Download citation
Download citation
link to html
In the the title compound, [Ni(C21H28O2PS2)2], the Ni atom resides on an inversion centre and is coordinated in a square-planar array by four S atoms, with Ni—S and P—S bond lengths of 2.2336 (12)/2.2351 (13) and 1.9910 (16)/2.0010 (17) Å, respectively. The two O-2,4-di-tert-butyl­phenyl and two 4-methoxy­phenyl moieties adopt trans configurations about the central Ni atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008764/gg1114sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008764/gg1114IIIsup2.hkl
Contains datablock III

CCDC reference: 192944

Comment top

Owing to their insecticide and antioxidant activities, dithiophosphonate compounds have been widely investigated in medical, industrial and agricultural fields. Despite this, studies on the molecular structures of dithiophosphonate complexes have not been reported adequately up until recently. In recent years, NiII complexes of this type have received increasing attention owing to their extensive applications as both antioxidants and antiwear additives in the rubber industry and in lubrication engineering (Harrison & Kikabhai, 1987; Kovtun et al., 1992). Additionally, the adducts and their products are also useful in biological applications (Hao et al., 2001). Consequently, the synthesis, physicochemical investigations and crystal structures of many similar complexes and their adducts have been reported (You et al., 1994; Huang et al., 1995; Hao, Fun et al., 2001; Hao, Jian et al., 2001). A previous study involving a related NiII–dithiophosphonate complex, namely trans-bis[O-(n-propyl) (p-methoxyphenyl)dithiophosphonato]nickel(II), has been reported (Özcan et al., 2002). The title complex, (III), was prepared and the structure determined in an extension of our previous research studies.

The Ni atom lies on a crystallographic centre of symmetry and the asymmetric unit consists of half of the nickel(II) complex molecule (Fig. 1). The Ni atom is coordinated by four S atoms and has a trans configuration imposed by the ligands in a square-planar environment. The dihedral angle between the S—Ni—S coordination planes is 88.70 (5)°, and the Ni—S and S—P bond lengths are 2.2336 (12)/2.2351 (13) and 1.9910 (16)/2.0010 (17) Å, respectively. These bond lengths compare well with those found in other related NiII complexes (Haiduc et al., 1984; Hoskins & Tiekink, 1985; Arca et al., 1997; van Zyl et al., 1998; Hao, Fun et al., 2001; Hao, Jian et al., 2001; Özcan et al., 2002).

The differences in the Ni—S and S—P bond lengths are comparable with those found in our previous study (Özcan et al., 2002), where the values were 2.2251 (9)/2.2283 (9) and 2.004 (1)/2.008 (1) Å, respectively. These differences were explained by electron delocalization in the P—S π-bonding in our previous work. Similar observations have alos been made in the present and related studies (Ooi & Fernando, 1968; Arora et al., 1978; Hoffmann et al., 1979; Hoskins & Tiekink, 1985; Hao, Fun et al., 2001; Hao, Jian et al., 2001). Small differences in all the geometric parameters around the central Ni atom may also be explained by the steric effect of different molecular groups attached to the P atom in related complexes. The mean Ni—S—P angle in (III) (Table 1) is in good agreement with similar angles found in bis(butyldithiophosphonato)bis(4-aminopyridine)nickel(II) [82.83 (5)°; You et al., 1994] and [Ni{(C4H9O)2PS2}](pyridine)2 [82.57°; Liu et al., 1987]. The C—O distance in the O-(2,4-di-tert-butylphenyl) (O-dtb) group is much longer than the range found in bis(p-MePh-diaryldithiophosphato)(1,10-phenanthroline)nickel(II) [1.398 (4)–1.47 (1) Å] and is probably the result of electronic effects from the aromatic ring. All other structural parameters have normal values. The methoxyphenyl group and the main part of O-dtb group (atoms O1, C8–C14 and C18) are individually planar and the dihedral angle between these planes is 62.6 (1)°.

Experimental top

Lawesson's reagent, (I) (1.48 g, 3.53 mmol), was treated with 2,4-di-tert-butylphenol (1.45 g, 7.07 mmol) in hot benzene (25 ml), yielding the O-di-tert-butylphenyl ester of dithiophosphonic acid, (II). The title compound, (III), was prepared by the reaction of (II) with nickel(II) acetate in a 1:1 mixture of benzene and acetic acid. The compound crystallizes directly from the reaction medium and these crystals were used for the X-ray study. The purple-coloured compound (III) melts at 515–516 K, is stable well over its melting point, and recrystallizes, upon cooling, just below the melting temperature without any observable change in its colour. IR (KBr, cm-1): 552 (5) (PS, symmetric), 670 (5) (PS, asymmetric); 1028 (5) (POC).

Refinement top

H atoms bonded to C atoms were placed geometrically and all H atoms were treated as riding, with C—H distances of 0.93 and 0.96 Å, and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (III) showing the atom-numbering scheme and ellipsoids at the 40% probability level.
(III) top
Crystal data top
[Ni(C21H28O2PS2)2]F(000) = 924
Mr = 873.76Dx = 1.275 Mg m3
Monoclinic, P21/cMelting point: 515 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1782 (18) ÅCell parameters from 4916 reflections
b = 32.060 (12) Åθ = 9.9–18.0°
c = 8.709 (3) ŵ = 0.72 mm1
β = 94.68 (3)°T = 293 K
V = 2275.8 (12) Å3Prism, violet
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.045
ω–2θ scansθmax = 26.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 1010
Tmin = 0.814, Tmax = 0.870k = 039
4916 measured reflectionsl = 100
4611 independent reflections4916 standard reflections every 120 min
2618 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.9574P]
where P = (Fo2 + 2Fc2)/3
4611 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.53 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C21H28O2PS2)2]V = 2275.8 (12) Å3
Mr = 873.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1782 (18) ŵ = 0.72 mm1
b = 32.060 (12) ÅT = 293 K
c = 8.709 (3) Å0.30 × 0.25 × 0.20 mm
β = 94.68 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2618 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.814, Tmax = 0.8704916 standard reflections every 120 min
4916 measured reflections intensity decay: 0.9%
4611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.99Δρmax = 0.53 e Å3
4611 reflectionsΔρmin = 0.35 e Å3
241 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.0394 (2)
S10.45582 (14)0.55703 (4)0.63830 (14)0.0495 (3)
S20.72010 (14)0.53133 (4)0.41663 (13)0.0474 (3)
P10.68335 (14)0.57097 (4)0.58638 (13)0.0417 (3)
O10.7092 (3)0.61873 (9)0.5419 (3)0.0468 (7)
O21.1623 (5)0.55785 (14)1.1311 (4)0.0924 (13)
C11.3164 (8)0.5383 (2)1.1210 (7)0.101 (2)
C21.0583 (6)0.55944 (16)1.0011 (6)0.0591 (13)
C31.0941 (6)0.54453 (17)0.8620 (6)0.0626 (14)
C40.9785 (6)0.54820 (17)0.7365 (6)0.0600 (14)
C50.8299 (5)0.56609 (14)0.7491 (5)0.0444 (11)
C60.7925 (7)0.58003 (17)0.8941 (6)0.0722 (16)
C70.9072 (8)0.57664 (19)1.0180 (6)0.0817 (18)
C80.6565 (5)0.63718 (13)0.3977 (5)0.0441 (11)
C90.5019 (6)0.62997 (17)0.3351 (6)0.0619 (14)
C100.4478 (6)0.64813 (17)0.1951 (6)0.0670 (15)
C110.5487 (6)0.67348 (15)0.1194 (5)0.0515 (12)
C120.7051 (6)0.68043 (14)0.1891 (5)0.0518 (12)
C130.7659 (5)0.66294 (14)0.3284 (5)0.0450 (11)
C140.9393 (6)0.67216 (16)0.3998 (6)0.0589 (13)
C151.0310 (8)0.7017 (2)0.2974 (8)0.118 (3)
C160.9326 (7)0.69336 (19)0.5575 (7)0.091 (2)
C171.0413 (6)0.63234 (19)0.4230 (7)0.0759 (17)
C180.4914 (7)0.69379 (16)0.0340 (5)0.0636 (14)
C190.3603 (13)0.6682 (3)0.1253 (9)0.197 (6)
C200.4342 (13)0.7379 (3)0.0068 (8)0.192 (6)
C210.6319 (11)0.6968 (3)0.1387 (8)0.164 (4)
H1A1.37780.53931.21970.151*
H1B1.37600.55261.04640.151*
H1C1.29990.50981.09010.151*
H31.19500.53200.85070.075*
H41.00380.53810.64120.072*
H60.69010.59160.90690.087*
H70.88210.58611.11430.098*
H90.43190.61290.38590.074*
H100.34180.64290.15250.080*
H120.77400.69800.13920.062*
H15A0.96950.72710.28100.177*
H15B1.04360.68850.20010.177*
H15C1.13720.70800.34720.177*
H16A0.86910.71850.54560.137*
H16B1.04190.70000.59890.137*
H16C0.88260.67480.62650.137*
H17A1.14900.63930.46790.114*
H17B1.04980.61900.32540.114*
H17C0.98900.61380.49040.114*
H19A0.40090.64050.14060.296*
H19B0.33330.68110.22350.296*
H19C0.26400.66670.06950.296*
H20A0.51940.75300.05180.287*
H20B0.33780.73720.04910.287*
H20C0.40900.75160.10400.287*
H21A0.67220.66930.15810.246*
H21B0.71890.71330.08940.246*
H21C0.59300.70960.23450.246*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0371 (4)0.0491 (5)0.0315 (4)0.0008 (4)0.0003 (3)0.0013 (4)
S10.0450 (7)0.0550 (7)0.0496 (7)0.0011 (6)0.0109 (5)0.0043 (6)
S20.0446 (7)0.0603 (8)0.0378 (6)0.0032 (6)0.0067 (5)0.0049 (6)
P10.0406 (6)0.0483 (7)0.0357 (6)0.0008 (5)0.0009 (5)0.0020 (5)
O10.0475 (18)0.0488 (18)0.0424 (17)0.0024 (14)0.0061 (14)0.0057 (14)
O20.103 (3)0.104 (3)0.062 (3)0.008 (3)0.040 (2)0.005 (2)
C10.094 (5)0.108 (5)0.090 (5)0.008 (4)0.053 (4)0.018 (4)
C20.065 (3)0.060 (3)0.048 (3)0.002 (3)0.019 (3)0.003 (3)
C30.047 (3)0.089 (4)0.051 (3)0.010 (3)0.001 (2)0.013 (3)
C40.054 (3)0.085 (4)0.041 (3)0.009 (3)0.000 (2)0.003 (2)
C50.047 (3)0.049 (3)0.036 (2)0.002 (2)0.001 (2)0.004 (2)
C60.078 (4)0.082 (4)0.055 (3)0.026 (3)0.003 (3)0.011 (3)
C70.102 (5)0.101 (5)0.039 (3)0.014 (4)0.014 (3)0.016 (3)
C80.042 (2)0.047 (3)0.043 (3)0.003 (2)0.001 (2)0.004 (2)
C90.039 (3)0.083 (4)0.062 (3)0.010 (3)0.007 (2)0.025 (3)
C100.046 (3)0.079 (4)0.072 (4)0.005 (3)0.017 (3)0.022 (3)
C110.055 (3)0.056 (3)0.042 (3)0.003 (2)0.005 (2)0.003 (2)
C120.055 (3)0.053 (3)0.048 (3)0.005 (2)0.006 (2)0.008 (2)
C130.047 (3)0.048 (3)0.040 (3)0.004 (2)0.003 (2)0.001 (2)
C140.047 (3)0.067 (3)0.061 (3)0.013 (3)0.004 (2)0.008 (3)
C150.069 (4)0.160 (7)0.120 (6)0.051 (4)0.017 (4)0.063 (5)
C160.085 (4)0.087 (4)0.096 (5)0.006 (4)0.028 (4)0.034 (4)
C170.049 (3)0.100 (5)0.078 (4)0.003 (3)0.002 (3)0.006 (3)
C180.079 (4)0.066 (3)0.043 (3)0.014 (3)0.007 (3)0.006 (2)
C190.261 (12)0.210 (10)0.100 (6)0.110 (9)0.115 (7)0.066 (7)
C200.342 (14)0.155 (8)0.069 (5)0.168 (9)0.042 (7)0.009 (5)
C210.160 (8)0.267 (12)0.068 (5)0.068 (8)0.023 (5)0.079 (6)
Geometric parameters (Å, º) top
Ni—S22.2336 (12)C14—C171.529 (7)
Ni—S12.2351 (13)C14—C161.538 (7)
Ni—P12.7942 (14)C14—C151.538 (7)
P1—O11.598 (3)C2—C31.356 (7)
P1—C51.787 (4)C3—H30.9300
P1—S21.9910 (16)C18—C201.515 (8)
P1—S12.0010 (17)C18—C191.522 (8)
O1—C81.423 (5)C18—C211.527 (8)
C13—C81.390 (6)C17—H17A0.9600
C13—C121.391 (6)C17—H17B0.9600
C13—C141.530 (6)C17—H17C0.9600
C8—C91.356 (6)C16—H16A0.9600
C11—C101.365 (7)C16—H16B0.9600
C11—C121.388 (6)C16—H16C0.9600
C11—C181.525 (6)C1—H1A0.9600
C12—H120.9300C1—H1B0.9600
C4—C51.356 (6)C1—H1C0.9600
C4—C31.391 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.397 (6)C15—H15C0.9600
C6—C71.375 (7)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C10—C91.391 (7)C20—H20C0.9600
C10—H100.9300C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C7—C21.372 (7)C19—H19C0.9600
C7—H70.9300C21—H21A0.9600
O2—C21.361 (5)C21—H21B0.9600
O2—C11.416 (7)C21—H21C0.9600
S2—Ni—S188.70 (5)C3—C2—C7120.0 (4)
S2—P1—S1102.98 (7)O2—C2—C7115.7 (5)
P1—S1—Ni82.34 (6)C2—C3—C4119.3 (5)
P1—S2—Ni82.60 (6)C2—C3—H3120.4
O1—P1—C5100.53 (18)C4—C3—H3120.4
O1—P1—S2113.63 (13)C20—C18—C19111.8 (7)
C5—P1—S1112.16 (16)C20—C18—C11109.8 (4)
S2—Ni—P144.96 (4)C19—C18—C11112.4 (5)
S1—Ni—P145.21 (4)C20—C18—C21107.0 (7)
C5—P1—S2113.64 (16)C19—C18—C21104.7 (7)
O1—P1—S1114.38 (13)C11—C18—C21110.9 (5)
O1—P1—Ni142.55 (12)C14—C17—H17A109.5
C5—P1—Ni116.92 (15)C14—C17—H17B109.5
S2—P1—Ni52.44 (5)H17A—C17—H17B109.5
S1—P1—Ni52.44 (4)C14—C17—H17C109.5
C8—O1—P1125.2 (3)H17A—C17—H17C109.5
C8—C13—C12114.9 (4)H17B—C17—H17C109.5
C8—C13—C14123.1 (4)C14—C16—H16A109.5
C12—C13—C14122.0 (4)C14—C16—H16B109.5
C9—C8—C13122.6 (4)H16A—C16—H16B109.5
C9—C8—O1119.3 (4)C14—C16—H16C109.5
C13—C8—O1118.1 (4)H16A—C16—H16C109.5
C10—C11—C12117.1 (4)H16B—C16—H16C109.5
C10—C11—C18121.5 (4)O2—C1—H1A109.5
C12—C11—C18121.4 (4)O2—C1—H1B109.5
C11—C12—C13124.6 (4)H1A—C1—H1B109.5
C11—C12—H12117.7O2—C1—H1C109.5
C13—C12—H12117.7H1A—C1—H1C109.5
C5—C4—C3121.9 (5)H1B—C1—H1C109.5
C5—C4—H4119.0C14—C15—H15A109.5
C3—C4—H4119.0C14—C15—H15B109.5
C4—C5—C6118.2 (4)H15A—C15—H15B109.5
C4—C5—P1121.4 (4)C14—C15—H15C109.5
C6—C5—P1120.5 (4)H15A—C15—H15C109.5
C7—C6—C5119.9 (5)H15B—C15—H15C109.5
C7—C6—H6120.1C18—C20—H20A109.5
C5—C6—H6120.1C18—C20—H20B109.5
C11—C10—C9120.8 (5)H20A—C20—H20B109.5
C11—C10—H10119.6C18—C20—H20C109.5
C9—C10—H10119.6H20A—C20—H20C109.5
C8—C9—C10120.0 (5)H20B—C20—H20C109.5
C8—C9—H9120.0C18—C19—H19A109.5
C10—C9—H9120.0C18—C19—H19B109.5
C2—C7—C6120.7 (5)H19A—C19—H19B109.5
C2—C7—H7119.7C18—C19—H19C109.5
C6—C7—H7119.7H19A—C19—H19C109.5
C2—O2—C1117.7 (5)H19B—C19—H19C109.5
C17—C14—C13111.7 (4)C18—C21—H21A109.5
C17—C14—C16108.0 (5)C18—C21—H21B109.5
C13—C14—C16110.4 (4)H21A—C21—H21B109.5
C17—C14—C15107.8 (5)C18—C21—H21C109.5
C13—C14—C15111.3 (4)H21A—C21—H21C109.5
C16—C14—C15107.5 (5)H21B—C21—H21C109.5
C3—C2—O2124.3 (5)

Experimental details

Crystal data
Chemical formula[Ni(C21H28O2PS2)2]
Mr873.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1782 (18), 32.060 (12), 8.709 (3)
β (°) 94.68 (3)
V3)2275.8 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.814, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
4916, 4611, 2618
Rint0.045
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 0.99
No. of reflections4611
No. of parameters241
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.35

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—S22.2336 (12)P1—S21.9910 (16)
Ni—S12.2351 (13)P1—S12.0010 (17)
Ni—P12.7942 (14)O1—C81.423 (5)
P1—O11.598 (3)
S2—Ni—S188.70 (5)O1—P1—C5100.53 (18)
S2—P1—S1102.98 (7)O1—P1—S2113.63 (13)
P1—S1—Ni82.34 (6)C5—P1—S1112.16 (16)
P1—S2—Ni82.60 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds