Download citation
Download citation
link to html
The structure of 2-(pyrrolidin-1-yl)-1,4-naphtho­quinone, C14H12.95Cl0.05NO2, (I), is actually a 0.95:0.05 mixture including 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphtho­quinone as a minor impurity, but (I) was resolved as a single molecule containing a Cl atom with 5% occupancy at the 3-position. Compound (I) was prepared from the fully chloro-substituted analogue in an attempt to produce the disubstituted pyrrolidinyl derivative. 2-Phenyl­sulfanyl-3-(pyrrolidin-1-yl)-1,4-naphtho­quinone, C20H17NO2S, (II), was also prepared from 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphtho­quinone, using a strong exocyclic nucleophile. The structure of (II) differs from previous structures of 2,3-di­chloro-1,4-naphtho­quinone and its derivatives in that the naphtho­quinone ring is non-planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019194/gg1143sup1.cif
Contains datablocks I, II, default

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019194/gg1143Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019194/gg1143IIsup3.hkl
Contains datablock II

CCDC references: 201274; 201275

Comment top

In 2,3-dichloro-1,4-naphthoquinone, or dichlone (Metras, 1961; Ikemoto et al., 1977), the two CO groups activate the 2- and 3-position Cl atoms, rendering both equally reactive towards nucleophiles. In such a reaction, Michael addition followed by the elimination of HCl leaves a donating atom attached directly to the quinone. This attachment immediately deactivates the neighbouring Cl atom, making any additional displacement of that atom very difficult. dichlone and its derivatives display both herbicidal and pesticidal activity (Merck Index, 1996), and for this reason we have recently initiated a study of the syntheses and structures of 2-substituted dichlone derivatives prepared by nucleophilic attack on dichlone itself. There are currently 11 known structures of this type and one common feature is that all contain an essentially planar naphthoquinone moiety. As an extension to our synthetic work on dichlone, we have been attempting to prepare analogues substituted in both Cl positions with the same type of nucleophile. This was initially undertaken by prolonging the reaction time in a 2 molar excess of nucleophile, but without success. However, one reaction that did produce an unexpected result is that of dichlone with pyrrolidine. The structure of 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphthoquinone has been reported previously (Lynch & McClenaghan, 2000), and we report here the structure of the non-chlorinated derivative, the molecule having lost the Cl atom by prolonged reflux in the presence of a second mole of nucleophile. Furthermore, we were successful in reacting a very strong nucleophile, but not pyrrolidine, with 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphthoquinone, and the structure of that material is also reported here. These two structures are significant and give important information with respect to the way forward in our study of dichlone and its derivatives.

The structure of 2-(pyrrolidin-1-yl)-1,4-naphthoquinone, (I), is actually a 0.95:0.05 mixture of 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphthoquinone and the reported molecule, containing a Cl atom with 5% occupancy at the 3-position (Fig. 1). This indicates that the process of removal of the second Cl atom was almost but not fully complete when the reaction was stopped. The chemistry underpinning this process requires further detailed study to determine why the removal of the second Cl atom occurred under the reaction conditions and what the other products may be. Another important question is why the two analogues cocrystallized instead of the major product crystallizing on its own. A comparison of the fully chloro-substituted structure with that of (I) reveals similarities between the planar naphthoquinone rings but significant differences between the twists of the pyrrolidinyl rings. Table 1 lists the torsion angles associated with the pyrrolidinyl ring in (I); the corresponding angles in the structure of the fully chloro-substituted analogue are -156.5 (2), 160.5 (2), 35.9 (2), -44.7 (2), 35.8 (2), 172.2 (2) and 16.7 (2)°, respectively. The full Cl atom deviates by ca 6° from the naphthoquinone plane, whereas the 0.05-occupancy Cl atom in (I) deviates by ca 17°, although this may be accentuated by the small partial occupancy and related thermal motion. The differences in the conformation of the two pyrrolidinyl groups may also be insignificant considering that this group has a range of motion within the four CH2 groups. Therefore, in (I), the few molecules of the fully chloro-substituted analogue align their pyrrolidinyl conformation to that of the dominant non-chloro-substituted molecules, while the Cl atoms had no effect on either the neighbouring pyrrolidinyl ring or the packing of the surrounding molecules. In either molecule, there are no strong hydrogen-bonding elements to instigate any particular self-assembly pattern and although both the fully chloro-substituted structure and (I) pack in P21/c, the networks of C—H···O close contacts [see Table 2 for details of these contacts in (I)] are totally different (Figs. 2 and 3).

The structure of 2-(phenylthio)-3-(pyrrolidin-1-yl)-1,4-naphthoquinone, (II) (Fig. 4), has chemical significance in that it gives some indication of the types of nucleophilic groups needed to react with the second deactivated Cl atom of a dichlone derivative. The only other similar structure is N-(3-piperidino-1,4-dihydro-1,4-dioxo-2-naphthyl)-4-aminoacetophenone oxime (Rubashko et al., 1994), in which the substituent that replaced the second Cl atom is connected via an exocyclic nucleophile. In both structures, steric hindrance is not a contributing factor to the impedance of the reaction at the second Cl atom, whereas it would be important for any second attacking endocyclic nucleophile. Thus, disubstituted dichlone derivatives similar to (II) are possible, but at least one nucleophile needs to be both strong and non-hindering, although we have yet to study whether or not the order in which nucleophiles are attached is significant. Structurally, compound (II) differs from all other dichlone derivatives in that the naphthoquinone moiety does not approximate planarity (Fig. 5). The non-planar conformation of (II) is best indicated by the C3—C2—C1—C9 torsion angle, which has a value of 34.5 (2)°, whereas the equivalent angles in both the fully chloro-substituted structure and (I) are -5.3 (2) and 4.7 (2)°, respectively. The dihedral angle between the phenyl and aromatic rings of the naphthoquinone moiety is 52.4 (2)°. The torsion angles for the pyrrolidinyl ring in (II) (Table 3) are different to the equivalent angles in both the fully chloro-substituted structure (listed above) and (I) (Table 1), while only one C—H···O close contact is noted in Table 4. A packing diagram of (II) is shown in Fig. 6.

Experimental top

Compounds (I) and (II) were obtained from Key Organics Ltd and crystals were grown from ethanol solutions. Compound (I) was prepared by refluxing a 1:2 molar equivalence of 2,3-dichloro-1,4-naphthoquinone and pyrrolidine in dimethylformamide for 8 h. Compound (II) was prepared by refluxing a 1:1:1 molar equivalence of 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphthoquinone, thiophenol and triethylamine in dimethylformamide for 20 min.

Refinement top

All H atoms were included in the refinement, at calculated positions, as riding models, with C—H distances set to 0.95 (aryl H) and 0.99 Å (CH2), except for atom H3 (attached to C3), which was located in a difference syntheses and for which both positional and displacement parameters were refined.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I), shown with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I), viewed down the a axis.
[Figure 3] Fig. 3. Packing diagram of 2-chloro-3-(pyrrolidin-1-yl)-1,4-naphthoquinone (Lynch & McClenaghan, 2000), viewed down the a axis.
[Figure 4] Fig. 4. The molecular configuration and atom-numbering scheme for (II), shown with 50% probability ellipsoids.
[Figure 5] Fig. 5. Side-on view of (II), showing the non-planarity of the naphthoquinone moiety.
[Figure 6] Fig. 6. Packing diagram of (II), viewed down the a axis.
(I) 2-(pyrrolidin-1-yl)-1,4-naphthoquinone top
Crystal data top
C14H12.95Cl0.05NO2F(000) = 483.2
Mr = 228.98Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 4944 reflections
a = 11.5759 (5) Åθ = 2.9–27.5°
b = 9.3063 (4) ŵ = 0.11 mm1
c = 11.5275 (4) ÅT = 150 K
β = 118.896 (2)°Block, red
V = 1087.24 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2470 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1415
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1211
Tmin = 0.974, Tmax = 0.984l = 1414
8163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
2470 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H12.95Cl0.05NO2V = 1087.24 (8) Å3
Mr = 228.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5759 (5) ŵ = 0.11 mm1
b = 9.3063 (4) ÅT = 150 K
c = 11.5275 (4) Å0.25 × 0.20 × 0.15 mm
β = 118.896 (2)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1680 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.984Rint = 0.051
8163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2470 reflectionsΔρmin = 0.25 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.52140 (15)0.26876 (14)0.46522 (15)0.0278 (4)
O10.43934 (11)0.18159 (11)0.45656 (12)0.0438 (3)
C20.48636 (14)0.38930 (13)0.36577 (15)0.0252 (3)
N210.36411 (12)0.39415 (11)0.26238 (12)0.0272 (3)
C220.33133 (15)0.49677 (16)0.15344 (15)0.0323 (4)
H2210.40020.49700.12600.040*
H2220.32170.59530.18000.040*
C230.20144 (15)0.44198 (17)0.04296 (16)0.0356 (4)
H2310.21590.36900.01120.044*
H2320.14790.52150.01520.044*
C240.13528 (15)0.37621 (16)0.11650 (16)0.0358 (4)
H2410.06810.30450.06070.045*
H2420.09260.45110.14390.045*
C250.24864 (14)0.30497 (16)0.23683 (16)0.0310 (4)
H2510.23260.30600.31380.039*
H2520.26110.20440.21710.039*
C30.58268 (15)0.48763 (16)0.38466 (15)0.0277 (4)
H30.5683 (18)0.557 (2)0.331 (2)0.038 (6)*0.95
Cl30.5440 (11)0.6465 (12)0.3192 (12)0.064 (3)0.05
C40.71640 (14)0.47800 (14)0.48609 (14)0.0275 (4)
O40.80046 (11)0.56867 (11)0.49935 (11)0.0374 (3)
C50.88558 (15)0.33602 (15)0.67609 (15)0.0307 (4)
H50.95090.40120.68080.038*
C60.92180 (16)0.22360 (15)0.76582 (16)0.0336 (4)
H61.01140.21180.83160.042*
C70.82651 (16)0.12848 (15)0.75899 (16)0.0329 (4)
H70.85060.05250.82150.041*
C80.69593 (15)0.14390 (14)0.66113 (16)0.0312 (4)
H80.63110.07750.65550.039*
C90.66050 (14)0.25695 (13)0.57148 (14)0.0256 (3)
C100.75551 (14)0.35442 (14)0.57971 (15)0.0254 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (9)0.0254 (7)0.0300 (9)0.0028 (6)0.0157 (7)0.0031 (6)
O10.0310 (7)0.0400 (6)0.0505 (8)0.0088 (5)0.0118 (6)0.0120 (6)
C20.0266 (8)0.0247 (7)0.0251 (8)0.0004 (6)0.0131 (7)0.0035 (6)
N210.0230 (7)0.0301 (6)0.0246 (7)0.0009 (5)0.0085 (6)0.0009 (5)
C220.0307 (9)0.0360 (8)0.0275 (9)0.0034 (7)0.0119 (8)0.0047 (7)
C230.0272 (9)0.0478 (9)0.0273 (9)0.0035 (7)0.0097 (7)0.0001 (7)
C240.0255 (9)0.0472 (10)0.0318 (10)0.0032 (7)0.0114 (8)0.0034 (7)
C250.0254 (9)0.0355 (8)0.0315 (9)0.0054 (6)0.0134 (7)0.0056 (7)
C30.0309 (9)0.0258 (8)0.0248 (9)0.0019 (6)0.0122 (7)0.0019 (7)
Cl30.050 (6)0.068 (7)0.071 (8)0.001 (5)0.026 (6)0.023 (6)
C40.0305 (9)0.0277 (7)0.0251 (8)0.0054 (6)0.0141 (7)0.0043 (6)
O40.0342 (7)0.0374 (6)0.0344 (7)0.0141 (5)0.0116 (6)0.0005 (5)
C50.0295 (9)0.0322 (8)0.0293 (9)0.0034 (6)0.0133 (8)0.0035 (7)
C60.0282 (9)0.0386 (8)0.0282 (9)0.0049 (7)0.0089 (7)0.0022 (7)
C70.0383 (10)0.0310 (8)0.0282 (9)0.0070 (7)0.0153 (8)0.0055 (7)
C80.0328 (9)0.0300 (8)0.0323 (9)0.0001 (6)0.0169 (8)0.0011 (7)
C90.0271 (8)0.0250 (7)0.0249 (8)0.0005 (6)0.0127 (7)0.0026 (6)
C100.0275 (8)0.0260 (7)0.0234 (8)0.0020 (6)0.0130 (7)0.0050 (6)
Geometric parameters (Å, º) top
C1—O11.2160 (16)C25—H2520.99
C1—C91.483 (2)C3—C41.422 (2)
C1—C21.513 (2)C3—Cl31.621 (11)
C2—N211.3398 (19)C3—H30.85 (2)
C2—C31.376 (2)Cl3—H30.871 (17)
N21—C221.4740 (18)C4—O41.2404 (16)
N21—C251.4770 (17)C4—C101.490 (2)
C23—C221.514 (2)C5—C101.383 (2)
C23—C241.519 (2)C5—C61.386 (2)
C23—H2310.99C5—H50.95
C23—H2320.99C6—C71.387 (2)
C22—H2210.99C6—H60.95
C22—H2220.99C7—C81.389 (2)
C24—C251.525 (2)C7—H70.95
C24—H2410.99C8—C91.390 (2)
C24—H2420.99C8—H80.95
C25—H2510.99C9—C101.3931 (19)
O1—C1—C9120.78 (13)N21—C25—H252111.0
O1—C1—C2121.32 (14)C24—C25—H252111.0
C9—C1—C2117.87 (12)H251—C25—H252109.0
N21—C2—C3123.03 (13)C2—C3—C4124.40 (14)
N21—C2—C1118.71 (12)C2—C3—Cl3120.8 (4)
C3—C2—C1118.25 (14)C4—C3—Cl3112.7 (4)
C2—N21—C22120.41 (12)C2—C3—H3121.9 (13)
C2—N21—C25128.57 (13)C4—C3—H3113.4 (13)
C22—N21—C25111.01 (12)O4—C4—C3122.40 (13)
C22—C23—C24103.29 (12)O4—C4—C10119.35 (13)
C22—C23—H231111.1C3—C4—C10118.25 (13)
C24—C23—H231111.1C10—C5—C6120.81 (14)
C22—C23—H232111.1C10—C5—H5119.6
C24—C23—H232111.1C6—C5—H5119.6
H231—C23—H232109.1C5—C6—C7119.61 (15)
N21—C22—C23103.92 (11)C5—C6—H6120.2
N21—C22—H221111.0C7—C6—H6120.2
C23—C22—H221111.0C6—C7—C8120.25 (14)
N21—C22—H222111.0C6—C7—H7119.9
C23—C22—H222111.0C8—C7—H7119.9
H221—C22—H222109.0C7—C8—C9119.74 (14)
C23—C24—C25103.79 (12)C7—C8—H8120.1
C23—C24—H241111.0C9—C8—H8120.1
C25—C24—H241111.0C8—C9—C10120.16 (14)
C23—C24—H242111.0C8—C9—C1118.85 (13)
C25—C24—H242111.0C10—C9—C1120.96 (13)
H241—C24—H242109.0C5—C10—C9119.42 (13)
N21—C25—C24103.60 (12)C5—C10—C4120.60 (13)
N21—C25—H251111.0C9—C10—C4119.98 (13)
C24—C25—H251111.0
C1—C2—N21—C22171.2 (1)C2—C3—C4—C100.8 (2)
C2—N21—C22—C23164.8 (1)Cl3—C3—C4—C10163.0 (5)
N21—C22—C23—C2432.1 (2)C10—C5—C6—C70.1 (2)
C22—C23—C24—C2538.3 (2)C5—C6—C7—C81.3 (2)
C23—C24—C25—N2129.3 (2)C6—C7—C8—C91.3 (2)
C24—C25—N21—C2171.6 (1)C7—C8—C9—C100.0 (2)
C25—N21—C2—C17.6 (2)C7—C8—C9—C1178.09 (13)
O1—C1—C2—N213.8 (2)O1—C1—C9—C80.2 (2)
C9—C1—C2—N21174.12 (12)C2—C1—C9—C8177.70 (12)
O1—C1—C2—C3177.33 (14)O1—C1—C9—C10178.33 (14)
C9—C1—C2—C34.73 (19)C2—C1—C9—C100.39 (19)
C3—C2—N21—C227.6 (2)C6—C5—C10—C91.2 (2)
C3—C2—N21—C25173.60 (13)C6—C5—C10—C4178.13 (13)
C25—N21—C22—C2314.17 (15)C8—C9—C10—C51.3 (2)
C22—N21—C25—C249.51 (15)C1—C9—C10—C5176.80 (13)
N21—C2—C3—C4173.85 (13)C8—C9—C10—C4178.11 (13)
C1—C2—C3—C45.0 (2)C1—C9—C10—C43.8 (2)
N21—C2—C3—Cl323.7 (6)O4—C4—C10—C53.6 (2)
C1—C2—C3—Cl3157.5 (5)C3—C4—C10—C5176.80 (13)
C2—C3—C4—O4179.63 (14)O4—C4—C10—C9175.79 (13)
Cl3—C3—C4—O416.6 (5)C3—C4—C10—C93.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.493.366 (2)153
C25—H252···O4ii0.992.573.328 (2)133
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2.
(II) 2-(phenylthio)-3-(pyrrolidin-1-yl)-1,4-naphthoquinone top
Crystal data top
C20H17NO2SF(000) = 704
Mr = 335.42Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 8654 reflections
a = 13.205 (3) Åθ = 2.9–27.5°
b = 11.387 (2) ŵ = 0.20 mm1
c = 11.220 (2) ÅT = 150 K
β = 93.12 (3)°Needle, red
V = 1684.6 (6) Å30.46 × 0.04 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3716 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.912, Tmax = 0.994l = 1414
11174 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
3716 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H17NO2SV = 1684.6 (6) Å3
Mr = 335.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.205 (3) ŵ = 0.20 mm1
b = 11.387 (2) ÅT = 150 K
c = 11.220 (2) Å0.46 × 0.04 × 0.03 mm
β = 93.12 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3716 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2088 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.994Rint = 0.055
11174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.95Δρmax = 0.16 e Å3
3716 reflectionsΔρmin = 0.22 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40096 (16)0.74543 (19)0.03400 (17)0.0485 (5)
O10.47061 (12)0.81306 (15)0.05171 (15)0.0744 (5)
C20.31222 (14)0.78222 (18)0.03657 (15)0.0409 (5)
N210.27978 (12)0.89343 (15)0.02664 (13)0.0467 (4)
C220.17644 (17)0.93098 (19)0.05505 (18)0.0570 (6)
H2210.17480.95680.13920.071*
H2220.12700.86650.04090.071*
C230.15373 (19)1.0331 (2)0.0305 (2)0.0693 (7)
H2310.12901.00470.11020.087*
H2320.10281.08700.00100.087*
C240.2560 (2)1.0924 (2)0.0356 (2)0.0769 (8)
H2410.27111.14120.03620.096*
H2420.25881.14230.10760.096*
C250.32974 (18)0.98972 (18)0.04050 (19)0.0585 (6)
H2510.33930.96600.12400.073*
H2520.39651.01030.00170.073*
C30.27236 (14)0.69487 (18)0.11022 (15)0.0435 (5)
S30.22008 (4)0.73593 (5)0.24541 (4)0.0527 (2)
C310.08772 (15)0.71279 (18)0.23074 (16)0.0472 (5)
C320.0299 (2)0.7770 (2)0.3067 (2)0.0748 (7)
H320.06200.83130.36080.093*
C330.0739 (2)0.7628 (3)0.3043 (3)0.0905 (9)
H330.11260.80750.35700.113*
C340.12134 (19)0.6862 (3)0.2280 (2)0.0761 (7)
H340.19280.67630.22760.095*
C350.0653 (2)0.6227 (3)0.1513 (2)0.0817 (8)
H350.09840.56950.09690.102*
C360.03861 (18)0.6353 (2)0.1523 (2)0.0713 (7)
H360.07660.59060.09890.089*
C40.28995 (15)0.57049 (19)0.08875 (17)0.0482 (5)
O40.25770 (12)0.49153 (13)0.15308 (13)0.0696 (5)
C50.34672 (17)0.4205 (2)0.0580 (2)0.0628 (6)
H50.31140.36170.01680.078*
C60.39965 (18)0.3910 (2)0.1568 (2)0.0748 (7)
H60.39900.31220.18450.094*
C70.45313 (19)0.4748 (3)0.2154 (2)0.0757 (8)
H70.48840.45370.28380.095*
C80.45590 (16)0.5905 (2)0.17482 (19)0.0651 (7)
H80.49510.64750.21340.081*
C90.40071 (14)0.62191 (19)0.07721 (17)0.0472 (5)
C100.34553 (14)0.53670 (18)0.01917 (16)0.0462 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (12)0.0558 (15)0.0483 (12)0.0027 (10)0.0011 (9)0.0128 (10)
O10.0555 (10)0.0679 (12)0.1015 (12)0.0126 (9)0.0204 (9)0.0143 (10)
C20.0432 (12)0.0439 (13)0.0352 (10)0.0073 (9)0.0023 (8)0.0002 (8)
N210.0546 (11)0.0412 (11)0.0443 (9)0.0049 (8)0.0039 (7)0.0006 (7)
C220.0644 (15)0.0480 (15)0.0590 (13)0.0039 (11)0.0067 (10)0.0024 (10)
C230.0832 (19)0.0497 (16)0.0745 (15)0.0118 (13)0.0008 (12)0.0029 (12)
C240.109 (2)0.0426 (16)0.0787 (17)0.0033 (14)0.0045 (14)0.0052 (12)
C250.0741 (16)0.0428 (14)0.0588 (13)0.0144 (12)0.0050 (10)0.0072 (10)
C30.0452 (12)0.0465 (14)0.0385 (10)0.0030 (9)0.0013 (8)0.0027 (9)
S30.0553 (4)0.0670 (4)0.0358 (3)0.0066 (3)0.0016 (2)0.0014 (2)
C310.0538 (13)0.0488 (13)0.0394 (10)0.0003 (10)0.0059 (9)0.0075 (9)
C320.0685 (18)0.083 (2)0.0739 (17)0.0019 (14)0.0136 (13)0.0202 (14)
C330.071 (2)0.109 (3)0.094 (2)0.0108 (17)0.0256 (16)0.0120 (17)
C340.0525 (16)0.090 (2)0.0860 (18)0.0001 (15)0.0057 (13)0.0237 (16)
C350.0639 (18)0.090 (2)0.0899 (19)0.0077 (15)0.0096 (14)0.0066 (15)
C360.0583 (16)0.082 (2)0.0732 (15)0.0025 (13)0.0029 (12)0.0227 (13)
C40.0452 (12)0.0473 (15)0.0520 (12)0.0054 (10)0.0009 (9)0.0086 (10)
O40.0844 (13)0.0510 (11)0.0753 (10)0.0041 (8)0.0220 (8)0.0151 (8)
C50.0550 (15)0.0571 (17)0.0757 (15)0.0020 (11)0.0004 (11)0.0072 (12)
C60.0621 (17)0.076 (2)0.0859 (18)0.0122 (14)0.0018 (13)0.0267 (15)
C70.0593 (17)0.102 (2)0.0659 (15)0.0185 (15)0.0056 (12)0.0232 (15)
C80.0517 (14)0.084 (2)0.0610 (14)0.0104 (12)0.0104 (10)0.0044 (13)
C90.0381 (12)0.0551 (15)0.0481 (11)0.0047 (10)0.0005 (8)0.0035 (10)
C100.0407 (12)0.0482 (14)0.0490 (11)0.0023 (10)0.0036 (8)0.0014 (10)
Geometric parameters (Å, º) top
C1—O11.224 (2)C31—C321.384 (3)
C1—C91.488 (3)C32—C331.379 (3)
C1—C21.509 (3)C32—H320.95
C2—N211.340 (2)C33—C341.352 (4)
C2—C31.413 (3)C33—H330.95
N21—C221.481 (3)C34—C351.371 (3)
N21—C251.503 (2)C34—H340.95
C22—C231.527 (3)C35—C361.379 (3)
C22—H2210.99C35—H350.95
C22—H2220.99C36—H360.95
C23—C241.514 (3)C4—O41.243 (2)
C23—H2310.99C4—C101.500 (3)
C23—H2320.99C5—C61.384 (3)
C24—C251.524 (3)C5—C101.394 (3)
C24—H2410.99C5—H50.95
C24—H2420.99C6—C71.375 (4)
C25—H2510.99C6—H60.95
C25—H2520.99C7—C81.393 (4)
C3—C41.457 (3)C7—H70.95
C3—S31.7636 (19)C8—C91.395 (3)
S3—C311.766 (2)C8—H80.95
C31—C361.383 (3)C9—C101.396 (3)
O1—C1—C9122.03 (19)C36—C31—S3125.59 (17)
O1—C1—C2121.5 (2)C32—C31—S3116.10 (18)
C9—C1—C2116.45 (17)C33—C32—C31120.5 (2)
N21—C2—C3125.91 (18)C33—C32—H32119.8
N21—C2—C1118.22 (16)C31—C32—H32119.8
C3—C2—C1115.85 (18)C34—C33—C32120.9 (3)
C2—N21—C22123.32 (16)C34—C33—H33119.5
C2—N21—C25125.74 (16)C32—C33—H33119.5
C22—N21—C25109.38 (16)C33—C34—C35119.3 (2)
N21—C22—C23103.67 (16)C33—C34—H34120.3
N21—C22—H221111.0C35—C34—H34120.3
C23—C22—H221111.0C34—C35—C36120.8 (2)
N21—C22—H222111.0C34—C35—H35119.6
C23—C22—H222111.0C36—C35—H35119.6
H221—C22—H222109.0C35—C36—C31120.2 (2)
C24—C23—C22102.61 (19)C35—C36—H36119.9
C24—C23—H231111.2C31—C36—H36119.9
C22—C23—H231111.2O4—C4—C3122.99 (19)
C24—C23—H232111.2O4—C4—C10118.79 (19)
C22—C23—H232111.2C3—C4—C10118.17 (17)
H231—C23—H232109.2C6—C5—C10119.7 (2)
C23—C24—C25103.44 (19)C6—C5—H5120.2
C23—C24—H241111.1C10—C5—H5120.2
C25—C24—H241111.1C7—C6—C5120.6 (2)
C23—C24—H242111.1C7—C6—H6119.7
C25—C24—H242111.1C5—C6—H6119.7
H241—C24—H242109.0C6—C7—C8120.3 (2)
N21—C25—C24104.06 (18)C6—C7—H7119.8
N21—C25—H251110.9C8—C7—H7119.8
C24—C25—H251110.9C7—C8—C9119.6 (2)
N21—C25—H252110.9C7—C8—H8120.2
C24—C25—H252110.9C9—C8—H8120.2
H251—C25—H252109.0C8—C9—C10119.7 (2)
C2—C3—C4121.31 (18)C8—C9—C1120.4 (2)
C2—C3—S3119.48 (16)C10—C9—C1119.81 (18)
C4—C3—S3118.23 (14)C5—C10—C9119.95 (19)
C3—S3—C31108.18 (10)C5—C10—C4120.68 (19)
C36—C31—C32118.3 (2)C9—C10—C4119.29 (18)
C1—C2—N21—C22158.33 (18)C33—C34—C35—C360.8 (4)
C2—N21—C22—C23148.64 (18)C34—C35—C36—C310.3 (4)
N21—C22—C23—C2436.2 (2)C32—C31—C36—C350.4 (4)
C22—C23—C24—C2541.0 (2)S3—C31—C36—C35178.30 (18)
C23—C24—C25—N2129.9 (2)C2—C3—C4—O4178.57 (19)
C24—C25—N21—C2173.47 (18)S3—C3—C4—O49.9 (3)
C25—N21—C2—C15.9 (3)C2—C3—C4—C104.3 (3)
O1—C1—C2—N2135.0 (3)S3—C3—C4—C10172.91 (13)
C9—C1—C2—N21146.92 (17)C10—C5—C6—C71.6 (3)
O1—C1—C2—C3143.5 (2)C5—C6—C7—C80.9 (4)
C9—C1—C2—C334.5 (2)C6—C7—C8—C92.6 (3)
C3—C2—N21—C2223.3 (3)C7—C8—C9—C101.7 (3)
C3—C2—N21—C25172.44 (18)C7—C8—C9—C1178.76 (19)
C25—N21—C22—C2317.9 (2)O1—C1—C9—C824.7 (3)
C22—N21—C25—C247.4 (2)C2—C1—C9—C8157.19 (18)
N21—C2—C3—C4160.75 (18)O1—C1—C9—C10154.8 (2)
C1—C2—C3—C420.9 (3)C2—C1—C9—C1023.3 (3)
N21—C2—C3—S330.7 (3)C6—C5—C10—C92.4 (3)
C1—C2—C3—S3147.67 (15)C6—C5—C10—C4179.12 (18)
C2—C3—S3—C31110.91 (16)C8—C9—C10—C50.7 (3)
C4—C3—S3—C3180.22 (17)C1—C9—C10—C5178.76 (19)
C3—S3—C31—C3623.9 (2)C8—C9—C10—C4177.50 (18)
C3—S3—C31—C32157.36 (17)C1—C9—C10—C42.0 (3)
C36—C31—C32—C330.6 (4)O4—C4—C10—C510.5 (3)
S3—C31—C32—C33178.3 (2)C3—C4—C10—C5166.84 (18)
C31—C32—C33—C340.0 (4)O4—C4—C10—C9166.27 (18)
C32—C33—C34—C350.6 (4)C3—C4—C10—C916.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.523.395 (3)152
Symmetry code: (i) x+1, y1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H12.95Cl0.05NO2C20H17NO2S
Mr228.98335.42
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)150150
a, b, c (Å)11.5759 (5), 9.3063 (4), 11.5275 (4)13.205 (3), 11.387 (2), 11.220 (2)
β (°) 118.896 (2) 93.12 (3)
V3)1087.24 (8)1684.6 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.110.20
Crystal size (mm)0.25 × 0.20 × 0.150.46 × 0.04 × 0.03
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.974, 0.9840.912, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8163, 2470, 1680 11174, 3716, 2088
Rint0.0510.055
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.01 0.048, 0.126, 0.95
No. of reflections24703716
No. of parameters168217
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.250.16, 0.22

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Selected torsion angles (º) for (I) top
C1—C2—N21—C22171.2 (1)C23—C24—C25—N2129.3 (2)
C2—N21—C22—C23164.8 (1)C24—C25—N21—C2171.6 (1)
N21—C22—C23—C2432.1 (2)C25—N21—C2—C17.6 (2)
C22—C23—C24—C2538.3 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.493.366 (2)153
C25—H252···O4ii0.992.573.328 (2)133
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2.
Selected torsion angles (º) for (II) top
C1—C2—N21—C22158.33 (18)C23—C24—C25—N2129.9 (2)
C2—N21—C22—C23148.64 (18)C24—C25—N21—C2173.47 (18)
N21—C22—C23—C2436.2 (2)C25—N21—C2—C15.9 (3)
C22—C23—C24—C2541.0 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.523.395 (3)152
Symmetry code: (i) x+1, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds