Download citation
Download citation
link to html
The structure of the title compound, C12H8N2O4S2, contains no direction-specific intermolecular interactions, i.e. no C—H...O hydrogen bonds, no aromatic π–π-stacking interactions and no C—H...π(arene) interactions. This behaviour is compared with the three known symmetrical isomers of bis­(nitro­phenyl) di­sulfide, having the nitro groups on the two 2-, 3- or 4-positions, all of which exhibit direction-specific supramolecular aggregation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102011344/gg1120sup1.cif
Contains datablocks global, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011344/gg1120IVsup2.hkl
Contains datablock IV

CCDC reference: 193431

Comment top

In bis(4-nitrophenyl) disulfide, (4-O2NC6H4)2S2, (I), where the molecules lie across twofold rotation axes in space group C2/c, a single C—H···O hydrogen bond suffices to link the molecules into sheets, which are then linked by aromatic π···π stacking interactions to give a three-dimensional framework structure (Wardell et al., 2000). In the isomeric bis(2-nitrophenyl) disulfide, (II), the molecules are linked into chains by a single C—H···O hydrogen bond, and the chains are further linked into sheets by means of aromatic π···π stacking interactions (Glidewell et al., 2000). The structure of bis(3-nitrophenyl) disulfide, (III), on the other hand, contains no C—H···O hydrogen bonds, but the molecules are nonetheless linked into chains by aromatic π···π stacking interactions (Cannon et al., 2000). \sch

Intrigued by the different supramolecular structures adopted by the isomers (I)-(III), we have now investigated the `intermediate' isomer (IV), 2-nitrophenyl 4-nitrophenyl disulfide. The intramolecular dimensions and overall molecular conformation of (IV) are comparable with those in (I)-(III), with both nitro groups in (IV) nearly coplanar with the adjacent aryl rings. Also noteworthy are the C—C—C, C—C—S and C—C—N angles at the ipso positions (Table 1), where the C—C—C angles, in particular, are consistent with the electron-donating and electron-withdrawing properties of thiolate and nitro substituents, respectively (Domenicano & Murray-Rust, 1979). We also note that the S2—S1—C11—C12 torsion angle is close to 180°, consistent (Low et al., 2000) with the near co-planarity of the 2-nitro group and the C11—C16 ring.

However, the striking feature of the structure of (IV) is the complete absence of C—H···O hydrogen bonds and of both aromatic π···π stacking interactions and C—H···π(arene) interactions, so that there are no direction-specific intermolecular interactions. By not forming C—H···O hydrogen bonds, (IV) resembles (III), rather than (I) and (II). The supramolecular structures of (I)-(IV), as defined by the direction-specific intermolecular interactions, are thus three-, two-, one- and zero-dimensional, respectively, with very modest changes in molecular constitution leading to significant changes in the supramolecular aggregation.

The absence of any C—H···O hydrogen bonds in (III) and (IV) is highly unusual, as such interactions are generally the dominant feature of the crystal structures of compounds containing nitroarenethiolate, O2NC6H4SX, fragments (Kucsman et al., 1984; Aupers et al., 1999; Low et al., 2000; Glidewell et al., 2000), as well as those of simple nitrobenzenes (Boonstra, 1963; Trotter & Williston, 1966; Choi & Abel, 1972; Herbstein & Kapon, 1990; Boese et al., 1992; Sekine et al., 1994).

Much effort continues to be expended in attempts to compute, using a variety of ab initio, semi-empirical and heuristic methods, the structures of simple molecular compounds (Lommerse et al., 2000; Motherwell, 2001). However, the unexpected differences between the crystal structures of members of simple series of isomeric compounds, such as compounds (I)-(IV) and other series where hard (Braga et al., 1995) hydrogen bonds are absent, as reported elsewhere (Farrell et al., 2002; Glidewell et al., 2002), together with the entire phenomenon of polymorphism, in particular the rather frequent observation of concomitant polymorphism (Bernstein et al., 1999), raise at least the suspicion that, for systems characterized by weak and/or long-range intermolecular forces, the crystal structures may, in general, be intrinsically non-computable.

Experimental top

A sample of the title compound was obtained by reaction of equimolar quantities of 2-nitrobenzenesulfenyl chloride and (4-nitrobenzenethiolato)triphenylstannane in chloroform solution. Crystals of (IV) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol [m.p. 429–431 K; literature m.p. 429 K (Lukashevich & Sergeeva, 1949)].

Refinement top

Compound (IV) crystallized in the monoclinic system; space group P21/c was uniquely assigned from the systematic absences. H atoms were treated as riding atoms, with C—H = 0.93 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Nitrophenyl 4-nitrophenyl disulfide top
Crystal data top
C12H8N2O4S2F(000) = 632
Mr = 308.34Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4661 reflections
a = 11.4923 (6) Åθ = 2.9–32.5°
b = 7.9061 (4) ŵ = 0.43 mm1
c = 14.3117 (7) ÅT = 298 K
β = 94.335 (1)°Block, colourless
V = 1296.63 (11) Å30.33 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4661 independent reflections
Radiation source: fine-focus sealed X-ray tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ scans and ω scansθmax = 32.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1715
Tmin = 0.873, Tmax = 0.951k = 1111
13378 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
4661 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H8N2O4S2V = 1296.63 (11) Å3
Mr = 308.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4923 (6) ŵ = 0.43 mm1
b = 7.9061 (4) ÅT = 298 K
c = 14.3117 (7) Å0.33 × 0.20 × 0.12 mm
β = 94.335 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2924 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.951Rint = 0.027
13378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.93Δρmax = 0.28 e Å3
4661 reflectionsΔρmin = 0.21 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16358 (3)0.52555 (5)0.10632 (3)0.04601 (11)
C110.07525 (11)0.34112 (16)0.11723 (9)0.0371 (3)
C120.04477 (12)0.35258 (17)0.13031 (9)0.0383 (3)
N120.10064 (11)0.51619 (16)0.13679 (8)0.0461 (3)
O1210.04083 (11)0.64271 (15)0.13112 (10)0.0694 (4)
O1220.20539 (10)0.52300 (17)0.14711 (10)0.0718 (4)
C130.11428 (13)0.2109 (2)0.13591 (10)0.0484 (3)
C140.06638 (15)0.0523 (2)0.12949 (11)0.0541 (4)
C150.05116 (14)0.03787 (19)0.11789 (11)0.0512 (4)
C160.12087 (13)0.17865 (18)0.11173 (11)0.0455 (3)
S20.32356 (3)0.43292 (5)0.07788 (3)0.04890 (12)
C210.39917 (11)0.40630 (17)0.19007 (10)0.0398 (3)
C220.52018 (12)0.4233 (2)0.19514 (10)0.0460 (3)
C230.58406 (12)0.4059 (2)0.27933 (10)0.0472 (3)
C240.52634 (12)0.37059 (17)0.35856 (10)0.0402 (3)
N240.59401 (11)0.35597 (15)0.44898 (9)0.0479 (3)
O2410.69786 (10)0.39064 (19)0.45323 (9)0.0709 (4)
O2420.54394 (11)0.31008 (15)0.51711 (8)0.0616 (3)
C250.40704 (13)0.35009 (18)0.35498 (10)0.0461 (3)
C260.34329 (12)0.36788 (18)0.27030 (10)0.0455 (3)
H130.19340.22270.14400.058*
H140.11260.04370.13290.065*
H150.08410.06910.11410.061*
H160.19990.16480.10380.055*
H220.55760.44660.14120.055*
H230.66480.41760.28320.057*
H250.37020.32460.40890.055*
H260.26270.35420.26670.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03872 (19)0.03994 (18)0.0594 (2)0.00225 (14)0.00402 (15)0.00509 (15)
C110.0342 (6)0.0395 (7)0.0373 (7)0.0005 (5)0.0010 (5)0.0015 (5)
C120.0349 (6)0.0428 (7)0.0369 (7)0.0044 (5)0.0017 (5)0.0002 (5)
N120.0393 (6)0.0478 (7)0.0515 (7)0.0076 (5)0.0058 (5)0.0003 (5)
O1210.0566 (7)0.0403 (6)0.1118 (11)0.0067 (5)0.0091 (7)0.0041 (6)
O1220.0433 (7)0.0695 (8)0.1047 (10)0.0139 (6)0.0192 (7)0.0065 (7)
C130.0368 (7)0.0531 (8)0.0557 (9)0.0044 (6)0.0072 (6)0.0027 (7)
C140.0500 (9)0.0442 (8)0.0691 (10)0.0099 (7)0.0105 (7)0.0028 (7)
C150.0528 (9)0.0376 (7)0.0634 (9)0.0029 (6)0.0051 (7)0.0028 (6)
C160.0361 (7)0.0442 (8)0.0561 (9)0.0046 (6)0.0032 (6)0.0019 (6)
S20.03749 (19)0.0644 (3)0.0455 (2)0.00415 (16)0.00749 (14)0.00276 (16)
C210.0337 (6)0.0397 (7)0.0467 (7)0.0028 (5)0.0074 (5)0.0015 (6)
C220.0353 (7)0.0559 (8)0.0481 (8)0.0071 (6)0.0123 (6)0.0029 (6)
C230.0314 (7)0.0550 (8)0.0561 (9)0.0048 (6)0.0093 (6)0.0036 (7)
C240.0373 (7)0.0375 (7)0.0460 (8)0.0026 (5)0.0046 (5)0.0015 (5)
N240.0441 (7)0.0448 (7)0.0543 (7)0.0002 (5)0.0001 (6)0.0008 (5)
O2410.0437 (7)0.0948 (9)0.0721 (8)0.0136 (6)0.0089 (6)0.0093 (7)
O2420.0618 (7)0.0710 (8)0.0524 (6)0.0011 (6)0.0063 (5)0.0112 (5)
C250.0380 (7)0.0545 (8)0.0472 (8)0.0057 (6)0.0115 (6)0.0031 (6)
C260.0288 (6)0.0580 (9)0.0506 (8)0.0056 (6)0.0085 (6)0.0019 (6)
Geometric parameters (Å, º) top
S1—C111.7902 (13)S2—C211.7794 (15)
S1—S22.0483 (5)C21—C261.3910 (18)
C11—C161.3919 (19)C21—C221.3936 (18)
C11—C121.4087 (18)C22—C231.370 (2)
C12—C131.382 (2)C22—H220.9300
C12—N121.4503 (18)C23—C241.3848 (19)
N12—O1211.2199 (17)C23—H230.9300
N12—O1221.2250 (16)C24—C251.3776 (19)
C13—C141.375 (2)C24—N241.4631 (19)
C13—H130.9300N24—O2411.2215 (16)
C14—C151.378 (2)N24—O2421.2241 (16)
C14—H140.9300C25—C261.375 (2)
C15—C161.378 (2)C25—H250.9300
C15—H150.9300C26—H260.9300
C16—H160.9300
C11—S1—S2104.45 (5)C21—S2—S1104.32 (5)
C12—C11—C16116.33 (12)C22—C21—C26119.95 (13)
C12—C11—S1121.77 (10)C22—C21—S2116.93 (10)
C16—C11—S1121.88 (10)C26—C21—S2123.12 (11)
C11—C12—C13122.12 (12)C23—C22—C21120.16 (12)
C11—C12—N12120.57 (12)C23—C22—H22119.9
C13—C12—N12117.31 (12)C21—C22—H22119.9
O121—N12—O122122.40 (13)C22—C23—C24118.85 (13)
O121—N12—C12118.21 (12)C22—C23—H23120.6
O122—N12—C12119.39 (13)C24—C23—H23120.6
C14—C13—C12119.95 (13)C23—C24—C25122.02 (13)
C14—C13—H13120.0C23—C24—N24118.99 (13)
C12—C13—H13120.0C25—C24—N24118.99 (12)
C13—C14—C15118.99 (14)O241—N24—O242122.90 (14)
C13—C14—H14120.5O241—N24—C24118.58 (12)
C15—C14—H14120.5O242—N24—C24118.52 (13)
C16—C15—C14121.38 (14)C26—C25—C24118.90 (12)
C16—C15—H15119.3C26—C25—H25120.6
C14—C15—H15119.3C24—C25—H25120.6
C15—C16—C11121.23 (13)C25—C26—C21120.09 (13)
C15—C16—H16119.4C25—C26—H26120.0
C11—C16—H16119.4C21—C26—H26120.0
S1—S2—C21—C22150.29 (11)C13—C12—N12—O1220.2 (2)
S2—S1—C11—C12175.34 (10)C23—C24—N24—O2416.6 (2)
C11—S1—S2—C2190.27 (7)C23—C24—N24—O242173.6 (2)
C11—C12—N12—O1210.4 (2)C25—C24—N24—O241172.9 (2)
C11—C12—N12—O122179.2 (2)C25—C24—N24—O2426.9 (2)
C13—C12—N12—O121179.3 (2)

Experimental details

Crystal data
Chemical formulaC12H8N2O4S2
Mr308.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.4923 (6), 7.9061 (4), 14.3117 (7)
β (°) 94.335 (1)
V3)1296.63 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.33 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.873, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13378, 4661, 2924
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 0.93
No. of reflections4661
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond and torsion angles (º) top
C12—C11—C16116.33 (12)C22—C21—S2116.93 (10)
C12—C11—S1121.77 (10)C26—C21—S2123.12 (11)
C16—C11—S1121.88 (10)C23—C24—C25122.02 (13)
C11—C12—C13122.12 (12)C23—C24—N24118.99 (13)
C11—C12—N12120.57 (12)C25—C24—N24118.99 (12)
C22—C21—C26119.95 (13)
S1—S2—C21—C22150.29 (11)C11—C12—N12—O1210.4 (2)
S2—S1—C11—C12175.34 (10)C23—C24—N24—O2416.6 (2)
C11—S1—S2—C2190.27 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds