12—C14—H14A110.4 (11)
C5—O4—H4104.2 (13)C12—C14—H14B110.2 (11)
C23—O5—H5110.7 (15)H14A—C14—H14B110.0 (15)
C24—O6—H6112.4 (14)C12—C14—H14C109.4 (11)
C2—C1—O1125.64 (14)H14A—C14—H14C109.9 (15)
C2—C1—H1125.7 (10)H14B—C14—H14C106.9 (15)
O1—C1—H1108.6 (10)C16—C15—C6110.69 (13)
C1—C2—C3118.52 (14)C16—C15—H15A111.8 (10)
C1—C2—C20120.88 (14)C6—C15—H15A109.9 (10)
C3—C2—C20120.59 (14)C16—C15—H15B107.6 (11)
O2—C3—C4121.61 (14)C6—C15—H15B108.6 (10)
O2—C3—C2122.65 (14)H15A—C15—H15B108.1 (14)
C4—C3—C2115.73 (13)C17—C16—C15128.17 (15)
C9—C4—C5117.95 (14)C17—C16—H16118.7 (10)
C9—C4—C3120.84 (14)C15—C16—H16113.1 (10)
C5—C4—C3121.16 (14)C16—C17—C19124.64 (17)
O4—C5—C6118.79 (13)C16—C17—C18120.69 (16)
O4—C5—C4119.68 (13)C19—C17—C18114.66 (16)
C6—C5—C4121.50 (14)C17—C18—H18A109.6 (12)
C5—C6—C7117.47 (14)C17—C18—H18B111.1 (13)
C5—C6—C15120.62 (14)H18A—C18—H18B107.1 (17)
C7—C6—C15121.70 (14)C17—C18—H18C111.2 (14)
O3—C7—C6116.90 (13)H18A—C18—H18C107.2 (18)
O3—C7—C8119.50 (13)H18B—C18—H18C110.6 (18)
C6—C7—C8123.54 (14)C17—C19—H19A113.0 (13)
C9—C8—C7116.34 (14)C17—C19—H19B110.0 (13)
C9—C8—C10125.16 (14)H19A—C19—H19B105.5 (18)
C7—C8—C10118.46 (13)C17—C19—H19C112.9 (12)
O1—C9—C8116.41 (13)H19A—C19—H19C103.8 (18)
O1—C9—C4120.59 (13)H19B—C19—H19C111.2 (18)
C8—C9—C4122.99 (14)C21—C20—C25118.42 (14)
C11—C10—C8118.59 (15)C21—C20—C2120.64 (14)
C11—C10—H10121.6 (11)C25—C20—C2120.94 (13)
C8—C10—H10119.8 (11)C22—C21—C20120.71 (15)
C10—C11—C12120.37 (15)C22—C21—H21121.3 (10)
C10—C11—H11123.2 (10)C20—C21—H21118.0 (10)
C12—C11—H11116.4 (10)C23—C22—C21120.29 (15)
O3—C12—C11108.72 (12)C23—C22—H22118.9 (11)
O3—C12—C14105.25 (12)C21—C22—H22120.8 (11)
C11—C12—C14113.07 (14)C22—C23—O5119.65 (14)
O3—C12—C13107.83 (13)C22—C23—C24119.85 (14)
C11—C12—C13111.05 (13)O5—C23—C24120.49 (14)
C14—C12—C13110.61 (13)C25—C24—O6123.83 (14)
C12—C13—H13A108.2 (11)C25—C24—C23120.15 (14)
C12—C13—H13B111.8 (10)O6—C24—C23116.01 (13)
H13A—C13—H13B109.7 (15)C24—C25—C20120.56 (14)
C12—C13—H13C109.3 (10)C24—C25—H25119.9 (10)
H13A—C13—H13C108.3 (15)C20—C25—H25119.5 (10)
C13—C12—C11—C1081.71 (18)O2—C3—C4—C50.9 (2)
C14—C12—C11—C10153.27 (15)H4—O4—C5—C40.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.93 (2)1.68 (2)2.5546 (15)154 (2)
O5—H5···O60.83 (2)2.26 (2)2.6963 (16)113.0 (17)
O5—H5···O6i0.83 (2)2.08 (2)2.7999 (16)144 (2)
O6—H6···O5ii0.88 (2)1.86 (2)2.7247 (16)169 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H24O6
Mr420.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)29.158 (2), 13.9891 (10), 9.9578 (7)
β (°) 91.597 (5)
V3)4060.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.5 × 0.5 × 0.3
Data collection
DiffractometerKuma KM-4 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11311, 3869, 3409
Rint0.049
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.02
No. of reflections3869
No. of parameters377
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1996), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C11.3578 (18)C4—C91.393 (2)
O1—C91.3736 (17)C6—C151.511 (2)
O3—C71.3645 (18)C7—C81.406 (2)
O4—C51.3519 (18)C8—C91.389 (2)
O5—C231.3809 (18)C11—C121.505 (2)
O6—C241.3803 (18)C15—C161.503 (2)
C1—C21.342 (2)C16—C171.325 (2)
C2—C31.459 (2)
C1—O1—C9118.57 (12)C5—C6—C7117.47 (14)
C7—O3—C12116.27 (11)O3—C12—C11108.72 (12)
C2—C1—O1125.64 (14)O3—C12—C13107.83 (13)
C1—C2—C3118.52 (14)C17—C16—C15128.17 (15)
O2—C3—C4121.61 (14)C16—C17—C19124.64 (17)
O2—C3—C2122.65 (14)C16—C17—C18120.69 (16)
C4—C3—C2115.73 (13)C19—C17—C18114.66 (16)
C13—C12—C11—C1081.71 (18)O2—C3—C4—C50.9 (2)
C14—C12—C11—C10153.27 (15)H4—O4—C5—C40.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.93 (2)1.68 (2)2.5546 (15)154 (2)
O5—H5···O60.83 (2)2.26 (2)2.6963 (16)113.0 (17)
O5—H5···O6i0.83 (2)2.08 (2)2.7999 (16)144 (2)
O6—H6···O5ii0.88 (2)1.86 (2)2.7247 (16)169 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds