Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel bicyclic and tricyclic systems di­methyl (4aS*,6S*)-6-methoxy-7-oxo-4a,5,6,7,8,9-hexa­hydro-2H-benzo­cyclo­hept­ene-3,4-di­carboxyl­ate, C16H20O6, (I), di­methyl (4aS*,6R*)-6-methoxy-7-oxo-4a,5,6,7,8,9-hexa­hydro-2H-benzo­cyclo­hept­ene-3,4-di­carboxyl­ate, C16H20O6, (II), (3aS*,9R*,10aS*,10bR*)-9-methoxy-2-oxa-1,3a,4,6,7,8,9,10,10a,10b-deca­hydro-3H-cyclo­hepta­[e]­indene-1,3,8-trione, C14H16O5, (III), and (1S*,2R*,9S*,10aR*)-9-methoxy-8-oxo-1,2,3,5,6,7,8,9,10,10a-deca­hydrobenzo­cyclo­octene-1,2-di­carboxyl­ic acid, C15H20O6, (IV), have been crystallographically characterized, allowing the determination of the relative configuration of the stereogenic centres. The poor quality of the di­carboxyl­ic acid crystals necessitated the use of synchrotron radiation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013440/gg1070sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013440/gg1070Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013440/gg1070IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013440/gg1070IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013440/gg1070IVsup5.hkl
Contains datablock IV

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270101013440/gg1070sup6.pdf
Supplementary material

CCDC references: 175095; 175096; 175097; 175098

Comment top

As part of a broad programme concerning the rapid construction of medium-ring polycyclic units found in natural products, we explored Diels-Alder reactions of vinyl-substituted cycloheptene and cyclooctene systems generated by formal [2,3] rearrangement of carbenoid-derived oxonium ylides. The novel bicyclic and tricyclic systems containing a seven-membered carbocycle, compounds (I), (II) and (III), were prepared by the reaction of dimethylacetylene dicarboxylate or maleic anhydride with 2-methoxy-5-vinyl-cyclohept-4-enone, itself prepared by [2,3]-sigmatropic ring-expansion of catalytically generated cyclic divinyl-substituted oxonium ylides (Scheme). Similarly, a bicyclic compound containing an eight-membered carbocycle, (IV), was prepared by reaction of maleic anhydride with 2-methoxy-5-vinyl-cyclooct-4-enone. \sch

Crystallographic characterization has been an effective method of unambiguously establishing the stereochemical outcome of these Diels-Alder reactions, permitting the relative configuration of the stereogenic centres in each diastereoisomer to be determined. Compounds (I) and (II) form a pair of diastereomers, in which the relative configuration at C8 and C9a has been determined as S*,S* and R*,S*, respectively. Aside from this difference in configuration, the other significant differences in molecular structure are in the orientation of the ester side arms attached at C1 and C2. These differences can be seen in Figs. 1 and 2 and are illustrated by the following interplanar angles, where plane A contains atoms C13/O13/C15/O14, plane B C10/O10/O11/C12 and plane C C13/C1/C2/C10: AB angles are 135.7 and 13.5°, AC 41.2 and 81.6°, and BC 130.7 and 86.5° for (I) and (II), respectively. Similarly, this is shown by the C2—C1—C13—O13 and O10—C10—C2—C1 torsion angles (Table 1). The different orientations have different intramolecular contact distances between the ester arms: the separation between O11 and O14 of 2.835 Å in (I), compared with 4.845 Å in (II), may be due to the formation of dimers in (I) through a weak C—H···O interaction between C4 and O13. In (II), where the two ester groups are almost orthogonal to one another, the closest contact is between O13 and C10 (2.65 Å).

The conformation of the two rings in this pair of structures is almost identical. In both cases, the six-membered ring adopts a nearly ideal boat conformation, with C3 and C9a displaced in the same direction from the plane of the remaining four atoms by 0.165 (2) and 0.205 (2) Å, respectively for (I), and by -0.203 (3) and -0.235 (3) Å, respectively, for (II). The overall ring plane has an r.m.s. deviation of 0.087 Å for (I) and 0.103 Å for (II). The planes through the two half-rings defined by C9a/C1/C2/C3 and C9a/C4a/C4/C3 have deviations of only 0.007 and 0.004 Å, respectively, in (I), and 0.002 and 0.006 Å, respectively, in (II), with a hinge angle about C9a···C3 of 16.79 (9)° in (I) and 19.79 (11)° in (II). The puckering parameters (Cremer & Pople, 1975) for both the six-membered and the irregular seven-membered rings are given in Table 1.

Adduct (III) is a tricyclic compound with four stereogenic centres, at C3a, C9, C10a and C10b, the configuration of which has been determined as S*, R*, S* and R*, respectively (Fig. 3). As in the previous compounds, the six-membered ring adopts a nearly ideal boat conformation, with C4 and C10a displaced in the same direction from the plane of the other four ring atoms by 0.515 (2) and 0.565 (2) Å, respectively. The overall ring plane has an r.m.s. deviation of 0.087 Å, while the planes through the two half-rings, defined by C4/C3A/C10b/C10a and C4/C5/C5a/C10a, have deviations of only 0.004 and 0.008 Å, respectively, with a hinge angle of 46.75 (7)° about C4···C10a. The five-membered ring is planar to within 0.009 Å, but with O1 and O3 displaced in opposite directions from the ring plane by 0.021 (2) and -0.042 (2) Å, respectively.

Compound (IV) is again a bicyclic compound, but in this case containing an eight-membered carbocycle and a six-membered ring (Fig. 4). In this case, the six-membered ring adopts an envelope conformation, with C1 displaced by -0.703 (7) Å from the plane of the other five atoms, which define a plane with an r.m.s. deviation of only 0.003 Å. The puckering parameters for the six-membered ring and the irregular seven-membered ring are given in Table 1. The hydrogen bonding links molecules to form centrosymmetric dimers by inversion through (0, 1, 1/2). These dimers are each linked to four neighbouring dimers related by 21 screw axis operations (Fig. 5). These interactions result in a two-dimensional network structure which is infinite in the bc plane but does not propagate along the a axis.

Related literature top

For related literature, see: Clark et al. (2001); Cremer & Pople (1975); Sheldrick (1996).

Experimental top

The synthesis of (I), (II) and (III) has been described elsewhere (Clark et al., 2001). The Diels-Alder adducts (I) and (II) were each dissolved in the minimum quantity of warm diethyl ether; adducts (III) and (IV) were each dissolved in the minimum quantity of warm ethyl acetate. In each case, the solution was allowed to cool to room temperature and then hexane was added until slight turbidity was observed. The solutions of the Diels-Alder adducts were allowed to evaporate slowly at room temperature over several days to afford crystals suitable for X-ray analysis.

Refinement top

Due to very weak diffraction at high angles, data above θ = 26° for (IV) were excluded from the final cycles of refinement. In all cases, H atoms were placed geometrically, except for OH and Me, which were located from circular difference Fourier syntheses. Geometrically placed H atoms were refined riding on their carrier atoms, while those from the difference Fourier syntheses were refined as part of rigid groups allowed to rotate about the local C—O or C—C vector. The methine, methylene and methyl C—H distances were constrained to 1.00, 0.99 and 0.98 Å, respectively, and the O—H distance to 0.84 Å. H-atom displacement parameters were related to those of their carrier atoms by Uiso(H) = xUeq(C,O), where x = 1.5 for OH and methyl H atoms, and 1.2 for all other CH. The Daresbury Laboratory SRS was the radiation source for compound (IV). SADABS (Sheldrick, 1996) was used to correct for the beam decay at the synchrotron.

Computing details top

For all compounds, data collection: SMART (Bruker, 1999). Cell refinement: SAINT (Bruker, 2000) for (I), (II), (III); SAINT (Bruker, 1998) for (IV). For all compounds, data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL for (I), (II), (III); SHELXL97 and PLATON (Spek, 2001) for (IV).

Figures top
[Figure 1] Fig. 1. The molecular view of (I) showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular view of (II) showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular view of (III) showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The molecular view of (IV) showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. A view showing the two-dimensional network structure of (IV). C atoms are drawn as open circles, O atoms as dotted circles and H atoms as smaller open circles.
(I) Dimethyl (4aS*,6S*)-6-methoxy-7-oxo-4a,5,6,7,8,9-hexahydro-2H- benzocycloheptene-3,4-dicarboxylate top
Crystal data top
C16H20O6Z = 2
Mr = 308.32F(000) = 328
Triclinic, P1Dx = 1.320 Mg m3
a = 7.4878 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1793 (12) ÅCell parameters from 5947 reflections
c = 11.0220 (13) Åθ = 2.4–28.7°
α = 69.955 (2)°µ = 0.10 mm1
β = 83.957 (2)°T = 150 K
γ = 79.806 (2)°Block, colourless
V = 775.85 (16) Å30.5 × 0.3 × 0.3 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3148 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.7°, θmin = 2.0°
ω scansh = 99
9181 measured reflectionsk = 1313
3597 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: geometrically placed, Me from delta-F
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1526P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H20O6γ = 79.806 (2)°
Mr = 308.32V = 775.85 (16) Å3
Triclinic, P1Z = 2
a = 7.4878 (9) ÅMo Kα radiation
b = 10.1793 (12) ŵ = 0.10 mm1
c = 11.0220 (13) ÅT = 150 K
α = 69.955 (2)°0.5 × 0.3 × 0.3 mm
β = 83.957 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3148 reflections with I > 2σ(I)
9181 measured reflectionsRint = 0.024
3597 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3597 reflectionsΔρmin = 0.20 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65089 (14)0.13152 (10)0.83490 (9)0.0201 (2)
C20.80308 (14)0.14744 (11)0.89538 (10)0.0215 (2)
C30.94629 (15)0.05316 (12)0.84004 (11)0.0294 (2)
H3A0.94290.01070.89100.035*
H3B1.06740.11230.84820.035*
C4a0.77001 (14)0.05129 (10)0.63967 (10)0.0207 (2)
C40.92117 (14)0.03402 (11)0.70076 (11)0.0251 (2)
H41.01910.07980.65310.030*
C50.75280 (14)0.13882 (11)0.49805 (10)0.0236 (2)
H5A0.67490.09670.45880.028*
H5B0.87450.13450.45350.028*
C60.67159 (14)0.29555 (11)0.47509 (10)0.0255 (2)
H6A0.77130.35000.46890.031*
H6B0.61180.33420.39150.031*
O70.54631 (12)0.39702 (8)0.63726 (8)0.0324 (2)
C70.53540 (14)0.31555 (11)0.58072 (10)0.0229 (2)
C80.38436 (14)0.22350 (11)0.62452 (10)0.0222 (2)
H80.27590.27890.65490.027*
C90.44706 (14)0.09198 (11)0.73858 (10)0.0224 (2)
H9A0.34170.04190.77520.027*
H9B0.48530.12320.80630.027*
C9a0.60482 (13)0.01491 (10)0.70789 (9)0.0194 (2)
H90.55890.05780.65030.023*
O100.89137 (11)0.22613 (9)1.11288 (7)0.02906 (19)
C100.84307 (13)0.25517 (11)1.02548 (10)0.0215 (2)
O110.82751 (11)0.38646 (8)1.03209 (7)0.02792 (19)
C120.85284 (18)0.49222 (12)1.15919 (11)0.0332 (3)
H12A0.97680.49981.18460.050*
H12B0.83310.58391.15670.050*
H12C0.76570.46441.22210.050*
C130.50841 (14)0.22576 (11)0.88904 (10)0.0219 (2)
O130.43812 (13)0.27538 (10)0.82533 (8)0.0391 (2)
O140.46497 (11)0.24372 (9)1.01364 (7)0.02925 (19)
C150.34015 (17)0.34413 (15)1.07634 (12)0.0359 (3)
H15A0.23790.32591.02120.054*
H15B0.29470.33351.15970.054*
H15C0.40370.44061.09040.054*
O160.33115 (10)0.18194 (8)0.52459 (7)0.02434 (17)
C170.22164 (16)0.29506 (12)0.43400 (11)0.0300 (2)
H17A0.11210.32750.47920.045*
H17B0.18680.26170.36760.045*
H17C0.29090.37350.39310.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (5)0.0182 (5)0.0205 (5)0.0042 (4)0.0006 (4)0.0065 (4)
C20.0225 (5)0.0196 (5)0.0215 (5)0.0038 (4)0.0006 (4)0.0053 (4)
C30.0246 (5)0.0301 (6)0.0298 (6)0.0106 (4)0.0068 (4)0.0006 (4)
C4a0.0220 (5)0.0175 (4)0.0214 (5)0.0031 (4)0.0020 (4)0.0057 (4)
C40.0227 (5)0.0234 (5)0.0267 (5)0.0074 (4)0.0006 (4)0.0036 (4)
C50.0240 (5)0.0249 (5)0.0204 (5)0.0056 (4)0.0018 (4)0.0057 (4)
C60.0250 (5)0.0230 (5)0.0252 (5)0.0073 (4)0.0004 (4)0.0024 (4)
O70.0501 (5)0.0218 (4)0.0270 (4)0.0074 (3)0.0083 (4)0.0073 (3)
C70.0279 (5)0.0166 (5)0.0213 (5)0.0021 (4)0.0060 (4)0.0019 (4)
C80.0222 (5)0.0216 (5)0.0218 (5)0.0013 (4)0.0000 (4)0.0075 (4)
C90.0213 (5)0.0221 (5)0.0213 (5)0.0031 (4)0.0017 (4)0.0049 (4)
C9a0.0199 (5)0.0189 (5)0.0192 (4)0.0045 (4)0.0007 (4)0.0053 (4)
O100.0325 (4)0.0313 (4)0.0243 (4)0.0079 (3)0.0035 (3)0.0082 (3)
C100.0169 (4)0.0231 (5)0.0226 (5)0.0028 (4)0.0004 (4)0.0057 (4)
O110.0372 (4)0.0216 (4)0.0229 (4)0.0053 (3)0.0029 (3)0.0037 (3)
C120.0443 (7)0.0243 (5)0.0246 (5)0.0063 (5)0.0020 (5)0.0005 (4)
C130.0217 (5)0.0205 (5)0.0217 (5)0.0040 (4)0.0019 (4)0.0039 (4)
O130.0505 (5)0.0475 (5)0.0262 (4)0.0316 (4)0.0005 (4)0.0095 (4)
O140.0284 (4)0.0378 (5)0.0230 (4)0.0147 (3)0.0040 (3)0.0086 (3)
C150.0308 (6)0.0475 (7)0.0260 (6)0.0194 (5)0.0027 (4)0.0025 (5)
O160.0248 (4)0.0225 (4)0.0256 (4)0.0024 (3)0.0052 (3)0.0073 (3)
C170.0275 (5)0.0294 (6)0.0301 (6)0.0022 (4)0.0082 (4)0.0051 (5)
Geometric parameters (Å, º) top
C1—C21.3379 (15)C8—H81.000
C1—C131.5001 (13)C9—C9a1.5514 (14)
C1—C9a1.5184 (13)C9—H9A0.990
C2—C101.4982 (14)C9—H9B0.990
C2—C31.5060 (14)C9a—H91.000
C3—C41.4992 (15)O10—C101.2052 (13)
C3—H3A0.990C10—O111.3385 (13)
C3—H3B0.990O11—C121.4516 (13)
C4a—C41.3320 (15)C12—H12A0.980
C4a—C51.5150 (14)C12—H12B0.980
C4a—C9a1.5170 (13)C12—H12C0.980
C4—H40.950C13—O131.2002 (13)
C5—C61.5464 (15)C13—O141.3342 (13)
C5—H5A0.990O14—C151.4538 (13)
C5—H5B0.990C15—H15A0.980
C6—C71.5085 (15)C15—H15B0.980
C6—H6A0.990C15—H15C0.980
C6—H6B0.990O16—C171.4301 (13)
O7—C71.2132 (13)C17—H17A0.980
C7—C81.5297 (14)C17—H17B0.980
C8—O161.4221 (12)C17—H17C0.980
C8—C91.5301 (14)
C2—C1—C13122.60 (9)C8—C9—C9a116.03 (8)
C2—C1—C9a123.21 (9)C8—C9—H9A108
C13—C1—C9a114.18 (8)C9a—C9—H9A108
C1—C2—C10123.55 (9)C8—C9—H9B108
C1—C2—C3122.35 (9)C9a—C9—H9B108
C10—C2—C3114.05 (9)H9A—C9—H9B107
C4—C3—C2112.70 (9)C4a—C9a—C1111.93 (8)
C4—C3—H3A109C4a—C9a—C9113.80 (8)
C2—C3—H3A109C1—C9a—C9106.99 (8)
C4—C3—H3B109C4a—C9a—H9108
C2—C3—H3B109C1—C9a—H9108
H3A—C3—H3B108C9—C9a—H9108
C4—C4a—C5121.90 (9)O10—C10—O11123.98 (10)
C4—C4a—C9a122.00 (9)O10—C10—C2122.84 (9)
C5—C4a—C9a116.10 (9)O11—C10—C2113.12 (9)
C4a—C4—C3124.04 (9)C10—O11—C12114.69 (8)
C4a—C4—H4118O11—C12—H12A110
C3—C4—H4118O11—C12—H12B110
C4a—C5—C6113.52 (9)H12A—C12—H12B110
C4a—C5—H5A109O11—C12—H12C110
C6—C5—H5A109H12A—C12—H12C110
C4a—C5—H5B109H12B—C12—H12C110
C6—C5—H5B109O13—C13—O14124.22 (10)
H5A—C5—H5B108O13—C13—C1123.17 (9)
C7—C6—C5113.01 (8)O14—C13—C1112.57 (8)
C7—C6—H6A109C13—O14—C15115.85 (9)
C5—C6—H6A109O14—C15—H15A110
C7—C6—H6B109O14—C15—H15B110
C5—C6—H6B109H15A—C15—H15B110
H6A—C6—H6B108O14—C15—H15C110
O7—C7—C6122.44 (10)H15A—C15—H15C110
O7—C7—C8118.34 (10)H15B—C15—H15C110
C6—C7—C8119.10 (9)C8—O16—C17112.14 (8)
O16—C8—C7113.30 (8)O16—C17—H17A110
O16—C8—C9109.61 (8)O16—C17—H17B110
C7—C8—C9109.19 (8)H17A—C17—H17B110
O16—C8—H8108O16—C17—H17C110
C7—C8—H8108H17A—C17—H17C110
C9—C8—H8108H17B—C17—H17C110
C13—C1—C2—C103.19 (16)C4—C4a—C9a—C9105.06 (11)
C9a—C1—C2—C10175.18 (9)C5—C4a—C9a—C974.67 (11)
C13—C1—C2—C3179.53 (10)C2—C1—C9a—C4a16.91 (13)
C9a—C1—C2—C32.11 (16)C13—C1—C9a—C4a164.60 (8)
C1—C2—C3—C413.44 (16)C2—C1—C9a—C9108.39 (11)
C10—C2—C3—C4169.04 (9)C13—C1—C9a—C970.10 (10)
C5—C4a—C4—C3179.04 (10)C8—C9—C9a—C4a52.83 (12)
C9a—C4a—C4—C31.25 (17)C8—C9—C9a—C1177.00 (8)
C2—C3—C4—C4a13.99 (16)C1—C2—C10—O10130.12 (11)
C4—C4a—C5—C692.00 (12)C3—C2—C10—O1047.37 (14)
C9a—C4a—C5—C687.73 (11)C1—C2—C10—O1152.72 (13)
C4a—C5—C6—C732.42 (12)C3—C2—C10—O11129.80 (10)
C5—C6—C7—O7127.29 (11)O10—C10—O11—C126.96 (15)
C5—C6—C7—C848.80 (12)C2—C10—O11—C12175.91 (9)
O7—C7—C8—O16153.63 (9)C2—C1—C13—O13134.76 (12)
C6—C7—C8—O1630.12 (12)C9a—C1—C13—O1346.75 (14)
O7—C7—C8—C983.90 (11)C2—C1—C13—O1447.41 (13)
C6—C7—C8—C992.34 (11)C9a—C1—C13—O14131.09 (9)
O16—C8—C9—C9a57.17 (11)O13—C13—O14—C157.69 (16)
C7—C8—C9—C9a67.48 (11)C1—C13—O14—C15174.50 (9)
C4—C4a—C9a—C116.39 (14)C7—C8—O16—C1775.50 (11)
C5—C4a—C9a—C1163.88 (8)C9—C8—O16—C17162.26 (8)
(II) dimethyl (4aS*,6R*)-6-methoxy-7-oxo-4a,5,6,7,8,9-hexahydro-2H- benzocycloheptene-3,4-dicarboxylate top
Crystal data top
C16H20O6F(000) = 1312
Mr = 308.32Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.666 (9) ÅCell parameters from 885 reflections
b = 5.066 (2) Åθ = 3.1–18.1°
c = 22.793 (7) ŵ = 0.10 mm1
β = 105.149 (5)°T = 150 K
V = 3084 (2) Å3Block from hexagonal plate, colourless
Z = 80.50 × 0.45 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 28.7°, θmin = 1.9°
ω scansh = 3735
10535 measured reflectionsk = 46
3584 independent reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0412P)2 + 8.3P]
where P = (Fo2 + 2Fc2)/3
3584 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H20O6V = 3084 (2) Å3
Mr = 308.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.666 (9) ŵ = 0.10 mm1
b = 5.066 (2) ÅT = 150 K
c = 22.793 (7) Å0.50 × 0.45 × 0.25 mm
β = 105.149 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2967 reflections with I > 2σ(I)
10535 measured reflectionsRint = 0.058
3584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.98Δρmax = 0.37 e Å3
3584 reflectionsΔρmin = 0.19 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13422 (6)0.0558 (3)0.23845 (8)0.0219 (4)
C20.16556 (6)0.1087 (3)0.22076 (8)0.0227 (4)
C30.20772 (6)0.2482 (4)0.26506 (9)0.0247 (4)
H3A0.19830.43520.26830.030*
H3B0.23790.24450.24930.030*
C40.22005 (7)0.1257 (4)0.32688 (9)0.0269 (4)
H4A0.25120.16800.35450.032*
C4a0.18963 (6)0.0393 (4)0.34516 (8)0.0246 (4)
C50.20257 (7)0.1559 (4)0.40837 (9)0.0327 (5)
H5A0.18550.32830.40730.039*
H5B0.23910.18730.42190.039*
C60.18702 (7)0.0257 (5)0.45417 (9)0.0374 (5)
H6A0.21190.17000.46520.045*
H6B0.18850.07690.49160.045*
O70.12693 (6)0.3669 (3)0.44837 (7)0.0400 (4)
C70.13553 (7)0.1467 (4)0.43262 (8)0.0276 (4)
C80.09399 (6)0.0128 (4)0.38959 (8)0.0230 (4)
H8A0.09820.20480.39980.028*
C9a0.13862 (6)0.1112 (4)0.30472 (8)0.0217 (4)
H90.13380.30520.30900.026*
C90.09571 (6)0.0321 (4)0.32386 (8)0.0220 (4)
H9A0.06340.02610.29660.026*
H9B0.09890.22400.31750.026*
C100.16304 (6)0.1652 (4)0.15539 (9)0.0243 (4)
O100.18388 (5)0.0343 (3)0.12509 (7)0.0341 (3)
O110.13893 (5)0.3903 (3)0.13737 (6)0.0292 (3)
C120.13454 (8)0.4625 (4)0.07486 (9)0.0331 (4)
H12A0.11630.62970.06580.050*
H12B0.16800.48270.06850.050*
H12C0.11630.32420.04790.050*
O130.07926 (5)0.1123 (3)0.13907 (6)0.0288 (3)
C130.09221 (6)0.1790 (4)0.19162 (9)0.0237 (4)
O140.06994 (5)0.3708 (3)0.21563 (6)0.0294 (3)
C150.02879 (7)0.5047 (4)0.17351 (10)0.0342 (5)
H15A0.01510.64060.19530.051*
H15B0.00250.37660.15570.051*
H15C0.04090.58730.14120.051*
O160.04589 (5)0.0722 (3)0.39226 (6)0.0315 (3)
C170.03486 (8)0.0094 (5)0.44818 (9)0.0402 (5)
H17A0.00130.07360.44740.060*
H17B0.03620.18240.45400.060*
H17C0.05950.09360.48170.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (8)0.0152 (8)0.0297 (9)0.0028 (6)0.0087 (7)0.0002 (7)
C20.0231 (8)0.0157 (8)0.0308 (9)0.0043 (7)0.0100 (7)0.0006 (7)
C30.0229 (8)0.0186 (8)0.0347 (10)0.0018 (7)0.0114 (7)0.0009 (8)
C40.0201 (8)0.0263 (9)0.0329 (10)0.0012 (7)0.0044 (7)0.0005 (8)
C4a0.0197 (8)0.0220 (9)0.0308 (9)0.0034 (7)0.0042 (7)0.0039 (7)
C50.0204 (8)0.0376 (11)0.0367 (11)0.0002 (8)0.0014 (8)0.0144 (9)
C60.0277 (10)0.0518 (14)0.0282 (10)0.0071 (9)0.0006 (8)0.0074 (10)
O70.0576 (10)0.0290 (8)0.0345 (8)0.0094 (7)0.0143 (7)0.0038 (6)
C70.0337 (10)0.0274 (10)0.0217 (9)0.0066 (8)0.0075 (7)0.0048 (7)
C80.0208 (8)0.0216 (9)0.0265 (9)0.0007 (7)0.0058 (7)0.0037 (7)
C9a0.0201 (8)0.0152 (8)0.0300 (9)0.0017 (6)0.0068 (7)0.0023 (7)
C90.0203 (8)0.0214 (9)0.0239 (8)0.0016 (7)0.0051 (7)0.0012 (7)
C100.0239 (8)0.0176 (8)0.0331 (10)0.0005 (7)0.0106 (7)0.0005 (7)
O100.0361 (7)0.0318 (8)0.0394 (8)0.0100 (6)0.0188 (6)0.0000 (6)
O110.0420 (8)0.0204 (7)0.0282 (7)0.0082 (6)0.0145 (6)0.0037 (5)
C120.0470 (12)0.0273 (10)0.0257 (9)0.0047 (9)0.0108 (8)0.0018 (8)
O130.0279 (6)0.0263 (7)0.0306 (7)0.0028 (6)0.0046 (5)0.0004 (6)
C130.0219 (8)0.0190 (9)0.0315 (9)0.0024 (7)0.0094 (7)0.0027 (7)
O140.0293 (7)0.0266 (7)0.0323 (7)0.0094 (6)0.0080 (5)0.0037 (6)
C150.0294 (9)0.0324 (11)0.0399 (11)0.0089 (8)0.0077 (8)0.0083 (9)
O160.0253 (6)0.0459 (9)0.0250 (7)0.0082 (6)0.0098 (5)0.0067 (6)
C170.0311 (10)0.0643 (16)0.0278 (10)0.0006 (10)0.0122 (8)0.0070 (10)
Geometric parameters (Å, º) top
C1—C21.338 (2)C8—H8A1.000
C1—C131.494 (3)C9a—C91.548 (2)
C1—C9a1.510 (2)C9a—H91.000
C2—C101.501 (3)C9—H9A0.990
C2—C31.504 (3)C9—H9B0.990
C3—C41.495 (3)C10—O101.207 (2)
C3—H3A0.990C10—O111.331 (2)
C3—H3B0.990O11—C121.445 (2)
C4—C4a1.328 (3)C12—H12A0.980
C4—H4A0.950C12—H12B0.980
C4a—C51.511 (3)C12—H12C0.980
C4a—C9a1.515 (2)O13—C131.205 (2)
C5—C61.535 (3)C13—O141.342 (2)
C5—H5A0.990O14—C151.451 (2)
C5—H5B0.990C15—H15A0.980
C6—C71.510 (3)C15—H15B0.980
C6—H6A0.990C15—H15C0.980
C6—H6B0.990O16—C171.422 (2)
O7—C71.214 (3)C17—H17A0.980
C7—C81.532 (3)C17—H17B0.980
C8—O161.415 (2)C17—H17C0.980
C8—C91.528 (2)
C2—C1—C13119.29 (17)C1—C9a—C4a112.51 (14)
C2—C1—C9a121.86 (16)C1—C9a—C9109.12 (14)
C13—C1—C9a118.80 (15)C4a—C9a—C9112.15 (15)
C1—C2—C10123.51 (17)C1—C9a—H9108
C1—C2—C3122.67 (17)C4a—C9a—H9108
C10—C2—C3113.80 (15)C9—C9a—H9108
C4—C3—C2112.56 (15)C8—C9—C9a115.40 (14)
C4—C3—H3A109C8—C9—H9A108
C2—C3—H3A109C9a—C9—H9A108
C4—C3—H3B109C8—C9—H9B108
C2—C3—H3B109C9a—C9—H9B108
H3A—C3—H3B108H9A—C9—H9B108
C4a—C4—C3123.34 (17)O10—C10—O11124.75 (18)
C4a—C4—H4A118O10—C10—C2123.93 (17)
C3—C4—H4A118O11—C10—C2111.05 (15)
C4—C4a—C5122.24 (17)C10—O11—C12115.30 (15)
C4—C4a—C9a121.77 (17)O11—C12—H12A110
C5—C4a—C9a115.92 (15)O11—C12—H12B110
C4a—C5—C6112.05 (17)H12A—C12—H12B110
C4a—C5—H5A109O11—C12—H12C110
C6—C5—H5A109H12A—C12—H12C110
C4a—C5—H5B109H12B—C12—H12C110
C6—C5—H5B109O13—C13—O14124.02 (17)
H5A—C5—H5B108O13—C13—C1124.53 (17)
C7—C6—C5115.50 (16)O14—C13—C1111.44 (16)
C7—C6—H6A108C13—O14—C15115.68 (15)
C5—C6—H6A108O14—C15—H15A110
C7—C6—H6B108O14—C15—H15B110
C5—C6—H6B108H15A—C15—H15B110
H6A—C6—H6B108O14—C15—H15C110
O7—C7—C6121.20 (19)H15A—C15—H15C110
O7—C7—C8120.12 (18)H15B—C15—H15C110
C6—C7—C8118.68 (18)C8—O16—C17113.25 (15)
O16—C8—C9105.51 (13)O16—C17—H17A110
O16—C8—C7111.62 (16)O16—C17—H17B110
C9—C8—C7109.79 (14)H17A—C17—H17B110
O16—C8—H8A110O16—C17—H17C110
C9—C8—H8A110H17A—C17—H17C110
C7—C8—H8A110H17B—C17—H17C110
C13—C1—C2—C104.0 (3)C4—C4a—C9a—C119.5 (3)
C9a—C1—C2—C10178.85 (15)C5—C4a—C9a—C1163.42 (16)
C13—C1—C2—C3177.85 (15)C4—C4a—C9a—C9104.0 (2)
C9a—C1—C2—C30.7 (3)C5—C4a—C9a—C973.1 (2)
C1—C2—C3—C417.1 (2)O16—C8—C9—C9a164.57 (15)
C10—C2—C3—C4161.19 (15)C7—C8—C9—C9a75.0 (2)
C2—C3—C4—C4a16.6 (3)C1—C9a—C9—C8177.97 (15)
C3—C4—C4a—C5178.70 (18)C4a—C9a—C9—C856.7 (2)
C3—C4—C4a—C9a1.8 (3)C1—C2—C10—O1087.2 (2)
C4—C4a—C5—C686.3 (2)C3—C2—C10—O1091.1 (2)
C9a—C4a—C5—C690.8 (2)C1—C2—C10—O1198.6 (2)
C4a—C5—C6—C744.3 (2)C3—C2—C10—O1183.14 (18)
C5—C6—C7—O7146.00 (19)O10—C10—O11—C125.8 (3)
C5—C6—C7—C833.4 (3)C2—C10—O11—C12179.95 (16)
O7—C7—C8—O1623.7 (2)C2—C1—C13—O1311.8 (3)
C6—C7—C8—O16156.95 (16)C9a—C1—C13—O13165.38 (17)
O7—C7—C8—C993.0 (2)C2—C1—C13—O14169.36 (15)
C6—C7—C8—C986.4 (2)C9a—C1—C13—O1413.4 (2)
C2—C1—C9a—C4a18.9 (2)O13—C13—O14—C151.7 (3)
C13—C1—C9a—C4a163.99 (15)C1—C13—O14—C15179.47 (15)
C2—C1—C9a—C9106.25 (19)C9—C8—O16—C17171.37 (17)
C13—C1—C9a—C970.87 (19)C7—C8—O16—C1769.4 (2)
(III) (3aS*,9R*,10aS*,10bR*)-9-methoxy-1,3a,4,6,7,8,9,10,10a,10b-decahydro-2-oxa- 3H-cyclohepta[e]inden-1,3,8-trione top
Crystal data top
C14H16O5F(000) = 560
Mr = 264.27Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.1076 (19) ÅCell parameters from 5832 reflections
b = 11.3501 (15) Åθ = 2.3–28.6°
c = 7.7762 (10) ŵ = 0.11 mm1
β = 96.280 (2)°T = 150 K
V = 1237.7 (3) Å3Block, colourless
Z = 40.42 × 0.40 × 0.31 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
2437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.6°, θmin = 2.3°
ω scansh = 1818
10858 measured reflectionsk = 1414
3047 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: geometrically placed, Me from delta-F
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2015P]
where P = (Fo2 + 2Fc2)/3
2896 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H16O5V = 1237.7 (3) Å3
Mr = 264.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1076 (19) ŵ = 0.11 mm1
b = 11.3501 (15) ÅT = 150 K
c = 7.7762 (10) Å0.42 × 0.40 × 0.31 mm
β = 96.280 (2)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
2437 reflections with I > 2σ(I)
10858 measured reflectionsRint = 0.033
3047 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2896 reflectionsΔρmin = 0.16 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77569 (7)0.23368 (8)0.02449 (12)0.0432 (3)
C10.72962 (9)0.29970 (10)0.12021 (14)0.0275 (2)
O20.63996 (6)0.26549 (7)0.19201 (11)0.0327 (2)
C3A0.66626 (8)0.45603 (10)0.30640 (14)0.0252 (2)
H3A0.68510.46260.42630.030*
O30.51962 (6)0.34080 (9)0.36971 (13)0.0414 (2)
C30.59817 (8)0.35389 (10)0.29958 (15)0.0284 (3)
C40.61806 (9)0.57142 (10)0.25996 (15)0.0316 (3)
H4A0.65430.63930.29890.038*
H4B0.55260.57480.32030.038*
C5A0.68903 (8)0.54864 (9)0.04225 (14)0.0235 (2)
C50.61415 (8)0.57905 (10)0.06857 (16)0.0289 (3)
H50.55750.60590.02550.035*
C60.68550 (8)0.55716 (11)0.23423 (15)0.0295 (3)
H6A0.69590.47770.28550.035*
H6B0.62100.58340.25620.035*
C70.76006 (9)0.64285 (11)0.32640 (15)0.0304 (3)
H7A0.76990.71050.24990.036*
H7B0.73700.67340.43360.036*
O80.87525 (7)0.53754 (9)0.51270 (11)0.0410 (2)
C80.85214 (8)0.57778 (10)0.36936 (14)0.0272 (2)
C90.91203 (8)0.55270 (10)0.22123 (14)0.0243 (2)
H90.97460.51910.27090.029*
C10b0.75405 (7)0.42122 (9)0.18265 (13)0.0218 (2)
H10B0.80990.41410.25090.026*
C100.86242 (8)0.46309 (9)0.09406 (14)0.0233 (2)
H10C0.83760.39830.16170.028*
H10D0.91090.42880.02580.028*
C10a0.77980 (7)0.51041 (9)0.03285 (13)0.0202 (2)
H10A0.80480.58230.08720.024*
O110.92977 (6)0.65651 (7)0.12697 (10)0.02546 (19)
C120.98894 (8)0.73858 (11)0.22894 (15)0.0289 (3)
H12A0.95240.77460.31540.043*
H12B1.01050.80010.15380.043*
H12C1.04440.69730.28740.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (6)0.0245 (4)0.0426 (5)0.0030 (4)0.0142 (5)0.0061 (4)
C10.0338 (6)0.0243 (5)0.0240 (5)0.0022 (4)0.0012 (4)0.0015 (4)
O20.0340 (5)0.0278 (4)0.0360 (5)0.0084 (3)0.0021 (4)0.0012 (3)
C3A0.0275 (5)0.0285 (6)0.0190 (5)0.0037 (4)0.0004 (4)0.0015 (4)
O30.0274 (5)0.0442 (5)0.0509 (6)0.0045 (4)0.0039 (4)0.0094 (4)
C30.0278 (6)0.0304 (6)0.0271 (6)0.0021 (4)0.0033 (4)0.0051 (4)
C40.0350 (6)0.0272 (6)0.0299 (6)0.0023 (5)0.0092 (5)0.0039 (5)
C5A0.0248 (5)0.0218 (5)0.0239 (5)0.0013 (4)0.0035 (4)0.0010 (4)
C50.0258 (5)0.0264 (6)0.0337 (6)0.0050 (4)0.0006 (5)0.0018 (5)
C60.0264 (5)0.0376 (7)0.0255 (5)0.0009 (5)0.0075 (4)0.0021 (5)
C70.0356 (6)0.0323 (6)0.0240 (5)0.0014 (5)0.0063 (5)0.0060 (4)
O80.0438 (5)0.0540 (6)0.0234 (4)0.0127 (4)0.0042 (4)0.0112 (4)
C80.0330 (6)0.0259 (5)0.0216 (5)0.0080 (4)0.0015 (4)0.0002 (4)
C90.0250 (5)0.0231 (5)0.0237 (5)0.0007 (4)0.0028 (4)0.0023 (4)
C10b0.0236 (5)0.0228 (5)0.0191 (5)0.0011 (4)0.0027 (4)0.0005 (4)
C100.0230 (5)0.0216 (5)0.0247 (5)0.0029 (4)0.0009 (4)0.0005 (4)
C10a0.0215 (5)0.0195 (5)0.0192 (5)0.0001 (4)0.0009 (4)0.0010 (4)
O110.0286 (4)0.0260 (4)0.0211 (4)0.0056 (3)0.0006 (3)0.0003 (3)
C120.0296 (6)0.0283 (6)0.0279 (6)0.0060 (4)0.0004 (5)0.0038 (4)
Geometric parameters (Å, º) top
O1—C11.1967 (14)C7—C81.4998 (17)
C1—O21.3813 (14)C7—H7A0.990
C1—C10b1.5144 (15)C7—H7B0.990
O2—C31.3950 (15)O8—C81.2156 (14)
C3A—C31.5102 (16)C8—C91.5280 (16)
C3A—C10b1.5348 (15)C9—O111.4242 (13)
C3A—C41.5368 (17)C9—C101.5332 (15)
C3A—H3A1.000C9—H91.000
O3—C31.1896 (14)C10b—C10a1.5561 (14)
C4—C51.4979 (17)C10b—H10B1.000
C4—H4A0.990C10—C10a1.5392 (14)
C4—H4B0.990C10—H10C0.990
C5A—C51.3336 (16)C10—H10D0.990
C5A—C61.5023 (16)C10a—H10A1.000
C5A—C10a1.5273 (14)O11—C121.4311 (13)
C5—H50.950C12—H12A0.980
C6—C71.5495 (17)C12—H12B0.980
C6—H6A0.990C12—H12C0.980
C6—H6B0.990
O1—C1—O2119.10 (11)H7A—C7—H7B108
O1—C1—C10b129.99 (11)O8—C8—C7121.88 (11)
O2—C1—C10b110.91 (9)O8—C8—C9120.42 (11)
C1—O2—C3110.40 (9)C7—C8—C9117.43 (9)
C3—C3A—C10b104.66 (9)O11—C9—C8112.13 (9)
C3—C3A—C4110.27 (10)O11—C9—C10108.09 (8)
C10b—C3A—C4114.81 (9)C8—C9—C10111.03 (9)
C3—C3A—H3A109O11—C9—H9109
C10b—C3A—H3A109C8—C9—H9109
C4—C3A—H3A109C10—C9—H9109
O3—C3—O2119.77 (11)C1—C10b—C3A103.84 (9)
O3—C3—C3A130.09 (12)C1—C10b—C10a113.28 (8)
O2—C3—C3A110.15 (9)C3A—C10b—C10a114.09 (9)
C5—C4—C3A110.37 (9)C1—C10b—H10B109
C5—C4—H4A110C3A—C10b—H10B109
C3A—C4—H4A110C10a—C10b—H10B109
C5—C4—H4B110C9—C10—C10a116.25 (9)
C3A—C4—H4B110C9—C10—H10C108
H4A—C4—H4B108C10a—C10—H10C108
C5—C5A—C6121.03 (10)C9—C10—H10D108
C5—C5A—C10a117.67 (10)C10a—C10—H10D108
C6—C5A—C10a121.24 (9)H10C—C10—H10D107
C5A—C5—C4120.96 (11)C5A—C10a—C10117.50 (9)
C5A—C5—H5120C5A—C10a—C10b109.52 (8)
C4—C5—H5120C10—C10a—C10b110.57 (8)
C5A—C6—C7113.92 (10)C5A—C10a—H10A106
C5A—C6—H6A109C10—C10a—H10A106
C7—C6—H6A109C10b—C10a—H10A106
C5A—C6—H6B109C9—O11—C12112.21 (8)
C7—C6—H6B109O11—C12—H12A110
H6A—C6—H6B108O11—C12—H12B110
C8—C7—C6108.76 (10)H12A—C12—H12B110
C8—C7—H7A110O11—C12—H12C110
C6—C7—H7A110H12A—C12—H12C110
C8—C7—H7B110H12B—C12—H12C110
C6—C7—H7B110
O1—C1—O2—C3179.81 (11)O1—C1—C10b—C3A178.24 (13)
C10b—C1—O2—C30.61 (13)O2—C1—C10b—C3A0.86 (12)
C1—O2—C3—O3178.30 (11)O1—C1—C10b—C10a57.46 (16)
C1—O2—C3—C3A1.88 (13)O2—C1—C10b—C10a123.45 (10)
C10b—C3A—C3—O3177.88 (12)C3—C3A—C10b—C11.84 (11)
C4—C3A—C3—O353.89 (16)C4—C3A—C10b—C1122.87 (10)
C10b—C3A—C3—O22.33 (12)C3—C3A—C10b—C10a121.94 (10)
C4—C3A—C3—O2126.31 (10)C4—C3A—C10b—C10a0.90 (13)
C3—C3A—C4—C576.60 (12)O11—C9—C10—C10a45.97 (12)
C10b—C3A—C4—C541.30 (13)C8—C9—C10—C10a77.39 (12)
C6—C5A—C5—C4179.50 (11)C5—C5A—C10a—C10173.76 (10)
C10a—C5A—C5—C42.29 (16)C6—C5A—C10a—C109.04 (14)
C3A—C4—C5—C5A43.06 (15)C5—C5A—C10a—C10b46.54 (13)
C5—C5A—C6—C7118.78 (12)C6—C5A—C10a—C10b136.25 (10)
C10a—C5A—C6—C758.34 (14)C9—C10—C10a—C5A68.11 (12)
C5A—C6—C7—C885.84 (12)C9—C10—C10a—C10b165.18 (9)
C6—C7—C8—O898.50 (13)C1—C10b—C10a—C5A74.89 (11)
C6—C7—C8—C975.50 (12)C3A—C10b—C10a—C5A43.64 (12)
O8—C8—C9—O11133.25 (11)C1—C10b—C10a—C1056.13 (11)
C7—C8—C9—O1152.65 (13)C3A—C10b—C10a—C10174.66 (9)
O8—C8—C9—C10105.73 (12)C8—C9—O11—C1266.33 (11)
C7—C8—C9—C1068.37 (12)C10—C9—O11—C12170.97 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.992.423.3900 (16)168
Symmetry code: (i) x+1, y+1, z.
(IV) (1S*,2R*,9S*,10aR*)-9-methoxy-8-oxo-1,2,3,5,6,7,8,9,10,10a-decahydro- benzocyclooctene-1,2-dicarboxylic acid top
Crystal data top
C15H20O6Dx = 1.421 Mg m3
Mr = 296.31Synchrotron radiation, λ = 0.6892 Å
Orthorhombic, PbcaCell parameters from 5549 reflections
a = 14.676 (2) Åθ = 3.2–29.1°
b = 9.967 (2) ŵ = 0.11 mm1
c = 18.937 (3) ÅT = 150 K
V = 2770.0 (8) Å3Tablet, colourless
Z = 80.06 × 0.05 × 0.01 mm
F(000) = 1264
Data collection top
Bruker SMART CCD area-detector on SRS Station 9.8
diffractometer
1769 reflections with I > 2σ(I)
Radiation source: synchrotron storage ringRint = 0.136
Germanium monochromatorθmax = 26.0°, θmin = 2.6°
0.15 degree ω scansh = 2017
18905 measured reflectionsk = 1412
2715 independent reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.123P)2 + 1.776P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2715 reflectionsΔρmax = 0.53 e Å3
192 parametersΔρmin = 0.29 e Å3
0 restraints
Crystal data top
C15H20O6V = 2770.0 (8) Å3
Mr = 296.31Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.6892 Å
a = 14.676 (2) ŵ = 0.11 mm1
b = 9.967 (2) ÅT = 150 K
c = 18.937 (3) Å0.06 × 0.05 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector on SRS Station 9.8
diffractometer
1769 reflections with I > 2σ(I)
18905 measured reflectionsRint = 0.136
2715 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
2715 reflectionsΔρmin = 0.29 e Å3
192 parameters
Special details top

Experimental. The Daresbury Laboratory SRS was the X-ray source.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0734 (2)0.8207 (3)0.69360 (17)0.0230 (8)
H10.00910.84840.70300.028*
C20.1182 (2)0.9317 (4)0.65095 (18)0.0264 (8)
H20.11381.01500.68020.032*
C30.2209 (2)0.9072 (4)0.6379 (2)0.0319 (9)
H3A0.22860.85710.59310.038*
H3B0.25210.99470.63260.038*
C40.2649 (3)0.8303 (4)0.6964 (2)0.0347 (10)
H40.32830.81300.69170.042*
C4a0.2247 (2)0.7834 (4)0.75456 (19)0.0291 (9)
C50.2813 (3)0.7076 (4)0.8080 (2)0.0355 (10)
H5A0.34040.68510.78580.043*
H5B0.24990.62200.81850.043*
C60.3006 (3)0.7775 (5)0.8774 (2)0.0353 (10)
H6A0.31150.87370.86750.042*
H6B0.35770.74020.89710.042*
C70.2260 (3)0.7670 (5)0.9343 (2)0.0346 (10)
H7A0.20800.67180.93960.042*
H7B0.25120.79760.98000.042*
C80.1430 (3)0.8488 (4)0.91697 (17)0.0269 (8)
O80.1430 (2)0.9700 (3)0.92010 (13)0.0369 (7)
C90.0597 (2)0.7717 (4)0.89150 (18)0.0275 (8)
H90.04720.69690.92540.033*
O90.01852 (17)0.8565 (3)0.88839 (13)0.0312 (7)
C9M0.0651 (3)0.8631 (4)0.95555 (19)0.0344 (9)
H9M10.11810.92240.95150.052*
H9M20.02350.89820.99150.052*
H9M30.08540.77300.96920.052*
C100.0754 (3)0.7122 (4)0.81838 (18)0.0271 (8)
H10A0.01590.68510.79830.033*
H10B0.11310.63030.82320.033*
C10a0.1227 (2)0.8084 (4)0.76623 (17)0.0232 (8)
H10C0.11840.89940.78830.028*
C110.0704 (2)0.6916 (4)0.65070 (18)0.0254 (8)
O110.0998 (2)0.6811 (3)0.59198 (14)0.0397 (7)
O120.0266 (2)0.5920 (3)0.68351 (15)0.0431 (8)
H120.02200.52610.65610.065*
C210.0674 (3)0.9599 (4)0.58358 (18)0.0278 (8)
O210.01638 (18)0.9402 (3)0.58095 (14)0.0363 (7)
O220.11397 (19)1.0089 (3)0.53182 (13)0.0376 (7)
H220.07911.02450.49760.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (16)0.032 (2)0.0221 (17)0.0015 (15)0.0015 (13)0.0038 (14)
C20.0232 (19)0.035 (2)0.0212 (17)0.0019 (16)0.0003 (14)0.0035 (14)
C30.0206 (19)0.049 (3)0.0264 (19)0.0043 (17)0.0004 (15)0.0040 (17)
C40.0162 (18)0.055 (3)0.033 (2)0.0004 (18)0.0018 (15)0.0031 (18)
C4a0.0206 (18)0.039 (2)0.0281 (19)0.0002 (16)0.0008 (15)0.0003 (16)
C50.0169 (18)0.052 (3)0.038 (2)0.0092 (18)0.0011 (16)0.0073 (18)
C60.023 (2)0.051 (3)0.032 (2)0.0015 (18)0.0072 (16)0.0084 (18)
C70.031 (2)0.049 (2)0.0237 (18)0.0066 (19)0.0055 (16)0.0107 (17)
C80.031 (2)0.036 (2)0.0131 (16)0.0027 (16)0.0043 (14)0.0032 (14)
O80.0394 (17)0.0408 (19)0.0304 (14)0.0066 (13)0.0042 (12)0.0054 (12)
C90.0218 (18)0.036 (2)0.0250 (18)0.0003 (16)0.0047 (14)0.0027 (15)
O90.0253 (14)0.0441 (16)0.0240 (13)0.0061 (12)0.0036 (10)0.0047 (11)
C9M0.028 (2)0.048 (2)0.0271 (19)0.0000 (19)0.0097 (16)0.0030 (17)
C100.0247 (18)0.033 (2)0.0233 (17)0.0033 (16)0.0012 (14)0.0007 (14)
C10a0.0202 (17)0.0314 (19)0.0180 (16)0.0036 (15)0.0021 (13)0.0028 (13)
C110.0184 (17)0.035 (2)0.0230 (18)0.0000 (16)0.0054 (14)0.0040 (15)
O110.0438 (17)0.0438 (17)0.0314 (15)0.0048 (14)0.0123 (13)0.0094 (12)
O120.056 (2)0.0425 (18)0.0309 (15)0.0190 (15)0.0089 (14)0.0112 (12)
C210.026 (2)0.033 (2)0.0249 (18)0.0011 (16)0.0018 (15)0.0047 (15)
O210.0254 (15)0.0487 (18)0.0348 (15)0.0000 (12)0.0026 (11)0.0043 (12)
O220.0335 (15)0.0551 (18)0.0243 (13)0.0004 (14)0.0010 (11)0.0096 (13)
Geometric parameters (Å, º) top
C1—C21.520 (5)C7—H7A0.990
C1—C111.522 (5)C7—H7B0.990
C1—C10a1.559 (4)C8—O81.210 (5)
C1—H11.000C8—C91.523 (5)
C2—C211.504 (5)C9—O91.427 (4)
C2—C31.547 (5)C9—C101.524 (5)
C2—H21.000C9—H91.000
C3—C41.494 (5)O9—C9M1.445 (4)
C3—H3A0.990C9M—H9M10.980
C3—H3B0.990C9M—H9M20.980
C4—C4a1.335 (5)C9M—H9M30.980
C4—H40.950C10—C10a1.541 (5)
C4a—C51.512 (5)C10—H10A0.990
C4a—C10a1.533 (5)C10—H10B0.990
C5—C61.513 (6)C10a—H10C1.000
C5—H5A0.990C11—O111.197 (4)
C5—H5B0.990C11—O121.336 (5)
C6—C71.540 (6)O12—H120.840
C6—H6A0.990C21—O211.247 (5)
C6—H6B0.990C21—O221.291 (4)
C7—C81.502 (6)O22—H220.840
C2—C1—C11110.2 (3)C8—C7—H7B109
C2—C1—C10a109.0 (3)C6—C7—H7B109
C11—C1—C10a114.7 (3)H7A—C7—H7B108
C2—C1—H1108O8—C8—C7122.1 (4)
C11—C1—H1108O8—C8—C9121.3 (4)
C10a—C1—H1108C7—C8—C9116.5 (3)
C21—C2—C1111.9 (3)O9—C9—C8111.1 (3)
C21—C2—C3112.1 (3)O9—C9—C10108.4 (3)
C1—C2—C3113.0 (3)C8—C9—C10111.2 (3)
C21—C2—H2106O9—C9—H9109
C1—C2—H2106C8—C9—H9109
C3—C2—H2106C10—C9—H9109
C4—C3—C2112.6 (3)C9—O9—C9M111.8 (3)
C4—C3—H3A109O9—C9M—H9M1110
C2—C3—H3A109O9—C9M—H9M2110
C4—C3—H3B109H9M1—C9M—H9M2110
C2—C3—H3B109O9—C9M—H9M3110
H3A—C3—H3B108H9M1—C9M—H9M3110
C4a—C4—C3126.9 (3)H9M2—C9M—H9M3110
C4a—C4—H4117C9—C10—C10a114.1 (3)
C3—C4—H4117C9—C10—H10A109
C4—C4a—C5119.0 (3)C10a—C10—H10A109
C4—C4a—C10a119.6 (3)C9—C10—H10B109
C5—C4a—C10a121.4 (3)C10a—C10—H10B109
C4a—C5—C6117.0 (4)H10A—C10—H10B108
C4a—C5—H5A108C4a—C10a—C10115.5 (3)
C6—C5—H5A108C4a—C10a—C1109.8 (3)
C4a—C5—H5B108C10—C10a—C1113.9 (3)
C6—C5—H5B108C4a—C10a—H10C106
H5A—C5—H5B107C10—C10a—H10C106
C5—C6—C7116.3 (3)C1—C10a—H10C106
C5—C6—H6A108O11—C11—O12122.7 (3)
C7—C6—H6A108O11—C11—C1124.0 (3)
C5—C6—H6B108O12—C11—C1113.2 (3)
C7—C6—H6B108C11—O12—H12110
H6A—C6—H6B107O21—C21—O22123.5 (3)
C8—C7—C6112.8 (3)O21—C21—C2119.6 (3)
C8—C7—H7A109O22—C21—C2116.9 (3)
C6—C7—H7A109C21—O22—H22110
C11—C1—C2—C2159.8 (4)O9—C9—C10—C10a79.2 (4)
C10a—C1—C2—C21173.5 (3)C8—C9—C10—C10a43.2 (4)
C11—C1—C2—C367.9 (4)C4—C4a—C10a—C10159.2 (4)
C10a—C1—C2—C358.8 (4)C5—C4a—C10a—C1021.5 (5)
C21—C2—C3—C4158.2 (3)C4—C4a—C10a—C128.7 (5)
C1—C2—C3—C430.7 (5)C5—C4a—C10a—C1152.0 (3)
C2—C3—C4—C4a0.7 (6)C9—C10—C10a—C4a101.7 (4)
C3—C4—C4a—C5179.9 (4)C9—C10—C10a—C1129.9 (3)
C3—C4—C4a—C10a0.5 (6)C2—C1—C10a—C4a56.6 (4)
C4—C4a—C5—C6108.8 (4)C11—C1—C10a—C4a67.5 (4)
C10a—C4a—C5—C670.5 (5)C2—C1—C10a—C10172.2 (3)
C4a—C5—C6—C783.6 (5)C11—C1—C10a—C1063.8 (4)
C5—C6—C7—C871.5 (5)C2—C1—C11—O110.3 (5)
C6—C7—C8—O872.2 (5)C10a—C1—C11—O11123.1 (4)
C6—C7—C8—C9104.8 (4)C2—C1—C11—O12176.0 (3)
O8—C8—C9—O912.9 (4)C10a—C1—C11—O1260.6 (4)
C7—C8—C9—O9170.1 (3)C1—C2—C21—O2129.3 (5)
O8—C8—C9—C10107.9 (4)C3—C2—C21—O21157.5 (3)
C7—C8—C9—C1069.1 (4)C1—C2—C21—O22153.3 (3)
C8—C9—O9—C9M86.3 (3)C3—C2—C21—O2225.2 (5)
C10—C9—O9—C9M151.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O9i0.841.892.716 (4)168
O22—H22···O21ii0.841.782.621 (4)174
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+2, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H20O6C16H20O6C14H16O5C15H20O6
Mr308.32308.32264.27296.31
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)150150150150
a, b, c (Å)7.4878 (9), 10.1793 (12), 11.0220 (13)27.666 (9), 5.066 (2), 22.793 (7)14.1076 (19), 11.3501 (15), 7.7762 (10)14.676 (2), 9.967 (2), 18.937 (3)
α, β, γ (°)69.955 (2), 83.957 (2), 79.806 (2)90, 105.149 (5), 9090, 96.280 (2), 9090, 90, 90
V3)775.85 (16)3084 (2)1237.7 (3)2770.0 (8)
Z2848
Radiation typeMo KαMo KαMo KαSynchrotron, λ = 0.6892 Å
µ (mm1)0.100.100.110.11
Crystal size (mm)0.5 × 0.3 × 0.30.50 × 0.45 × 0.250.42 × 0.40 × 0.310.06 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART1000 CCD area-detector
diffractometer
Bruker SMART CCD area-detector on SRS Station 9.8
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9181, 3597, 3148 10535, 3584, 2967 10858, 3047, 2437 18905, 2715, 1769
Rint0.0240.0580.0330.136
(sin θ/λ)max1)0.6760.6760.6740.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.06 0.050, 0.126, 0.98 0.035, 0.100, 1.07 0.084, 0.231, 1.08
No. of reflections3597358428962715
No. of parameters202199173192
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.200.37, 0.190.30, 0.160.53, 0.29

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2000), SAINT (Bruker, 1998), SAINT and SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL, SHELXL97 and PLATON (Spek, 2001).

Selected torsion angles (º) for (I) top
C1—C2—C10—O10130.12 (11)C2—C1—C13—O13134.76 (12)
Selected torsion angles (º) for (II) top
C1—C2—C10—O1087.2 (2)C2—C1—C13—O1311.8 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.992.423.3900 (16)168
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O9i0.841.892.716 (4)168
O22—H22···O21ii0.841.782.621 (4)174
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+2, z+1.
Ring-puckering parameters (Å,°) for compounds (I)-(IV) top
CompoundRing sizeq2q3q4ϕ2ϕ3QTθ
(I)60.253 (2)0.012 (2)298.6 (4)0.253 (2)87.3 (5)
(I)70.515 (2)0.675 (2)253.6 (2)144.2 (2)0.849 (2)
(II)60.214 (1)0.015 (1)300.7 (3)0.214 (1)86.0 (3)
(II)70.538 (1)0.652 (1)241.6 (1)139.4 (1)0.845 (1)
(III)60.624 (1)-0.021 (1)59.0 (1)0.624 (1)92.0 (1)
(III)70.382 (1)0.699 (1)250.1 (2)259.3 (1)0.797 (1)
(IV)60.404 (4)-0.309 (4)180.6 (5)0.509 (4)127.5 (5)
(IV)80.869 (4)0.739 (4)0.272 (4)33.3 (3)110.7 (3)1.173 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds