Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the title compounds, C16H14N4, (I), and C15H14N4, (II), respectively, have been determined, and their molecular packing arrangements compared. Both are essentially flat mol­ecules, with respective dihedral angles between the quinoline and heterocyclic rings of 19.0 (1) and 8.5 (2)°. The pyridyl derivative, (I), packs in a P21/c unit cell, while in the pyrrolyl compound, (II), the mol­ecules pack in Pca21 and form a crinkled ribbon arrangement through the association of pyrrole NH groups with the quinoline N atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102017109/gg1136sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017109/gg1136Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017109/gg1136IIsup3.hkl
Contains datablock II

CCDC references: 199422; 199423

Comment top

The Fischer indole synthesis, discovered in 1883 by Emil Fischer, occurs when phenylhydrazine is heated in acidic solution with an aldehyde or ketone (Clayden et al., 2001). The first step involves the formation of the phenylhydrazone, which is itself stable and can be isolated. The next three steps involve cyclization and the loss of ammonia to produce the aromatic indole. Substituents on the aldehyde or ketone are important because 4-methyl-2-phenyl-2H-phthalazin-1-one is produced by reacting phenylhydrazine with, respectively, 2-acetylbenzoic acid (Rowe & Peters, 1931), 2-acetylbenzonitrile (Helberger & von Rebay, 1937), or 3-(2-carboxyphenyl)-3-oxopropionic acid (Roser, 1885) in an analogous reaction to the indole synthesis. We have recently been studying the potential of 8-hydrazinoquinoline and produced 4-methyl-2-(8-quinolyl)phthalazin-1-one in a reaction containing 2-acetylbenzoic acid (Lynch & McClenaghan, 2002a).

The title compounds, (I) and (II), were synthesized by refluxing 8-hydrazinoquinoline dihydrochloride hydrate (Lynch & McClenaghan, 2002b) with the relevant 2-acetylheterocyclic compound (Fig. 1). The structure of an analogous product, (E)-2-acetylthiophene-8-quinonylhydrazone, has been reported (Lynch & McClenaghan, 2001a) and was found to be planar [dihedral angle between quinoline and thiophene rings 2.6 (2)°]. Each of these products can undergo additional cyclization to the corresponding pyrrolo[3,2-h]quinoline [see, for example, Lynch et al. (2001), Lynch & McClenaghan (2002c)] (Fig. 1).

Such molecules have potential as metal binding agents, although we have yet to study this possibility. In the quinonylhydrazone form, molecules such as (I) and (II) have one strong hydrogen-bond donor and two strong hydrogen-bond acceptors, as well as any similar atoms on the attached R group. The structure of the thienyl derivative showed that an intramolecular association to the adjacent quinoline N atom influenced the position of the hydrazone NH group. The subsequent arrangement (and steric hindrance) of the thienyl `tail' thus prevented any further intermolecular associations to the sp2 N atom of the hydrazone.

As part of an overall study of the structural aspects of both of the quinonylhydrazones and the pyrrolo[3,2-h]quinolines we decided to study the structures of quinonylhydrazone analogues with varying numbers of hydrogen-bond acceptor and donor atoms within the R group. Here, we compare two structures, one with a single hydrogen-bond acceptor (pyridine) in the R group, (I), and one with a single hydrogen-bond donor (pyrrole), (II), with both hydrogen-bond components contained within heterocyclic rings. \sch

The structure of compound (I) (Fig. 2) is very similar to that of the thienyl derivative, being an essentially flat molecule [dihedral angle between quinoline and pyridine rings 19.0 (1)°] and having essentially the same trans-conformation for the two ring systems. Similarities extend to the packing of both compounds, in that both exist in centrosymmetric space groups; P21/c for (I) (Fig. 3) and Pbca for the thienyl derivative. In addition to the (hydrazone)NH···N(quinoline) association, in (I), there is also an intramolecular C—H···N close contact from one of the methyl H atoms to the pyridine N atom. Two possible intermolecular close contacts (not listed in Table 1) are both from different quinoline H atoms to the quinoline N atom [H4···N1 2.74 Å and 135°] and pyridine N atom [H2···N15 2.69 Å and 135°].

Compound (II) is also essentially flat (Fig. 4) [dihedral angle 8.5 (2)°] and exists in the previously mentioned trans-conformation. However, the additional strong hydrogen-bond donor atom, and its requirement to be involved in a formal hydrogen bond when there are hydrogen-bond acceptors available for association, significantly influences the solid-state packing of (II). The subsequent N—H···N interaction between the pyrrole NH group and the quinoline N atom creates a crinkled ribbon arrangement that propagates along the a axis (Fig. 5), with the overall packing being noncentrosymmetric. The dihedral angle between associated pyrrole and quinoline rings is 83 (1)°.

The production and control of noncentrosymmetric space groups by hydrogen-bonding interactions is still an area of crystal engineering that is little understood, but it is worth pursuing because of the resultant nonlinear optical properties that any noncentrosymmetric material may possess. For this reason, we have decided to investigate further the solid-state structure and properties of quinonylhydrazone analogues, such as (II), that contain additional hydrogen-bond donor elements in the R group.

The table caption should be 'Hydrogen bonding amd contact geometry' for Tables 1 and 2.

Experimental top

The title compounds were obtained from Key Organics Ltd. and crystals were grown from ethanol solutions.

Refinement top

H atoms on N atoms were located in difference syntheses and had both positional and displacement parameters refined. All other H atoms were included at calculated positions and refined as riding models, with C—H set to 0.95 (Ar—H) and 0.98 Å (CH3). High Rint values of 0.095 and 0.111 for (I) and (II), respectively, were the result of poor diffraction and weak high-angle data. The number of Friedel pairs for compound (II) is 1166. Is this sentence still needed if the data were merged?

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Fig. 1. A reaction schematic for the synthesis and use of 8-quinonylhydrozone analogues.

Fig. 2. The molecular configuration and atom-numbering scheme for (I), with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Fig. 3. The molecular packing for (I).

Fig. 4. The molecular configuration and atom numbering scheme for (II), with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Fig. 5. The molecular packing for (II). Hydrogen-bonding associations are indicated by dotted lines [symmetry code: (i) x + 1/2, 1 - y, z].
(I) 1-(2-Pyridyl)ethan-1-one (8-quinolyl)hydrazone top
Crystal data top
C16H14N4F(000) = 552
Mr = 262.31Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 13136 reflections
a = 10.1678 (4) Åθ = 2.9–27.5°
b = 11.2970 (6) ŵ = 0.08 mm1
c = 11.3566 (6) ÅT = 150 K
β = 90.284 (3)°Needle, yellow
V = 1304.47 (11) Å30.20 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2987 independent reflections
Radiation source: Nonius FR591 rotating anode1709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.984, Tmax = 0.994l = 1414
17166 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0853P)2]
where P = (Fo2 + 2Fc2)/3
2987 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H14N4V = 1304.47 (11) Å3
Mr = 262.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1678 (4) ŵ = 0.08 mm1
b = 11.2970 (6) ÅT = 150 K
c = 11.3566 (6) Å0.20 × 0.08 × 0.07 mm
β = 90.284 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2987 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1709 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.994Rint = 0.095
17166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.26 e Å3
2987 reflectionsΔρmin = 0.23 e Å3
186 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. Mean plane data ex SHELXL97 for molecule (I) ############################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.8864 (0.0064) x + 9.2083 (0.0051) y + 0.2055 (0.0083) z = 4.7515 (0.0054)

* 0.0051 (0.0012) N1 * -0.0076 (0.0013) C2 * 0.0021 (0.0013) C3 * 0.0051 (0.0013) C4 * -0.0070 (0.0012) C10 * 0.0023 (0.0012) C9

Rms deviation of fitted atoms = 0.0053

4.8575 (0.0063) x + 9.3561 (0.0047) y - 3.3547 (0.0088) z = 3.1097 (0.0066)

Angle to previous plane (with approximate e.s.d.) = 19.00 (0.08)

* 0.0008 (0.0012) N15 * 0.0009 (0.0012) C16 * -0.0001 (0.0013) C17 * -0.0023 (0.0013) C18 * 0.0040 (0.0013) C19 * -0.0033 (0.0013) C20

Rms deviation of fitted atoms = 0.0024

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.53216 (14)0.16635 (14)0.44951 (14)0.0330 (4)
C20.44153 (19)0.22151 (17)0.51220 (19)0.0378 (5)
H20.37460.26340.47100.047*
C30.4380 (2)0.22205 (18)0.63475 (19)0.0417 (6)
H30.37120.26430.67510.052*
C40.5315 (2)0.16125 (18)0.69621 (18)0.0397 (5)
H40.53040.16120.77990.050*
C50.7295 (2)0.03098 (19)0.69042 (17)0.0395 (5)
H50.73280.02530.77380.049*
C60.8216 (2)0.02637 (18)0.62345 (17)0.0394 (5)
H60.88840.07140.66140.049*
C70.81919 (19)0.01984 (17)0.50142 (17)0.0336 (5)
H70.88470.05970.45720.042*
C80.72347 (17)0.04345 (16)0.44404 (16)0.0280 (5)
C90.62621 (17)0.10454 (16)0.51098 (15)0.0273 (4)
C100.62999 (18)0.09834 (16)0.63535 (16)0.0323 (5)
N110.71540 (16)0.05302 (15)0.32222 (13)0.0312 (4)
H110.642 (2)0.089 (2)0.2893 (19)0.059 (7)*
N120.79755 (14)0.01433 (13)0.25621 (13)0.0299 (4)
C130.77639 (17)0.02003 (16)0.14457 (16)0.0275 (4)
C140.66589 (18)0.04056 (18)0.08165 (17)0.0357 (5)
H1410.58210.01680.11670.045*
H1420.66680.01820.00170.045*
H1430.67640.12650.08870.045*
N150.84202 (15)0.11715 (14)0.03470 (13)0.0319 (4)
C160.87285 (17)0.09272 (15)0.07802 (16)0.0276 (4)
C170.98815 (18)0.13360 (17)0.13125 (17)0.0323 (5)
H171.00730.11480.21110.040*
C181.07367 (18)0.20149 (17)0.06643 (18)0.0368 (5)
H181.15250.23060.10120.046*
C191.04407 (19)0.22697 (17)0.04939 (17)0.0344 (5)
H191.10200.27290.09630.043*
C200.92811 (19)0.18383 (17)0.09480 (17)0.0353 (5)
H200.90730.20250.17430.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (8)0.0289 (9)0.0423 (10)0.0020 (7)0.0031 (8)0.0009 (8)
C20.0295 (11)0.0312 (12)0.0528 (14)0.0018 (9)0.0048 (10)0.0010 (10)
C30.0357 (12)0.0339 (12)0.0558 (14)0.0059 (9)0.0178 (11)0.0057 (10)
C40.0469 (13)0.0382 (13)0.0342 (11)0.0146 (10)0.0135 (10)0.0046 (9)
C50.0479 (13)0.0426 (13)0.0279 (11)0.0120 (10)0.0039 (10)0.0037 (9)
C60.0405 (12)0.0360 (12)0.0416 (12)0.0019 (9)0.0094 (10)0.0064 (10)
C70.0338 (11)0.0314 (11)0.0355 (11)0.0005 (9)0.0022 (9)0.0035 (9)
C80.0267 (10)0.0219 (10)0.0354 (11)0.0025 (8)0.0005 (8)0.0009 (8)
C90.0277 (10)0.0225 (10)0.0319 (10)0.0053 (8)0.0007 (8)0.0012 (8)
C100.0340 (11)0.0271 (11)0.0359 (11)0.0110 (9)0.0049 (9)0.0009 (9)
N110.0291 (9)0.0344 (10)0.0301 (9)0.0050 (7)0.0003 (8)0.0035 (7)
N120.0266 (8)0.0260 (9)0.0371 (10)0.0013 (7)0.0030 (8)0.0032 (7)
C130.0258 (10)0.0259 (10)0.0308 (11)0.0030 (8)0.0005 (8)0.0005 (8)
C140.0305 (10)0.0375 (12)0.0392 (11)0.0062 (9)0.0019 (9)0.0000 (9)
N150.0342 (9)0.0322 (9)0.0294 (9)0.0016 (7)0.0019 (7)0.0020 (7)
C160.0256 (9)0.0226 (10)0.0347 (10)0.0023 (8)0.0015 (8)0.0021 (8)
C170.0307 (10)0.0316 (11)0.0344 (10)0.0016 (8)0.0024 (9)0.0014 (9)
C180.0274 (10)0.0313 (12)0.0517 (13)0.0047 (8)0.0026 (10)0.0009 (10)
C190.0353 (11)0.0270 (11)0.0410 (12)0.0009 (8)0.0068 (10)0.0035 (9)
C200.0412 (12)0.0328 (12)0.0320 (11)0.0013 (9)0.0054 (10)0.0011 (9)
Geometric parameters (Å, º) top
N1—C21.323 (2)N11—N121.358 (2)
N1—C91.372 (2)N11—H110.93 (2)
C2—C31.392 (3)N12—C131.287 (2)
C2—H20.95C13—C161.488 (2)
C3—C41.362 (3)C13—C141.494 (3)
C3—H30.95C14—H1410.98
C4—C101.412 (3)C14—H1420.98
C4—H40.95C14—H1430.98
C5—C61.372 (3)N15—C201.344 (2)
C5—C101.410 (3)N15—C161.345 (2)
C5—H50.95C16—C171.395 (3)
C6—C71.388 (3)C17—C181.376 (3)
C6—H60.95C17—H170.95
C7—C81.370 (3)C18—C191.378 (3)
C7—H70.95C18—H180.95
C8—N111.390 (2)C19—C201.374 (3)
C8—C91.428 (2)C19—H190.95
C9—C101.414 (3)C20—H200.95
C2—N1—C9116.83 (16)N12—N11—H11121.2 (14)
N1—C2—C3124.13 (19)C8—N11—H11118.6 (14)
N1—C2—H2117.9C13—N12—N11118.14 (15)
C3—C2—H2117.9N12—C13—C16114.88 (16)
C4—C3—C2119.26 (17)N12—C13—C14124.75 (16)
C4—C3—H3120.4C16—C13—C14120.38 (15)
C2—C3—H3120.4C13—C14—H141109.5
C3—C4—C10119.85 (18)C13—C14—H142109.5
C3—C4—H4120.1H141—C14—H142109.5
C10—C4—H4120.1C13—C14—H143109.5
C6—C5—C10119.95 (18)H141—C14—H143109.5
C6—C5—H5120.0H142—C14—H143109.5
C10—C5—H5120.0C20—N15—C16116.69 (16)
C5—C6—C7121.3 (2)N15—C16—C17122.41 (16)
C5—C6—H6119.3N15—C16—C13116.45 (16)
C7—C6—H6119.3C17—C16—C13121.14 (16)
C8—C7—C6120.78 (18)C18—C17—C16118.99 (18)
C8—C7—H7119.6C18—C17—H17120.5
C6—C7—H7119.6C16—C17—H17120.5
C7—C8—N11123.54 (16)C17—C18—C19119.44 (18)
C7—C8—C9119.42 (17)C17—C18—H18120.3
N11—C8—C9117.04 (16)C19—C18—H18120.3
N1—C9—C10123.27 (16)C20—C19—C18117.85 (17)
N1—C9—C8117.25 (16)C20—C19—H19121.1
C10—C9—C8119.47 (17)C18—C19—H19121.1
C5—C10—C4124.32 (18)N15—C20—C19124.63 (18)
C5—C10—C9119.05 (16)N15—C20—H20117.7
C4—C10—C9116.63 (18)C19—C20—H20117.7
N12—N11—C8118.19 (16)
C9—N1—C2—C31.3 (3)N1—C9—C10—C40.8 (3)
N1—C2—C3—C41.0 (3)C8—C9—C10—C4179.65 (16)
C2—C3—C4—C100.3 (3)C7—C8—N11—N127.6 (3)
C10—C5—C6—C70.1 (3)C9—C8—N11—N12172.94 (15)
C5—C6—C7—C80.7 (3)C8—N11—N12—C13169.08 (16)
C6—C7—C8—N11179.76 (18)N11—N12—C13—C16178.32 (14)
C6—C7—C8—C90.8 (3)N11—N12—C13—C141.2 (3)
C2—N1—C9—C100.3 (3)C20—N15—C16—C170.1 (3)
C2—N1—C9—C8179.21 (16)C20—N15—C16—C13179.30 (15)
C7—C8—C9—N1179.78 (16)N12—C13—C16—N15169.20 (16)
N11—C8—C9—N10.7 (2)C14—C13—C16—N1511.3 (2)
C7—C8—C9—C100.2 (3)N12—C13—C16—C1710.3 (2)
N11—C8—C9—C10179.72 (16)C14—C13—C16—C17169.26 (17)
C6—C5—C10—C4179.50 (18)N15—C16—C17—C180.1 (3)
C6—C5—C10—C90.6 (3)C13—C16—C17—C18179.37 (16)
C3—C4—C10—C5178.78 (18)C16—C17—C18—C190.4 (3)
C3—C4—C10—C91.1 (3)C17—C18—C19—C200.7 (3)
N1—C9—C10—C5179.04 (17)C16—N15—C20—C190.6 (3)
C8—C9—C10—C50.5 (3)C18—C19—C20—N150.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N10.93 (2)2.31 (2)2.688 (2)104 (3)
C14—H142···N150.982.382.855 (2)109
(II) 1-(1H-Pyrrol-2-yl)ethan-1-one (8-quinolyl)hydrazone top
Crystal data top
C15H14N4F(000) = 528
Mr = 250.30Dx = 1.322 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2c-2acCell parameters from 4172 reflections
a = 10.690 (2) Åθ = 2.9–27.5°
b = 5.5066 (11) ŵ = 0.08 mm1
c = 21.363 (4) ÅT = 150 K
V = 1257.5 (4) Å3Plate, yellow
Z = 40.32 × 0.24 × 0.01 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1445 independent reflections
Radiation source: Nonius FR591 rotating anode876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.7°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 77
Tmin = 0.974, Tmax = 0.999l = 2723
7258 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1445 reflectionsΔρmax = 0.23 e Å3
181 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (5)
Crystal data top
C15H14N4V = 1257.5 (4) Å3
Mr = 250.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.690 (2) ŵ = 0.08 mm1
b = 5.5066 (11) ÅT = 150 K
c = 21.363 (4) Å0.32 × 0.24 × 0.01 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1445 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
876 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.999Rint = 0.111
7258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.23 e Å3
S = 0.97Δρmin = 0.33 e Å3
1445 reflectionsAbsolute structure: (Flack, 1983)
181 parametersAbsolute structure parameter: 0 (5)
1 restraint
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. Mean plane data ex SHELXL97 for molecule (II) #############################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.3706 (0.0093) x + 3.3753 (0.0060) y + 2.2524 (0.0297) z = 10.5584 (0.0229)

* -0.0044 (0.0023) N1 * 0.0040 (0.0026) C2 * 0.0006 (0.0027) C3 * -0.0044 (0.0026) C4 * 0.0037 (0.0024) C10 * 0.0005 (0.0024) C9

Rms deviation of fitted atoms = 0.0034

8.1553 (0.0137) x + 3.5541 (0.0083) y - 0.8007 (0.0423) z = 8.6944 (0.0292)

Angle to previous plane (with approximate e.s.d.) = 8.48 (0.22)

* -0.0033 (0.0024) N15 * 0.0018 (0.0023) C16 * 0.0003 (0.0022) C17 * -0.0022 (0.0024) C18 * 0.0034 (0.0025) C19

Rms deviation of fitted atoms = 0.0025

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6874 (3)0.9214 (6)0.75041 (14)0.0258 (8)
C20.6150 (3)1.0857 (7)0.7770 (2)0.0302 (10)
H20.57611.20240.75060.038*
C30.5915 (3)1.0997 (8)0.84171 (19)0.0295 (11)
H30.53811.22150.85830.037*
C40.6474 (3)0.9341 (7)0.8800 (2)0.0296 (10)
H40.63240.93940.92380.037*
C50.7882 (3)0.5783 (7)0.89170 (18)0.0275 (10)
H50.77640.57560.93580.034*
C60.8640 (3)0.4112 (7)0.86422 (17)0.0271 (10)
H60.90480.29320.88940.034*
C70.8829 (3)0.4105 (7)0.79905 (17)0.0265 (10)
H70.93620.29210.78080.033*
C80.8250 (3)0.5794 (7)0.76150 (18)0.0228 (9)
C90.7444 (3)0.7558 (6)0.78886 (18)0.0222 (10)
C100.7269 (3)0.7559 (7)0.85514 (17)0.0235 (10)
N110.8423 (3)0.5871 (7)0.69708 (15)0.0290 (9)
H110.808 (3)0.720 (7)0.6776 (16)0.012 (9)*
N120.9213 (3)0.4212 (7)0.67012 (15)0.0260 (8)
C130.9336 (3)0.4290 (8)0.60966 (17)0.0217 (10)
C140.8683 (4)0.6031 (8)0.56800 (19)0.0288 (10)
H1410.89080.76940.57990.036*
H1420.77770.58140.57200.036*
H1430.89340.57370.52450.036*
N151.0855 (3)0.0943 (7)0.62013 (17)0.0272 (9)
H151.094 (4)0.103 (8)0.659 (2)0.041 (15)*
C161.0158 (3)0.2474 (7)0.58325 (17)0.0227 (9)
C171.0391 (3)0.1795 (7)0.52143 (19)0.0301 (9)
H171.00400.25190.48510.038*
C181.1241 (3)0.0160 (8)0.5226 (2)0.0354 (10)
H181.15640.09950.48720.044*
C191.1519 (3)0.0642 (8)0.5843 (2)0.0322 (11)
H191.20730.18610.59910.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (17)0.030 (2)0.023 (2)0.0018 (15)0.0032 (13)0.0006 (18)
C20.026 (2)0.031 (3)0.034 (3)0.0036 (19)0.0048 (19)0.007 (2)
C30.028 (2)0.036 (3)0.024 (3)0.0042 (18)0.0030 (17)0.009 (2)
C40.027 (2)0.041 (3)0.021 (2)0.0045 (19)0.0059 (17)0.013 (2)
C50.032 (2)0.039 (3)0.011 (2)0.0049 (19)0.0016 (16)0.003 (2)
C60.030 (2)0.033 (3)0.018 (2)0.0001 (18)0.0023 (16)0.004 (2)
C70.0246 (19)0.031 (3)0.024 (3)0.0016 (18)0.0027 (18)0.004 (2)
C80.0242 (19)0.030 (3)0.014 (2)0.0012 (18)0.0008 (16)0.000 (2)
C90.0178 (17)0.029 (2)0.020 (2)0.0013 (17)0.0011 (16)0.0041 (18)
C100.0187 (17)0.032 (3)0.019 (2)0.0041 (17)0.0021 (15)0.0063 (18)
N110.036 (2)0.034 (2)0.017 (2)0.0102 (17)0.0016 (15)0.002 (2)
N120.0220 (17)0.037 (2)0.019 (2)0.0037 (15)0.0023 (13)0.0046 (18)
C130.0213 (19)0.027 (3)0.017 (3)0.0037 (16)0.0035 (16)0.001 (2)
C140.026 (2)0.042 (3)0.019 (2)0.0037 (19)0.0003 (17)0.003 (2)
N150.0271 (19)0.038 (2)0.017 (2)0.0057 (15)0.0016 (15)0.0059 (19)
C160.0212 (19)0.030 (2)0.017 (2)0.0036 (18)0.0002 (16)0.000 (2)
C170.027 (2)0.045 (3)0.018 (2)0.0067 (17)0.0010 (18)0.001 (2)
C180.035 (2)0.043 (3)0.028 (2)0.0058 (19)0.009 (2)0.013 (2)
C190.026 (2)0.035 (3)0.035 (3)0.0033 (18)0.0021 (19)0.006 (2)
Geometric parameters (Å, º) top
N1—C21.319 (5)N11—N121.371 (4)
N1—C91.371 (4)N11—H110.92 (4)
C2—C31.408 (6)N12—C131.299 (5)
C2—H20.95C13—C161.446 (5)
C3—C41.363 (6)C13—C141.483 (6)
C3—H30.95C14—H1410.98
C4—C101.402 (5)C14—H1420.98
C4—H40.95C14—H1430.98
C5—C61.359 (5)N15—C191.361 (5)
C5—C101.413 (5)N15—C161.374 (5)
C5—H50.95N15—H150.83 (5)
C6—C71.407 (5)C16—C171.395 (5)
C6—H60.95C17—C181.409 (5)
C7—C81.376 (5)C17—H170.95
C7—H70.95C18—C191.376 (6)
C8—N111.389 (5)C18—H180.95
C8—C91.424 (5)C19—H190.95
C9—C101.428 (4)
C2—N1—C9117.4 (3)N12—N11—C8118.6 (3)
N1—C2—C3124.4 (4)N12—N11—H11126 (2)
N1—C2—H2117.8C8—N11—H11115 (2)
C3—C2—H2117.8C13—N12—N11117.3 (3)
C4—C3—C2118.4 (4)N12—C13—C16115.3 (4)
C4—C3—H3120.8N12—C13—C14124.8 (4)
C2—C3—H3120.8C16—C13—C14119.9 (3)
C3—C4—C10120.4 (4)C13—C14—H141109.5
C3—C4—H4119.8C13—C14—H142109.5
C10—C4—H4119.8H141—C14—H142109.5
C6—C5—C10120.4 (3)C13—C14—H143109.5
C6—C5—H5119.8H141—C14—H143109.5
C10—C5—H5119.8H142—C14—H143109.5
C5—C6—C7121.0 (4)C19—N15—C16110.7 (4)
C5—C6—H6119.5C19—N15—H15122 (3)
C7—C6—H6119.5C16—N15—H15127 (3)
C8—C7—C6120.7 (4)N15—C16—C17106.3 (3)
C8—C7—H7119.6N15—C16—C13122.0 (3)
C6—C7—H7119.6C17—C16—C13131.6 (3)
C7—C8—N11122.6 (4)C16—C17—C18107.6 (4)
C7—C8—C9119.6 (3)C16—C17—H17126.2
N11—C8—C9117.8 (4)C18—C17—H17126.2
N1—C9—C8118.5 (3)C19—C18—C17107.7 (4)
N1—C9—C10122.4 (3)C19—C18—H18126.1
C8—C9—C10119.1 (3)C17—C18—H18126.1
C4—C10—C5123.8 (4)N15—C19—C18107.6 (4)
C4—C10—C9117.1 (4)N15—C19—H19126.2
C5—C10—C9119.1 (3)C18—C19—H19126.2
C9—N1—C2—C30.8 (6)N1—C9—C10—C5179.6 (3)
N1—C2—C3—C40.4 (6)C8—C9—C10—C51.2 (5)
C2—C3—C4—C100.5 (6)C7—C8—N11—N120.7 (5)
C10—C5—C6—C70.2 (6)C9—C8—N11—N12178.9 (3)
C5—C6—C7—C80.0 (6)C8—N11—N12—C13178.5 (4)
C6—C7—C8—N11179.2 (4)N11—N12—C13—C16178.8 (3)
C6—C7—C8—C90.4 (6)N11—N12—C13—C140.2 (6)
C2—N1—C9—C8178.8 (3)C19—N15—C16—C170.5 (4)
C2—N1—C9—C100.5 (5)C19—N15—C16—C13178.1 (3)
C7—C8—C9—N1179.7 (3)N12—C13—C16—N156.4 (5)
N11—C8—C9—N10.7 (5)C14—C13—C16—N15175.0 (4)
C7—C8—C9—C101.0 (5)N12—C13—C16—C17170.5 (4)
N11—C8—C9—C10178.6 (3)C14—C13—C16—C178.1 (6)
C3—C4—C10—C5180.0 (4)N15—C16—C17—C180.2 (4)
C3—C4—C10—C90.8 (5)C13—C16—C17—C18177.4 (4)
C6—C5—C10—C4180.0 (3)C16—C17—C18—C190.2 (4)
C6—C5—C10—C90.8 (6)C16—N15—C19—C180.7 (5)
N1—C9—C10—C40.3 (5)C17—C18—C19—N150.6 (5)
C8—C9—C10—C4179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N10.92 (4)2.30 (3)2.726 (4)107 (3)
N15—H15···N1i0.83 (5)2.20 (5)2.990 (5)159 (4)
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H14N4C15H14N4
Mr262.31250.30
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pca21
Temperature (K)150150
a, b, c (Å)10.1678 (4), 11.2970 (6), 11.3566 (6)10.690 (2), 5.5066 (11), 21.363 (4)
α, β, γ (°)90, 90.284 (3), 9090, 90, 90
V3)1304.47 (11)1257.5 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.20 × 0.08 × 0.070.32 × 0.24 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.984, 0.9940.974, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
17166, 2987, 1709 7258, 1445, 876
Rint0.0950.111
(sin θ/λ)max1)0.6500.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 0.96 0.051, 0.113, 0.97
No. of reflections29871445
No. of parameters186181
No. of restraints01
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.230.23, 0.33
Absolute structure?(Flack, 1983)
Absolute structure parameter?0 (5)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N10.93 (2)2.31 (2)2.688 (2)104 (3)
C14—H142···N150.982.382.855 (2)109
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N10.92 (4)2.30 (3)2.726 (4)107 (3)
N15—H15···N1i0.83 (5)2.20 (5)2.990 (5)159 (4)
Symmetry code: (i) x+1/2, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds