Download citation
Download citation
link to html
trans-Di­aqua­bis­(iso­quinoline-1-carboxyl­ato-κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans-di­aqua­bis­(iso­quinoline-1-carboxyl­ato-κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018942/gg1140sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018942/gg1140Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018942/gg1140IIsup3.hkl
Contains datablock II

CCDC references: 201255; 201256

Comment top

Isoquinoline-1-carboxylic acid (IQCA) is a potent inhibitor of the Cu enzyme dopamine β-hydroxylase, which catalyses the biosynthesis of norepinephrine and lowers endogeneous levels of norepinephrine and epinephrine in the brain, heart, spleen and adrenal glands (Townes et al., 1990). These authors reported the strong binding affinity of IQCA to dopamine β-hydroxylase as compared with the analogous compound, quinoline-2-carboxylic acid (QCA), which also inhibits the same enzyme. Their explanation for the large difference (a factor of over 100) in the apparent affinities of these two inhibitors is that the hydrophobic portions of these molecules would be oriented very differently with regard to the enzyme surface if the coordination of the ligand atoms to the CuII centre(s) in the oxidized enzyme was the same for both compounds. To date, the crystal structure of the CuII (Tomas et al., 1999) and SnIV (Smith et al., 1995) complexes with IQCA have been reported. Based on these findings, we aimed to clarify the interaction mode between IQCA and transition metal ions, and have determined the crystal structures of the CoII complex, (I), and the NiII complex, (II). \sch

The molecular structure of (I) is shown in Fig. 1. The Co atom has a distorted octahedral coordination in the trans form, defined by two N atoms and two O atoms of the bidentate ligands in the equatorial plane, and two axial O atoms of the water molecules. The coordination bond length in the axial direction [Co1—O1W 2.167 (2) Å] is longer than those in the equatorial plane (Table 1). In the crystal packing of (I), the isoquinoline rings are stacked in relation to each other at a mean distance of 3.403 (4) Å, and hydrogen bonds are formed between the coordinated water, the carboxylate group and the hydrated water (Table 2).

The molecular structure of (II) is shown in Fig. 2. In this complex, the Ni atom has the same distorted octahedral coordination geometry bonded by the same ligand atoms as seen for the Co atom in (I). The bond length in the axial direction [Ni1—O1W 2.127 (2) Å] is also longer than the other coordination bond lengths (Table 2). These long bond lengths in the axial direction as compared with the equatorial plane, which are observed in the octahedral coordination geometry, may be explained by a Jahn-Teller effect. In the crystal packing of (II), the isoquinoline rings are stacked in relation to each other at a mean distance of 3.681 (12) Å.

The distorted octahedral coordination mode observed in this study has also been observed in the transition metal complexes of QCA [CoII (Okabe & Makino, 1999), NiII (Odoko et al., 2001), MnII (Haendler, 1996; Okabe & Koizumi, 1997), FeII (Okabe & Makino, 1998), VIV (Okabe & Muranishi, 2002)], with an exception being the pentacoordination of the CuII complex (Haendler, 1986).

In complexes (I) and (II), the central metal atom forms a five-membered ring with the O and N atoms of the bidentate ligand, as observed in the QCA complexes, as well as in the CuII complex with IQCA. The O—Co—N angle in (I) [101.75 (7)°] is larger than that in the CoII complex with QCA [77.23 (7)°; Okabe & Makino, 1999]. Similarly, the O—Ni—N angle in (II) [100.00 (9)°] is larger than that in the NiII complex with QCA [78.53 (6)°; Odoko et al., 2001). The O—Cu—N angles of the CuII complex with IQCA [82.96 (12)–97.04 (12)°; Tomas et al., 1999] are somewhat larger than those of the complex with QCA [82.1 (1)–82.5 (1)°; Haendler, 1986]. Thus, the included angle, O-metal-N, in the five-membered ring of the IQCA complex is larger than that in the QCA complex.

The Cu atom in the CuII complex of IQCA, trans-bis(isoquinoline-1-carboxylato)copper(II), has also octahedral coordination to two axial O atoms from the adjacent carboxylate groups (Tomas et al., 1999). It is noted that the water is not coordinated to the central Cu atom, although the crystal was prepared in the presence of water (Tomas et al., 1999).

The results of the present study indicate that the coordination geometry of (I) and (II) is the same as that in the CuII complex with IQCA, but the ligand atoms of (I) and (II) are different from those of the CuII complex. In all the crystal structures of the complexes of QCA with transition metal ions, CoII, NiII, MnII and FeII, as well as those of compounds (I) and (II), the central metal atom is coordinated to two water molecules, although the CuII and VIV complexes of QCA contain only one coordinated water molecule. The absence of coordinated water in the CuII complex of IQCA may have some role in the potent inhibitory activity of IQCA against dopamine β-hydroxylase, although this must be further confirmed by solution studies in a biological environment.

Experimental top

Orange plate-like crystals of (I) were obtained by slow evaporation of a solution in methanol-water [90:10 (v/v)] of a mixture of isoquinoline-1-carboxylic acid and CoCl4·6H2O (molar ratio 4:1). Blue needle-like crystals of (II) were obtained by slow evaporation of a solution in methanol-water [70:30 (v/v)] of a mixture of isoquinoline-1-carboxylic acid and NiCl2·6H2O (molar ratio 4:1).

Refinement top

All H atoms of (I) and (II) were treated as riding, with C—H distances of 0.93 Å and O—H distances in the range 0.86–0.91 Å. Is this added text OK?

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The atoms marked with an asterisk (*) are at the symmetry positions (-x, -y, -z).
[Figure 2] Fig. 2. A view of the structure of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The atoms marked with an asterisk (*) are at the symmetry positions (-x, -y, -z).
[Figure 3] Fig. 3. A stereo view of the molecular packing of (I). Hydrogen bonds are indicated by thin lines.
(I) trans-Bisaquabis(isoquinoline-1-carboxylato-N,O)cobalt(II) dihydrate top
Crystal data top
[Co(C10H6NO2)2(H2O)2]·2H2OF(000) = 490
Mr = 475.31Dx = 1.610 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.271 (2) Åθ = 14.3–15.0°
b = 5.324 (2) ŵ = 0.93 mm1
c = 15.150 (1) ÅT = 296 K
β = 97.85 (1)°Plate, orange
V = 980.5 (4) Å30.40 × 0.15 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 015
Tmin = 0.846, Tmax = 0.911k = 06
2594 measured reflectionsl = 1919
2241 independent reflections3 standard reflections every 150 reflections
1675 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 0.84Δρmax = 0.32 e Å3
2241 reflectionsΔρmin = 0.22 e Å3
142 parameters
Crystal data top
[Co(C10H6NO2)2(H2O)2]·2H2OV = 980.5 (4) Å3
Mr = 475.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.271 (2) ŵ = 0.93 mm1
b = 5.324 (2) ÅT = 296 K
c = 15.150 (1) Å0.40 × 0.15 × 0.10 mm
β = 97.85 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
1675 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.846, Tmax = 0.9113 standard reflections every 150 reflections
2594 measured reflections intensity decay: none
2241 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031142 parameters
wR(F2) = 0.116H-atom parameters constrained
S = 0.84Δρmax = 0.32 e Å3
2241 reflectionsΔρmin = 0.22 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.0242 (1)
O10.1067 (1)0.2763 (3)0.0523 (1)0.0304 (4)
O1W0.0545 (1)0.2412 (3)0.1126 (1)0.0340 (4)
O20.2816 (1)0.3942 (4)0.0688 (1)0.0437 (5)
O2W0.1988 (2)0.0196 (4)0.2526 (1)0.0524 (5)
N10.1408 (1)0.0834 (4)0.0587 (1)0.0255 (4)
C10.2252 (2)0.0722 (4)0.0380 (1)0.0243 (4)
C20.3238 (2)0.0547 (4)0.0773 (1)0.0247 (4)
C30.4125 (2)0.2262 (5)0.0628 (2)0.0337 (5)
C40.5028 (2)0.1954 (5)0.1061 (2)0.0407 (6)
C50.5099 (2)0.0056 (5)0.1649 (2)0.0397 (6)
C60.4262 (2)0.1736 (5)0.1808 (2)0.0366 (5)
C70.3308 (2)0.1473 (4)0.1383 (1)0.0277 (4)
C80.2404 (2)0.3109 (5)0.1566 (2)0.0335 (5)
C90.1484 (2)0.2736 (4)0.1178 (2)0.0313 (5)
C100.2054 (2)0.2642 (4)0.0332 (1)0.0269 (4)
H1A0.10150.18460.15570.0478*
H1B0.08500.37560.10140.0478*
H2A0.21340.14780.24850.0478*
H2B0.19880.04030.30930.0478*
H30.40960.36020.02380.0404*
H40.56040.31000.09630.0488*
H50.57210.02390.19310.0476*
H60.43150.30660.21980.0439*
H80.24380.44510.19540.0402*
H90.08870.38080.13200.0376*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0194 (2)0.0257 (2)0.0279 (2)0.0031 (2)0.0049 (1)0.0032 (2)
O10.0242 (8)0.0304 (8)0.0375 (8)0.0040 (6)0.0078 (6)0.0105 (7)
O1W0.0345 (9)0.0322 (9)0.0344 (8)0.0033 (7)0.0016 (6)0.0002 (7)
O20.0293 (9)0.057 (1)0.0463 (10)0.0151 (9)0.0105 (7)0.0229 (9)
O2W0.075 (2)0.043 (1)0.0373 (9)0.0058 (9)0.0034 (10)0.0011 (8)
N10.0221 (8)0.0278 (9)0.0268 (8)0.0027 (7)0.0046 (7)0.0037 (7)
C10.0227 (10)0.0245 (10)0.0256 (9)0.0009 (8)0.0023 (8)0.0005 (8)
C20.0205 (10)0.028 (1)0.0259 (10)0.0000 (8)0.0029 (7)0.0036 (8)
C30.029 (1)0.032 (1)0.041 (1)0.0055 (10)0.0087 (9)0.0028 (10)
C40.026 (1)0.049 (2)0.049 (1)0.007 (1)0.010 (1)0.002 (1)
C50.030 (1)0.049 (2)0.043 (1)0.005 (1)0.0150 (10)0.006 (1)
C60.034 (1)0.040 (1)0.038 (1)0.007 (1)0.0113 (10)0.001 (1)
C70.028 (1)0.028 (1)0.027 (1)0.0031 (9)0.0062 (8)0.0014 (8)
C80.038 (1)0.031 (1)0.032 (1)0.0016 (10)0.0058 (9)0.0084 (9)
C90.030 (1)0.030 (1)0.033 (1)0.0058 (9)0.0039 (9)0.0067 (9)
C100.027 (1)0.028 (1)0.0257 (9)0.0026 (8)0.0036 (8)0.0029 (8)
Geometric parameters (Å, º) top
Co1—O12.055 (2)C2—C71.428 (3)
Co1—O1W2.167 (2)C3—C41.373 (4)
Co1—N12.096 (2)C3—H30.930
O1—C101.284 (3)C4—C51.402 (4)
O1W—H1A0.864C4—H40.930
O1W—H1B0.835C5—C61.359 (4)
O2—C101.227 (3)C5—H50.930
O2W—H2A0.913C6—C71.418 (3)
O2W—H2B0.866C6—H60.930
N1—C11.329 (3)C7—C81.408 (3)
N1—C91.364 (3)C8—C91.356 (4)
C1—C21.422 (3)C8—H80.930
C1—C101.530 (3)C9—H90.930
C2—C31.415 (3)
O1···O1Wi2.829 (2)O2W···O2Wiv2.949 (2)
O1W···C10ii3.524 (3)O2W···C10vii3.492 (3)
O1W···O2ii3.533 (3)C2···C4vi3.522 (3)
O1W···C9iii3.595 (3)C3···C8i3.425 (3)
O2···O2Wiv2.723 (3)C3···C4vi3.455 (4)
O2···C4v3.417 (3)C3···C3vi3.594 (5)
O2···C5vi3.454 (3)C6···C8viii3.550 (3)
O2···C9i3.540 (3)C7···C8viii3.591 (3)
O2W···O2Wvii2.949 (2)C9···C10ii3.368 (3)
O1—Co1—O1ix180.0C3—C2—C7118.2 (2)
O1—Co1—O1W90.52 (6)C2—C3—C4120.2 (2)
O1—Co1—O1Wix89.48 (6)C2—C3—H3119.9
O1—Co1—N178.25 (7)C4—C3—H3119.9
O1—Co1—N1ix101.75 (7)C3—C4—C5121.2 (2)
O1ix—Co1—O1W89.48 (6)C3—C4—H4119.4
O1ix—Co1—N1101.75 (7)C5—C4—H4119.4
O1W—Co1—O1Wix180.0C4—C5—C6120.3 (2)
O1W—Co1—N191.42 (7)C4—C5—H5119.8
O1W—Co1—N1ix88.58 (7)C6—C5—H5119.8
O1Wix—Co1—N188.58 (7)C5—C6—C7120.3 (2)
N1—Co1—N1ix180.0C5—C6—H6119.8
Co1—O1—C10116.6 (1)C7—C6—H6119.9
Co1—O1W—H1A119.4C2—C7—C6119.7 (2)
Co1—O1W—H1B116.5C2—C7—C8118.5 (2)
H1A—O1W—H1B100.4C6—C7—C8121.8 (2)
H2A—O2W—H2B102.6C7—C8—C9120.3 (2)
Co1—N1—C1115.4 (1)C7—C8—H8119.8
Co1—N1—C9124.8 (1)C9—C8—H8119.8
C1—N1—C9119.8 (2)N1—C9—C8121.9 (2)
N1—C1—C2122.7 (2)N1—C9—H9119.0
N1—C1—C10112.9 (2)C8—C9—H9119.1
C2—C1—C10124.4 (2)O1—C10—O2123.9 (2)
C1—C2—C3125.0 (2)O1—C10—C1116.0 (2)
C1—C2—C7116.8 (2)O2—C10—C1120.1 (2)
Co1—O1—C10—O2169.8 (2)C1—C2—C3—C4178.2 (2)
Co1—O1—C10—C19.8 (2)C1—C2—C7—C6179.1 (2)
Co1—N1—C1—C2175.0 (2)C1—C2—C7—C81.1 (3)
Co1—N1—C1—C106.5 (2)C2—C1—N1—C91.9 (3)
Co1—N1—C9—C8177.0 (2)C2—C3—C4—C50.4 (4)
O1—Co1—N1—C11.5 (1)C2—C7—C6—C51.1 (3)
O1—Co1—N1—C9178.2 (2)C2—C7—C8—C91.0 (3)
O1—C10—C1—N110.8 (3)C3—C2—C1—C106.6 (3)
O1—C10—C1—C2170.7 (2)C3—C2—C7—C61.3 (3)
O1W—Co1—O1—C1086.4 (1)C3—C2—C7—C8176.7 (2)
O1W—Co1—N1—C191.7 (2)C3—C4—C5—C60.6 (4)
O1W—Co1—N1—C991.5 (2)C4—C3—C2—C70.5 (3)
O2—C10—C1—N1168.8 (2)C4—C5—C6—C70.1 (4)
O2—C10—C1—C29.7 (3)C5—C6—C7—C8176.9 (2)
N1—Co1—O1—C104.9 (1)C6—C7—C8—C9176.9 (2)
N1—C1—C2—C3175.0 (2)C7—C2—C1—C10175.7 (2)
N1—C1—C2—C72.6 (3)C9—N1—C1—C10176.6 (2)
N1—C9—C8—C71.8 (3)C9—N1—C1—C10176.6 (2)
C1—N1—C9—C80.4 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y1, z; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z1/2; (ix) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.861.972.829 (3)173
O1W—H1B···O1ii0.842.032.829 (2)160
O2W—H2A···O2Wiv0.912.072.949 (2)160
O2W—H2B···O2vii0.871.862.723 (3)172
Symmetry codes: (ii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
(II) trans-Bisaquabis(isoquinoline-1-carboxylato-N,O)nickel(II) dihydrate top
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2H2OF(000) = 492
Mr = 475.07Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.171 (2) Åθ = 14.0–14.6°
b = 5.351 (4) ŵ = 1.05 mm1
c = 15.107 (2) ÅT = 296 K
β = 97.91 (1)°Needle, blue
V = 974.5 (8) Å30.50 × 0.10 × 0.05 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.018
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 1215
Tmin = 0.882, Tmax = 0.949k = 06
2573 measured reflectionsl = 1919
2225 independent reflections3 standard reflections every 150 reflections
1620 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.66 e Å3
2225 reflectionsΔρmin = 0.48 e Å3
142 parameters
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2H2OV = 974.5 (8) Å3
Mr = 475.07Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.171 (2) ŵ = 1.05 mm1
b = 5.351 (4) ÅT = 296 K
c = 15.107 (2) Å0.50 × 0.10 × 0.05 mm
β = 97.91 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
1620 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.882, Tmax = 0.9493 standard reflections every 150 reflections
2573 measured reflections intensity decay: none
2225 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040142 parameters
wR(F2) = 0.143H-atom parameters constrained
S = 0.99Δρmax = 0.66 e Å3
2225 reflectionsΔρmin = 0.48 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0247 (2)
O10.1028 (2)0.2786 (4)0.0526 (1)0.0326 (5)
O1W0.0552 (2)0.2349 (4)0.1108 (1)0.0357 (5)
O20.2785 (2)0.4003 (5)0.0681 (2)0.0458 (6)
O2W0.1974 (3)0.0143 (6)0.2515 (2)0.0637 (9)
N10.1374 (2)0.0804 (5)0.0581 (2)0.0257 (5)
C10.2225 (2)0.0763 (6)0.0376 (2)0.0254 (6)
C20.3216 (2)0.0582 (6)0.0772 (2)0.0258 (6)
C30.4114 (3)0.2285 (6)0.0630 (2)0.0338 (7)
C40.5022 (3)0.1966 (7)0.1057 (2)0.0405 (8)
C50.5099 (3)0.0047 (7)0.1643 (2)0.0408 (8)
C60.4256 (3)0.1751 (7)0.1795 (2)0.0362 (7)
C70.3292 (2)0.1455 (6)0.1376 (2)0.0278 (6)
C80.2379 (3)0.3072 (6)0.1558 (2)0.0324 (6)
C90.1451 (3)0.2697 (6)0.1168 (2)0.0326 (6)
C100.2023 (2)0.2695 (6)0.0334 (2)0.0279 (6)
H1A0.10100.15980.15830.0474*
H1B0.08100.39370.10410.0474*
H2A0.20790.16090.25250.0474*
H2B0.19870.04610.31360.0474*
H30.40840.36300.02440.0405*
H40.56020.31060.09570.0487*
H50.57250.02210.19270.0490*
H60.43160.31000.21740.0434*
H80.24110.44080.19470.0388*
H90.08510.37690.13080.0391*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0202 (3)0.0241 (3)0.0301 (3)0.0031 (2)0.0050 (2)0.0039 (2)
O10.028 (1)0.029 (1)0.041 (1)0.0053 (9)0.0100 (9)0.0129 (9)
O1W0.039 (1)0.029 (1)0.038 (1)0.0018 (10)0.0008 (9)0.0001 (9)
O20.032 (1)0.056 (2)0.052 (1)0.017 (1)0.012 (1)0.026 (1)
O2W0.089 (3)0.052 (2)0.049 (2)0.008 (1)0.003 (2)0.002 (1)
N10.023 (1)0.025 (1)0.029 (1)0.0030 (10)0.0033 (9)0.0045 (10)
C10.023 (1)0.024 (1)0.029 (1)0.000 (1)0.004 (1)0.000 (1)
C20.021 (1)0.029 (2)0.027 (1)0.000 (1)0.0020 (10)0.002 (1)
C30.031 (2)0.030 (2)0.042 (2)0.005 (1)0.008 (1)0.002 (1)
C40.028 (2)0.041 (2)0.053 (2)0.009 (1)0.008 (1)0.000 (2)
C50.029 (2)0.051 (2)0.044 (2)0.000 (2)0.014 (1)0.006 (2)
C60.036 (2)0.038 (2)0.036 (2)0.005 (1)0.011 (1)0.000 (1)
C70.027 (1)0.030 (2)0.027 (1)0.004 (1)0.005 (1)0.001 (1)
C80.037 (2)0.029 (2)0.032 (1)0.002 (1)0.008 (1)0.006 (1)
C90.032 (2)0.030 (2)0.037 (1)0.007 (1)0.007 (1)0.008 (1)
C100.026 (1)0.028 (1)0.030 (1)0.003 (1)0.005 (1)0.004 (1)
Geometric parameters (Å, º) top
Ni1—O12.036 (2)C2—C71.433 (4)
Ni1—O1W2.127 (2)C3—C41.365 (5)
Ni1—N12.039 (3)C3—H30.930
O1—C101.285 (4)C4—C51.406 (5)
O1W—H1A0.936C4—H40.930
O1W—H1B0.916C5—C61.368 (5)
O2—C101.221 (4)C5—H50.930
O2W—H2A0.946C6—C71.418 (5)
O2W—H2B0.951C6—H60.930
N1—C11.335 (4)C7—C81.405 (4)
N1—C91.358 (4)C8—C91.358 (5)
C1—C21.421 (4)C8—H80.930
C1—C101.533 (4)C9—H90.930
C2—C31.416 (4)
O1···O1Wi2.833 (3)O2W···O2Wvii2.969 (3)
O1W···O2i3.478 (4)O2W···C10viii3.506 (4)
O1W···C10i3.490 (4)C2···C4iv3.529 (4)
O2···O2Wii2.739 (4)C3···C8v3.432 (4)
O2···C4iii3.418 (4)C3···C4iv3.469 (5)
O2···C5iv3.492 (4)C6···C8ix3.559 (4)
O2···C9v3.508 (4)C9···C10x3.359 (4)
O2W···O2Wvi2.969 (3)
O1—Ni1—O1xi180.0C2—C3—H3119.8
O1—Ni1—O1W89.14 (8)C4—C3—H3119.8
O1—Ni1—O1Wxi90.86 (8)C3—C4—C5121.5 (3)
O1—Ni1—N180.00 (9)C3—C4—H4119.3
O1—Ni1—N1xi100.00 (9)C5—C4—H4119.3
O1W—Ni1—O1Wxi180.0C4—C5—C6120.2 (3)
O1W—Ni1—N188.56 (9)C4—C5—H5119.9
O1W—Ni1—N1xi91.44 (9)C6—C5—H5119.9
N1—Ni1—N1xi180.0C5—C6—C7119.9 (3)
Ni1—O1—C10115.6 (2)C5—C6—H6120.1
Ni1—O1W—H1A116.1C7—C6—H6120.1
Ni1—O1W—H1B122.5C2—C7—C6120.0 (3)
H1A—O1W—H1B107.9C2—C7—C8118.3 (3)
H2A—O2W—H2B100.2C6—C7—C8121.7 (3)
Ni1—N1—C1115.0 (2)C7—C8—C9120.4 (3)
Ni1—N1—C9125.0 (2)C7—C8—H8119.8
C1—N1—C9119.9 (3)C9—C8—H8119.8
N1—C1—C2122.4 (3)N1—C9—C8122.0 (3)
N1—C1—C10113.1 (3)N1—C9—H9119.0
C2—C1—C10124.5 (3)C8—C9—H9119.0
C1—C2—C3125.0 (3)O1—C10—O2124.5 (3)
C1—C2—C7116.9 (3)O1—C10—C1115.5 (2)
C3—C2—C7118.0 (3)O2—C10—C1120.1 (3)
C2—C3—C4120.4 (3)
Ni1—O1—C10—O2170.0 (3)C1—C2—C3—C4178.8 (3)
Ni1—O1—C10—C19.4 (3)C1—C2—C7—C6180.0 (3)
Ni1—N1—C1—C2175.4 (2)C1—C2—C7—C82.0 (4)
Ni1—N1—C1—C105.8 (3)C2—C1—N1—C92.0 (4)
Ni1—N1—C9—C8177.4 (2)C2—C3—C4—C50.2 (5)
O1—Ni1—N1—C11.0 (2)C2—C7—C6—C51.9 (5)
O1—Ni1—N1—C9178.3 (2)C2—C7—C8—C90.1 (4)
O1—C10—C1—N110.1 (4)C3—C2—C1—C106.0 (5)
O1—C10—C1—C2171.1 (3)C3—C2—C7—C61.4 (4)
O1W—Ni1—O1—C1093.6 (2)C3—C2—C7—C8176.5 (3)
O1W—Ni1—N1—C188.3 (2)C3—C4—C5—C60.3 (5)
O1W—Ni1—N1—C988.9 (2)C4—C3—C2—C70.4 (4)
O2—C10—C1—N1169.3 (3)C4—C5—C6—C71.3 (5)
O2—C10—C1—C29.5 (4)C5—C6—C7—C8176.0 (3)
N1—Ni1—O1—C105.0 (2)C6—C7—C8—C9177.8 (3)
N1—C1—C2—C3175.3 (3)C7—C2—C1—C10175.5 (3)
N1—C1—C2—C73.1 (4)C9—N1—C1—C10176.8 (2)
N1—C9—C8—C71.4 (5)C9—N1—C1—C10176.8 (2)
C1—N1—C9—C80.3 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x1, y+1, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x, y1, z; (xi) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.941.872.810 (4)178
O1W—H1B···O1i0.921.952.833 (3)161
O2W—H2B···O2viii0.951.792.739 (4)172
O2W—H2A···O2Wvii0.952.092.969 (4)154
Symmetry codes: (i) x, y+1, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C10H6NO2)2(H2O)2]·2H2O[Ni(C10H6NO2)2(H2O)2]·2H2O
Mr475.31475.07
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)296296
a, b, c (Å)12.271 (2), 5.324 (2), 15.150 (1)12.171 (2), 5.351 (4), 15.107 (2)
β (°) 97.85 (1) 97.91 (1)
V3)980.5 (4)974.5 (8)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.931.05
Crystal size (mm)0.40 × 0.15 × 0.100.50 × 0.10 × 0.05
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.846, 0.9110.882, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
2594, 2241, 1675 2573, 2225, 1620
Rint0.0160.018
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.116, 0.84 0.040, 0.143, 0.99
No. of reflections22412225
No. of parameters142142
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.220.66, 0.48

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999), SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Co1—O12.055 (2)Co1—N12.096 (2)
Co1—O1W2.167 (2)
O1—Co1—O1i180.0O1W—Co1—N191.42 (7)
O1—Co1—O1W90.52 (6)O1W—Co1—N1i88.58 (7)
O1—Co1—O1Wi89.48 (6)O1Wi—Co1—N188.58 (7)
O1—Co1—N178.25 (7)N1—Co1—N1i180.0
O1—Co1—N1i101.75 (7)Co1—O1—C10116.6 (1)
O1i—Co1—O1W89.48 (6)Co1—N1—C1115.4 (1)
O1i—Co1—N1101.75 (7)Co1—N1—C9124.8 (1)
O1W—Co1—O1Wi180.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.861.972.829 (3)173
O1W—H1B···O1ii0.842.032.829 (2)160
O2W—H2A···O2Wiii0.912.072.949 (2)160
O2W—H2B···O2iv0.871.862.723 (3)172
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Ni1—O12.036 (2)Ni1—N12.039 (3)
Ni1—O1W2.127 (2)
O1—Ni1—O1i180.0O1W—Ni1—N188.56 (9)
O1—Ni1—O1W89.14 (8)O1W—Ni1—N1i91.44 (9)
O1—Ni1—O1Wi90.86 (8)N1—Ni1—N1i180.0
O1—Ni1—N180.00 (9)Ni1—O1—C10115.6 (2)
O1—Ni1—N1i100.00 (9)Ni1—N1—C1115.0 (2)
O1W—Ni1—O1Wi180.0Ni1—N1—C9125.0 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.941.872.810 (4)178
O1W—H1B···O1ii0.921.952.833 (3)161
O2W—H2B···O2iii0.951.792.739 (4)172
O2W—H2A···O2Wiv0.952.092.969 (4)154
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds