Download citation
Download citation
link to html
The structures of the title compounds, [PtCl2(C7H5N3O2S)2]·4C3H7NO, (I), and [Pt(C3H5N3S)4][PtCl6]·2C3H7NO, (II), respectively, comprise square-planar PtII centres. In the cation and anion of (II), the Pt atoms lie on independent inversion centres. For (I), the metal atom is N-bonded to two trans organic ligands and also bonded to two Cl atoms, whereas in (II), the Pt atom is N-bonded to four organic ligands, the charge being balanced by the presence of an additional [PtCl6]2− species (from the starting material). Both structures contain di­methyl­form­amide solvate mol­ecules, four in the asymmetric unit of (I) and one in (II), which are involved in the hydrogen-bonding network via N—H...X and C—H...X associations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009933/gg1066sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009933/gg1066Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009933/gg1066IIsup3.hkl
Contains datablock II

CCDC references: 173348; 173349

Comment top

The structures of many metal complexes of 2-amino-1,3-thiazole derivatives, where the metal is directly bound to the ligand, are known and include most of the d-block transition metal first row (i.e. Mn–Zn), plus a few other metals (such as Mo, Hg and Cd). In all but a few of these cases, the thiazoles bind to the metal via N3. Our current interest in studying the hydrogen-bonding features of 2-amino-1,3-thiazoles has led us to investigate such aspects in their metal complexes, especially when the main hydrogen-bond acceptor atom (N3) is bound to the metal. Interestingly, a Cambridge Structural Database (CSD) search (Fletcher et al., 1996) reveals that there are 13 reported single-crystal structures of 1,3-thiazole complexes with Pt, but none for any 2-amino (i.e. NH2) analogues. However, by mixing chloroplatinic acid with a series of thiazole derivatives we expected to produce [bis(thiazolium)]2+[PtCl6]2-. Several similar complexes of this type with 2-amino-1,3-thiazole derivatives are known and include anions such as [CuCl4]2- (Fernandez et al., 1996), [ZnCl4]2- (Kubiak & Glowiak, 1984), [Cd4Cl11]4-, [BiI4]-, [Bi2Br10]4- and [Sb4Br16]4-. In each of these complexes, N—H···Cl interactions dominate the hydrogen-bond network. Instead, our syntheses yielded (I) and (II), which have Pt coordination to N3 but also contain solvent N,N'-dimethylformamide (DMF) molecules that are intricately involved via hydrogen-bond interactions.

The structures of (I) and (II) both contain square-planar PtII complexes, which is interesting because the Pt from the starting material has undergone reductive elimination. Selected Pt bonds are listed in Table 1, while hydrogen-bond geometries are given in Table 2. In (I), the organic ligands are trans across the Pt atom but oriented in the same direction; the charge (and coordination) being balanced by two bound Cl atoms (Fig. 1). The thiazoles are essentially coplanar [dihedral angle 4.5 (1)°] and are involved with three of the four DMF molecules in strong N—H···O hydrogen-bonding associations from the 2-amino groups (Fig. 2). This packing arrangement may explain the specific orientation of the two thiazoles. Several C—H···O short contacts are also listed in Table 2, with the majority of C—H donors being from the N-methyl groups on the DMF molecules.

Complex (II) has one PtII cation species surrounded by four N-bound organic ligands and one PtCl62- anion to balance the charge (Fig. 3). Again, the Pt complex has undergone formal reductive elimination, although it is interesting to encounter a mixed-valence system. The cation has two symmetry-unique thiazoles [dihedral angle 89.9 (8)°], whereas the anion has three crystallographically unique Cl atoms; both Pt centres reside on inversion centres. Complex (II) contains only one DMF molecule and this is involved in hydrogen-bonding associations although the majority of hydrogen-bonding interactions from the 2-amino H atoms use the chlorides as acceptors (Fig. 4). The DMF molecules neatly reside between the inner-facing 2-amino H atoms; the outer-facing H atoms both associate via three-centre interactions to adjacent Cl atoms. The N-attachment of the organic ligands in complexes (I) and (II) leaves an outer-facing S atom that is susceptible to close contact from another large atom. In (I), S1B is 3.649 (5) Å from a related atom (i.e. S1B at -x, -y, -z) and is also 3.459 (5) Å from Cl1(-x, -y, -z). S1A is 3.050 (5) Å from O16(-x, -y, -z), while S1B is 3.273 (5) Å from O6(-1 + x, y, z). In (II), S1A has the greater number of close contacts and is 3.78 (1) Å from S1B(-x, -y, -z), 3.62 (1) Å from Cl1(-x, -y, 1 - z), and 3.58 (1) Å from Cl2(x, -1 - y, z), while S1B is 3.54 (1) Å from Cl2(-x, -1 - y, -z). In both structures, the distances between the closest DMF O atom and the organic-bound Pt atom are 3.766 (5) Å (symmetry code: -x, 1 - y, -z) for (I) and 3.55 (1) Å (symmetry code: 1 - x, -y, -z) for (II).

Experimental top

Complexes (I) and (II) were prepared by dissolving (upon heating) 1:2 molar amounts of chloroplatinic acid with, respectively, 2-amino-6-nitro-1,3,4-benzothiazole for (I) and 2-amino-5-methyl-1,3,4-thiadiazole for (II) in dry DMF. Crystals were separated from the reaction solutions after three weeks.

Refinement top

All H atoms were included in the refinement at calculated positions as riding models, with C—H distances set to either 0.98 (CH3) or 0.95 Å (CHO) and the N—H distance set to 0.88 Å.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I), showing 30% probability ellipsoids. Three DMF molecules have been removed for clarity.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen-bonding interactions are shown as dotted lines. [Symmetry codes: (i) -x, 1 - y, -z; (ii) x - 1, y, z.]
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for (II), showing 30% probability ellipsoids. The DMF molecule has been removed for clarity. [Symmetry codes: (i) 1 - x, -y, -z; (ii) -x, -1 - y, 1 - z.]
[Figure 4] Fig. 4. Packing diagram of (II). Hydrogen-bonding interactions are shown as dotted lines. [Symmetry codes: (i) -x, -y, 1 - z; (ii) x, 1 + y, z; (iii) 1 - x, -y, -z; (iv) -x, -1 - y, -z; (v) x, y, z - 1.]
(I) trans-Bis(2-amino-6-nitro-1,3-benzothiazole-N)dichloroplatinum(II) tetrakis(N,N'-dimethylformamide) solvate top
Crystal data top
[PtCl2(C7H5N3O2S)2]·4C3H7NOZ = 2
Mr = 948.77F(000) = 944
Triclinic, P1Dx = 1.757 Mg m3
a = 11.137 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.671 (3) ÅCell parameters from 29063 reflections
c = 14.409 (3) Åθ = 2.9–27.5°
α = 64.28 (3)°µ = 4.24 mm1
β = 85.77 (3)°T = 150 K
γ = 78.28 (3)°Needle, yellow
V = 1793.4 (6) Å30.28 × 0.08 × 0.05 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
8177 independent reflections
Radiation source: Enraf-Nonius FR591 rotating anode7229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1412
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.389, Tmax = 0.816l = 1818
29010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4358P]
where P = (Fo2 + 2Fc2)/3
8177 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 2.45 e Å3
0 restraintsΔρmin = 2.61 e Å3
Crystal data top
[PtCl2(C7H5N3O2S)2]·4C3H7NOγ = 78.28 (3)°
Mr = 948.77V = 1793.4 (6) Å3
Triclinic, P1Z = 2
a = 11.137 (2) ÅMo Kα radiation
b = 12.671 (3) ŵ = 4.24 mm1
c = 14.409 (3) ÅT = 150 K
α = 64.28 (3)°0.28 × 0.08 × 0.05 mm
β = 85.77 (3)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
8177 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
7229 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.816Rint = 0.066
29010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 2.45 e Å3
8177 reflectionsΔρmin = 2.61 e Å3
451 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.160112 (11)0.205099 (11)0.111809 (10)0.02204 (7)
Cl10.11420 (10)0.02908 (9)0.23411 (8)0.0336 (2)
Cl20.20186 (10)0.38565 (9)0.00743 (8)0.0297 (2)
S1A0.36404 (9)0.22879 (9)0.36415 (8)0.0270 (2)
C2A0.3327 (4)0.1810 (3)0.2736 (3)0.0244 (8)
N21A0.4126 (3)0.0990 (3)0.2575 (3)0.0329 (8)
H21A0.39660.07540.21140.041*
H22A0.48220.06780.29280.041*
N3A0.2238 (3)0.2345 (3)0.2241 (3)0.0225 (7)
C4A0.0455 (4)0.3862 (4)0.2236 (3)0.0268 (8)
H4A0.00230.37850.17310.033*
C5A0.0062 (3)0.4667 (4)0.2627 (3)0.0276 (8)
H5A0.08500.51490.23970.035*
C6A0.0594 (4)0.4759 (3)0.3367 (3)0.0266 (8)
N61A0.0071 (3)0.5663 (3)0.3740 (3)0.0311 (8)
O61A0.1001 (3)0.6158 (3)0.3510 (3)0.0477 (9)
O62A0.0724 (3)0.5890 (3)0.4239 (3)0.0368 (7)
C7A0.1743 (3)0.4078 (3)0.3740 (3)0.0252 (8)
H7A0.21690.41610.42450.032*
C8A0.2238 (3)0.3279 (3)0.3343 (3)0.0238 (8)
C9A0.1604 (3)0.3166 (3)0.2581 (3)0.0224 (8)
S1B0.06255 (9)0.08434 (9)0.12527 (8)0.0265 (2)
C2B0.1449 (4)0.0933 (3)0.0310 (3)0.0234 (8)
N21B0.2500 (3)0.0201 (3)0.0031 (3)0.0292 (8)
H21B0.29240.02400.05030.036*
H22B0.27810.03280.02130.036*
N3B0.0926 (3)0.1771 (3)0.0005 (3)0.0224 (7)
C4B0.0961 (4)0.3334 (3)0.0398 (3)0.0248 (8)
H4B0.07450.36140.00700.031*
C5B0.2039 (4)0.3858 (3)0.0959 (3)0.0279 (8)
H5B0.25760.45010.08830.035*
C6B0.2334 (4)0.3436 (3)0.1639 (3)0.0272 (8)
N61B0.3476 (3)0.4010 (3)0.2251 (3)0.0339 (8)
O61B0.4177 (3)0.4785 (3)0.2082 (3)0.0445 (8)
O62B0.3688 (3)0.3687 (3)0.2905 (3)0.0415 (8)
C7B0.1588 (4)0.2506 (4)0.1792 (3)0.0282 (8)
H7B0.18110.22360.22640.035*
C8B0.0511 (4)0.1994 (3)0.1229 (3)0.0240 (8)
C9B0.0185 (4)0.2388 (3)0.0517 (3)0.0238 (8)
O10.4341 (3)0.9599 (3)0.1499 (3)0.0436 (8)
C20.5201 (4)0.8771 (4)0.1930 (4)0.0379 (10)
H20.55370.87270.25360.047*
N30.5688 (3)0.7949 (3)0.1625 (3)0.0314 (8)
C40.5230 (4)0.7973 (4)0.0705 (4)0.0403 (11)
H410.43960.78090.08190.050*
H420.57630.73650.05360.050*
H430.52210.87620.01330.050*
C50.6671 (4)0.6983 (5)0.2196 (4)0.0488 (13)
H510.68670.70550.28150.061*
H520.73980.70210.17640.061*
H530.64140.62190.23950.061*
O60.6988 (4)0.1256 (3)0.1005 (3)0.0509 (9)
C70.7374 (5)0.1697 (4)0.1494 (4)0.0421 (11)
H70.81370.13080.18500.053*
N80.6799 (4)0.2688 (4)0.1564 (3)0.0435 (10)
C90.5640 (6)0.3344 (5)0.1010 (5)0.0605 (15)
H910.57750.40850.04300.076*
H920.50450.35340.14780.076*
H930.53230.28540.07510.076*
C100.7272 (7)0.3155 (6)0.2178 (5)0.0694 (18)
H1010.66800.31780.27110.087*
H1020.74070.39640.17380.087*
H1030.80500.26430.25050.087*
O110.6319 (4)1.0135 (5)0.3672 (4)0.0849 (17)
C120.7240 (5)0.9343 (6)0.3826 (4)0.0571 (15)
H120.71860.87190.36430.071*
N130.8284 (3)0.9294 (4)0.4221 (3)0.0396 (9)
C140.8390 (8)1.0180 (7)0.4558 (7)0.101 (3)
H1410.75701.06150.46050.127*
H1420.88741.07380.40630.127*
H1430.87970.97930.52360.127*
C150.9337 (5)0.8367 (4)0.4377 (5)0.0559 (15)
H1510.91290.77720.41840.070*
H1520.95910.79840.51050.070*
H1531.00090.87100.39510.070*
O160.4064 (4)0.3089 (4)0.5284 (3)0.0635 (11)
C170.4907 (5)0.3602 (5)0.4881 (4)0.0464 (12)
H170.46950.44170.44050.058*
N180.6084 (4)0.3138 (4)0.5041 (3)0.0424 (9)
C190.6488 (8)0.1959 (6)0.5792 (6)0.097 (3)
H1910.63940.19400.64810.122*
H1920.73530.16900.56830.122*
H1930.59960.14310.57340.122*
C200.7005 (7)0.3862 (8)0.4600 (6)0.090 (3)
H2010.66270.46390.40660.112*
H2020.76450.34610.42950.112*
H2030.73680.39780.51400.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02358 (10)0.01978 (10)0.02515 (10)0.00329 (6)0.00220 (6)0.01179 (7)
Cl10.0441 (6)0.0273 (5)0.0285 (5)0.0152 (4)0.0053 (4)0.0067 (4)
Cl20.0393 (5)0.0218 (5)0.0297 (5)0.0095 (4)0.0008 (4)0.0110 (4)
S1A0.0241 (5)0.0286 (5)0.0304 (5)0.0005 (4)0.0066 (4)0.0159 (4)
C2A0.027 (2)0.0187 (18)0.025 (2)0.0022 (15)0.0046 (16)0.0073 (16)
N21A0.0308 (18)0.0306 (19)0.040 (2)0.0046 (15)0.0097 (16)0.0210 (17)
N3A0.0189 (15)0.0218 (16)0.0286 (18)0.0028 (12)0.0000 (13)0.0130 (14)
C4A0.0242 (19)0.035 (2)0.028 (2)0.0031 (16)0.0050 (16)0.0201 (18)
C5A0.0226 (19)0.031 (2)0.031 (2)0.0005 (15)0.0024 (16)0.0161 (17)
C6A0.027 (2)0.025 (2)0.031 (2)0.0030 (15)0.0030 (16)0.0164 (17)
N61A0.035 (2)0.0318 (19)0.0296 (19)0.0030 (15)0.0009 (15)0.0177 (16)
O61A0.0329 (18)0.059 (2)0.059 (2)0.0175 (15)0.0146 (15)0.0416 (19)
O62A0.0379 (17)0.0395 (18)0.046 (2)0.0043 (13)0.0037 (14)0.0309 (16)
C7A0.0241 (18)0.029 (2)0.026 (2)0.0094 (15)0.0031 (15)0.0138 (17)
C8A0.0253 (19)0.0218 (18)0.023 (2)0.0038 (14)0.0018 (15)0.0090 (15)
C9A0.0247 (19)0.0218 (19)0.0226 (19)0.0082 (15)0.0011 (15)0.0096 (15)
S1B0.0295 (5)0.0248 (5)0.0297 (5)0.0011 (4)0.0046 (4)0.0170 (4)
C2B0.0255 (19)0.0223 (19)0.027 (2)0.0087 (15)0.0020 (15)0.0126 (16)
N21B0.0255 (17)0.0307 (18)0.037 (2)0.0004 (14)0.0051 (15)0.0217 (16)
N3B0.0220 (16)0.0207 (16)0.0286 (18)0.0056 (12)0.0022 (13)0.0138 (14)
C4B0.030 (2)0.0199 (18)0.028 (2)0.0061 (15)0.0010 (16)0.0132 (16)
C5B0.028 (2)0.0220 (19)0.032 (2)0.0020 (15)0.0031 (17)0.0115 (17)
C6B0.026 (2)0.0239 (19)0.027 (2)0.0042 (15)0.0032 (16)0.0066 (16)
N61B0.0287 (18)0.0298 (19)0.036 (2)0.0024 (15)0.0054 (15)0.0078 (16)
O61B0.0302 (17)0.0394 (19)0.061 (2)0.0072 (14)0.0085 (15)0.0239 (17)
O62B0.0378 (17)0.0420 (18)0.045 (2)0.0008 (14)0.0143 (15)0.0206 (16)
C7B0.031 (2)0.028 (2)0.027 (2)0.0071 (16)0.0019 (17)0.0122 (17)
C8B0.0254 (19)0.0169 (18)0.027 (2)0.0021 (14)0.0013 (15)0.0074 (15)
C9B0.030 (2)0.0210 (19)0.022 (2)0.0064 (15)0.0003 (16)0.0099 (16)
O10.0394 (18)0.0444 (19)0.051 (2)0.0122 (14)0.0143 (15)0.0307 (17)
C20.030 (2)0.045 (3)0.042 (3)0.0010 (19)0.0060 (19)0.024 (2)
N30.0265 (17)0.0310 (18)0.033 (2)0.0022 (14)0.0028 (14)0.0131 (16)
C40.038 (2)0.041 (3)0.046 (3)0.0015 (19)0.007 (2)0.025 (2)
C50.039 (3)0.052 (3)0.045 (3)0.018 (2)0.011 (2)0.020 (2)
O60.060 (2)0.050 (2)0.058 (2)0.0044 (17)0.0002 (18)0.040 (2)
C70.051 (3)0.039 (3)0.038 (3)0.011 (2)0.006 (2)0.017 (2)
N80.062 (3)0.038 (2)0.039 (2)0.0162 (19)0.014 (2)0.0229 (18)
C90.065 (4)0.054 (3)0.058 (4)0.004 (3)0.012 (3)0.028 (3)
C100.105 (5)0.059 (4)0.068 (4)0.039 (4)0.010 (4)0.039 (3)
O110.039 (2)0.125 (4)0.052 (3)0.006 (3)0.013 (2)0.005 (3)
C120.051 (3)0.075 (4)0.041 (3)0.033 (3)0.000 (2)0.012 (3)
N130.031 (2)0.045 (2)0.049 (2)0.0032 (16)0.0048 (17)0.027 (2)
C140.119 (6)0.076 (5)0.135 (7)0.023 (4)0.070 (6)0.076 (5)
C150.044 (3)0.035 (3)0.068 (4)0.003 (2)0.019 (3)0.009 (3)
O160.051 (2)0.093 (3)0.072 (3)0.020 (2)0.004 (2)0.056 (3)
C170.052 (3)0.040 (3)0.047 (3)0.003 (2)0.018 (2)0.019 (2)
N180.045 (2)0.045 (2)0.035 (2)0.0057 (18)0.0083 (17)0.0151 (18)
C190.104 (6)0.067 (5)0.070 (5)0.041 (4)0.012 (4)0.008 (4)
C200.079 (5)0.141 (7)0.080 (5)0.067 (5)0.012 (4)0.057 (5)
Geometric parameters (Å, º) top
Pt1—Cl12.2935 (14)C2—N31.305 (5)
Pt1—Cl22.3031 (13)C2—H20.95
Pt1—N3A2.015 (3)N3—C41.442 (6)
Pt1—N3B2.023 (3)N3—C51.445 (5)
S1A—C2A1.740 (4)C4—H410.98
S1A—C8A1.742 (4)C4—H420.98
C2A—N21A1.315 (5)C4—H430.98
C2A—N3A1.346 (5)C5—H510.98
N21A—H21A0.88C5—H520.98
N21A—H22A0.88C5—H530.98
N3A—C9A1.382 (5)O6—C71.216 (6)
C4A—C5A1.379 (5)C7—N81.331 (6)
C4A—C9A1.385 (6)C7—H70.95
C4A—H4A0.95N8—C101.435 (6)
C5A—C6A1.393 (6)N8—C91.461 (8)
C5A—H5A0.95C9—H910.98
C6A—C7A1.387 (6)C9—H920.98
C6A—N61A1.469 (5)C9—H930.98
N61A—O62A1.213 (5)C10—H1010.98
N61A—O61A1.226 (5)C10—H1020.98
C7A—C8A1.373 (5)C10—H1030.98
C7A—H7A0.95O11—C121.238 (8)
C8A—C9A1.421 (5)C12—N131.310 (7)
S1B—C8B1.737 (4)C12—H120.95
S1B—C2B1.749 (4)N13—C141.429 (7)
C2B—N21B1.312 (5)N13—C151.433 (6)
C2B—N3B1.333 (5)C14—H1410.98
N21B—H21B0.88C14—H1420.98
N21B—H22B0.88C14—H1430.98
N3B—C9B1.388 (5)C15—H1510.98
C4B—C5B1.375 (6)C15—H1520.98
C4B—C9B1.396 (5)C15—H1530.98
C4B—H4B0.95O16—C171.217 (7)
C5B—C6B1.389 (6)C17—N181.316 (7)
C5B—H5B0.95C17—H170.95
C6B—C7B1.388 (6)N18—C191.414 (7)
C6B—N61B1.469 (5)N18—C201.441 (8)
N61B—O61B1.225 (5)C19—H1910.98
N61B—O62B1.232 (5)C19—H1920.98
C7B—C8B1.374 (6)C19—H1930.98
C7B—H7B0.95C20—H2010.98
C8B—C9B1.417 (5)C20—H2020.98
O1—C21.231 (5)C20—H2030.98
N3A—Pt1—N3B178.80 (11)N3—C2—H2117.2
N3A—Pt1—Cl189.41 (10)C2—N3—C4120.0 (4)
N3B—Pt1—Cl190.51 (10)C2—N3—C5122.0 (4)
N3A—Pt1—Cl289.24 (10)C4—N3—C5117.9 (4)
N3B—Pt1—Cl290.80 (10)N3—C4—H41109.5
Cl1—Pt1—Cl2177.75 (3)N3—C4—H42109.5
C2A—S1A—C8A89.75 (19)H41—C4—H42109.5
N21A—C2A—N3A124.9 (4)N3—C4—H43109.5
N21A—C2A—S1A120.3 (3)H41—C4—H43109.5
N3A—C2A—S1A114.8 (3)H42—C4—H43109.5
C2A—N21A—H21A120.0N3—C5—H51109.5
C2A—N21A—H22A120.0N3—C5—H52109.5
H21A—N21A—H22A120.0H51—C5—H52109.5
C2A—N3A—C9A111.2 (3)N3—C5—H53109.5
C2A—N3A—Pt1125.5 (3)H51—C5—H53109.5
C9A—N3A—Pt1123.2 (3)H52—C5—H53109.5
C5A—C4A—C9A120.0 (4)O6—C7—N8124.3 (5)
C5A—C4A—H4A120.0O6—C7—H7117.8
C9A—C4A—H4A120.0N8—C7—H7117.8
C4A—C5A—C6A118.7 (4)C7—N8—C10122.4 (5)
C4A—C5A—H5A120.7C7—N8—C9120.4 (4)
C6A—C5A—H5A120.7C10—N8—C9117.3 (5)
C7A—C6A—C5A123.6 (3)N8—C9—H91109.5
C7A—C6A—N61A117.8 (3)N8—C9—H92109.5
C5A—C6A—N61A118.5 (3)H91—C9—H92109.5
O62A—N61A—O61A123.9 (3)N8—C9—H93109.5
O62A—N61A—C6A118.5 (3)H91—C9—H93109.5
O61A—N61A—C6A117.5 (3)H92—C9—H93109.5
C8A—C7A—C6A116.8 (4)N8—C10—H101109.5
C8A—C7A—H7A121.6N8—C10—H102109.5
C6A—C7A—H7A121.6H101—C10—H102109.5
C7A—C8A—C9A121.4 (4)N8—C10—H103109.5
C7A—C8A—S1A128.8 (3)H101—C10—H103109.5
C9A—C8A—S1A109.8 (3)H102—C10—H103109.5
N3A—C9A—C4A126.0 (3)O11—C12—N13125.4 (6)
N3A—C9A—C8A114.4 (3)O11—C12—H12117.3
C4A—C9A—C8A119.6 (3)N13—C12—H12117.3
C8B—S1B—C2B89.43 (19)C12—N13—C14119.3 (5)
N21B—C2B—N3B125.7 (4)C12—N13—C15123.8 (5)
N21B—C2B—S1B119.2 (3)C14—N13—C15116.9 (5)
N3B—C2B—S1B115.1 (3)N13—C14—H141109.5
C2B—N21B—H21B120.0N13—C14—H142109.5
C2B—N21B—H22B120.0H141—C14—H142109.5
H21B—N21B—H22B120.0N13—C14—H143109.5
C2B—N3B—C9B111.1 (3)H141—C14—H143109.5
C2B—N3B—Pt1124.8 (3)H142—C14—H143109.5
C9B—N3B—Pt1124.0 (3)N13—C15—H151109.5
C5B—C4B—C9B119.7 (4)N13—C15—H152109.5
C5B—C4B—H4B120.2H151—C15—H152109.5
C9B—C4B—H4B120.2N13—C15—H153109.5
C4B—C5B—C6B119.1 (4)H151—C15—H153109.5
C4B—C5B—H5B120.4H152—C15—H153109.5
C6B—C5B—H5B120.4O16—C17—N18126.3 (5)
C7B—C6B—C5B123.3 (4)O16—C17—H17116.9
C7B—C6B—N61B117.6 (4)N18—C17—H17116.9
C5B—C6B—N61B119.1 (4)C17—N18—C19120.8 (5)
O61B—N61B—O62B123.1 (4)C17—N18—C20121.4 (6)
O61B—N61B—C6B118.3 (4)C19—N18—C20116.9 (6)
O62B—N61B—C6B118.6 (3)N18—C19—H191109.5
C8B—C7B—C6B116.9 (4)N18—C19—H192109.5
C8B—C7B—H7B121.5H191—C19—H192109.5
C6B—C7B—H7B121.5N18—C19—H193109.5
C7B—C8B—C9B121.5 (4)H191—C19—H193109.5
C7B—C8B—S1B128.4 (3)H192—C19—H193109.5
C9B—C8B—S1B110.1 (3)N18—C20—H201109.5
N3B—C9B—C4B126.2 (4)N18—C20—H202109.5
N3B—C9B—C8B114.3 (3)H201—C20—H202109.5
C4B—C9B—C8B119.4 (4)N18—C20—H203109.5
O1—C2—N3125.5 (4)H201—C20—H203109.5
O1—C2—H2117.2H202—C20—H203109.5
C8A—S1A—C2A—N21A179.3 (4)N21B—C2B—N3B—Pt13.3 (6)
C8A—S1A—C2A—N3A0.4 (3)S1B—C2B—N3B—Pt1176.93 (18)
N21A—C2A—N3A—C9A179.9 (4)Cl1—Pt1—N3B—C2B69.9 (3)
S1A—C2A—N3A—C9A0.4 (4)Cl2—Pt1—N3B—C2B111.9 (3)
N21A—C2A—N3A—Pt11.7 (6)Cl1—Pt1—N3B—C9B106.2 (3)
S1A—C2A—N3A—Pt1177.96 (18)Cl2—Pt1—N3B—C9B71.9 (3)
Cl1—Pt1—N3A—C2A76.8 (3)C9B—C4B—C5B—C6B0.2 (6)
Cl2—Pt1—N3A—C2A105.0 (3)C4B—C5B—C6B—C7B0.4 (6)
Cl1—Pt1—N3A—C9A105.1 (3)C4B—C5B—C6B—N61B179.0 (4)
Cl2—Pt1—N3A—C9A73.1 (3)C7B—C6B—N61B—O61B175.9 (4)
C9A—C4A—C5A—C6A0.0 (6)C5B—C6B—N61B—O61B5.5 (6)
C4A—C5A—C6A—C7A0.3 (6)C7B—C6B—N61B—O62B3.7 (6)
C4A—C5A—C6A—N61A176.6 (4)C5B—C6B—N61B—O62B174.9 (4)
C7A—C6A—N61A—O62A10.0 (6)C5B—C6B—C7B—C8B0.1 (6)
C5A—C6A—N61A—O62A167.2 (4)N61B—C6B—C7B—C8B178.7 (4)
C7A—C6A—N61A—O61A171.2 (4)C6B—C7B—C8B—C9B0.7 (6)
C5A—C6A—N61A—O61A11.7 (6)C6B—C7B—C8B—S1B178.8 (3)
C5A—C6A—C7A—C8A0.0 (6)C2B—S1B—C8B—C7B179.5 (4)
N61A—C6A—C7A—C8A177.0 (3)C2B—S1B—C8B—C9B1.0 (3)
C6A—C7A—C8A—C9A0.6 (6)C2B—N3B—C9B—C4B178.9 (4)
C6A—C7A—C8A—S1A179.5 (3)Pt1—N3B—C9B—C4B4.5 (6)
C2A—S1A—C8A—C7A178.8 (4)C2B—N3B—C9B—C8B0.4 (5)
C2A—S1A—C8A—C9A1.1 (3)Pt1—N3B—C9B—C8B176.2 (3)
C2A—N3A—C9A—C4A179.5 (4)C5B—C4B—C9B—N3B179.8 (4)
Pt1—N3A—C9A—C4A2.1 (6)C5B—C4B—C9B—C8B0.9 (6)
C2A—N3A—C9A—C8A1.3 (5)C7B—C8B—C9B—N3B179.4 (4)
Pt1—N3A—C9A—C8A177.1 (3)S1B—C8B—C9B—N3B1.0 (4)
C5A—C4A—C9A—N3A178.6 (4)C7B—C8B—C9B—C4B1.2 (6)
C5A—C4A—C9A—C8A0.6 (6)S1B—C8B—C9B—C4B178.3 (3)
C7A—C8A—C9A—N3A178.3 (3)O1—C2—N3—C40.8 (7)
S1A—C8A—C9A—N3A1.6 (4)O1—C2—N3—C5177.9 (5)
C7A—C8A—C9A—C4A0.9 (6)O6—C7—N8—C10178.0 (5)
S1A—C8A—C9A—C4A179.2 (3)O6—C7—N8—C91.8 (8)
C8B—S1B—C2B—N21B179.4 (4)O11—C12—N13—C143.2 (9)
C8B—S1B—C2B—N3B0.8 (3)O11—C12—N13—C15179.3 (5)
N21B—C2B—N3B—C9B179.9 (4)O16—C17—N18—C194.7 (9)
S1B—C2B—N3B—C9B0.4 (4)O16—C17—N18—C20173.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···O1i0.881.982.778 (5)150
N21A—H22A···O11i0.881.892.765 (6)175
N21B—H21B···O1i0.882.002.804 (5)151
N21B—H22B···O6ii0.881.942.794 (5)164
C7A—H7A···O16iii0.952.473.212 (6)135
C17—H17···O62Biv0.952.543.455 (6)162
C4—H43···O1v0.982.473.416 (7)163
C5—H51···O61Avi0.982.493.050 (6)116
C9—H93···O60.982.372.766 (6)104
C14—H141···O110.982.332.738 (8)104
C15—H153···Cl1vii0.982.753.675 (5)158
C20—H203···O62Aviii0.982.433.271 (7)144
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y+2, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z+1.
(II) Tetrakis(2-amino-5-methyl-1,3,4-thiadiazole-N4)platinum(II) hexachloroplatinate(IV) bis(N,N'-dimethylformamide) solvate top
Crystal data top
[Pt(C3H5N3S)4][PtCl6]·2C3H7NOZ = 1
Mr = 604.86F(000) = 578
Triclinic, P1Dx = 2.196 Mg m3
a = 9.0397 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3009 (4) ÅCell parameters from 4414 reflections
c = 11.5241 (5) Åθ = 2.9–27.5°
α = 109.027 (2)°µ = 8.35 mm1
β = 91.850 (3)°T = 150 K
γ = 91.785 (3)°Prism, yellow
V = 914.61 (7) Å30.08 × 0.03 × 0.01 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
3838 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 118
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1211
Tmin = 0.573, Tmax = 0.921l = 1214
6735 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.037P)2 + 8.3603P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3838 reflectionsΔρmax = 2.38 e Å3
216 parametersΔρmin = 2.59 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (6)
Crystal data top
[Pt(C3H5N3S)4][PtCl6]·2C3H7NOγ = 91.785 (3)°
Mr = 604.86V = 914.61 (7) Å3
Triclinic, P1Z = 1
a = 9.0397 (4) ÅMo Kα radiation
b = 9.3009 (4) ŵ = 8.35 mm1
c = 11.5241 (5) ÅT = 150 K
α = 109.027 (2)°0.08 × 0.03 × 0.01 mm
β = 91.850 (3)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
3838 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2804 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.921Rint = 0.050
6735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 2.38 e Å3
3838 reflectionsΔρmin = 2.59 e Å3
216 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.00000.00000.02032 (19)
S1A0.0590 (3)0.2190 (3)0.0761 (3)0.0374 (7)
C2A0.2283 (10)0.1555 (11)0.1090 (9)0.028 (2)
N21A0.2830 (10)0.1813 (11)0.2214 (8)0.041 (2)
H21A0.37170.15080.23330.051*
H22A0.23100.22900.28460.051*
N3A0.2967 (8)0.0859 (9)0.0095 (7)0.0227 (17)
N4A0.2198 (9)0.0767 (10)0.1009 (8)0.0320 (19)
C5A0.0949 (12)0.1401 (12)0.0784 (10)0.035 (2)
C51A0.0132 (13)0.1465 (15)0.1786 (11)0.045 (3)
H51A0.02470.09080.25890.056*
H52A0.02570.25290.17290.056*
H53A0.10900.10010.16940.056*
S1B0.2650 (3)0.4579 (3)0.0546 (3)0.0405 (7)
C2B0.3313 (12)0.3017 (12)0.0935 (10)0.035 (2)
N21B0.3028 (12)0.2907 (12)0.2049 (9)0.049 (3)
H21B0.33660.21070.22220.062*
H22B0.25020.36340.26070.062*
N3B0.4072 (8)0.2033 (8)0.0023 (7)0.0207 (16)
N4B0.4274 (10)0.2472 (11)0.0985 (8)0.036 (2)
C5B0.3593 (12)0.3759 (13)0.0866 (11)0.039 (3)
C51B0.3581 (14)0.4500 (15)0.1837 (11)0.048 (3)
H51B0.44200.40880.24250.060*
H52B0.36620.56010.14570.060*
H53B0.26530.42960.22670.060*
Pt20.00000.50000.50000.0304 (2)
Cl10.0261 (3)0.2431 (3)0.6136 (2)0.0385 (6)
Cl20.0225 (3)0.4432 (3)0.3190 (2)0.0400 (6)
Cl30.2550 (3)0.5131 (3)0.4835 (3)0.0426 (7)
O10.5456 (10)0.1095 (12)0.3245 (8)0.057 (2)
C20.6069 (19)0.037 (4)0.361 (2)0.156 (14)
H20.60810.05420.29330.195*
N30.6777 (11)0.0067 (13)0.4430 (9)0.046 (3)
C40.726 (3)0.114 (3)0.5545 (17)0.153 (12)
H410.74970.21130.54220.191*
H420.81460.07870.58650.191*
H430.64750.12730.61350.191*
C50.712 (4)0.149 (3)0.408 (3)0.201 (18)
H510.67440.19320.46840.252*
H520.82020.15710.40580.252*
H530.66680.20350.32690.252*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0172 (3)0.0247 (3)0.0183 (3)0.00356 (19)0.0021 (2)0.0056 (2)
S1A0.0272 (14)0.0485 (17)0.0351 (15)0.0148 (12)0.0050 (12)0.0104 (13)
C2A0.019 (5)0.040 (6)0.028 (5)0.010 (4)0.008 (4)0.012 (4)
N21A0.032 (5)0.061 (6)0.027 (5)0.021 (5)0.009 (4)0.010 (4)
N3A0.021 (4)0.029 (4)0.018 (4)0.002 (3)0.002 (3)0.008 (3)
N4A0.028 (5)0.036 (5)0.028 (4)0.002 (4)0.001 (4)0.005 (4)
C5A0.028 (6)0.041 (6)0.038 (6)0.004 (5)0.005 (5)0.016 (5)
C51A0.036 (6)0.062 (8)0.039 (7)0.011 (6)0.006 (5)0.019 (6)
S1B0.0391 (16)0.0362 (15)0.0462 (17)0.0052 (12)0.0027 (13)0.0144 (13)
C2B0.031 (6)0.032 (6)0.041 (6)0.004 (5)0.007 (5)0.011 (5)
N21B0.067 (7)0.051 (6)0.030 (5)0.002 (5)0.010 (5)0.014 (5)
N3B0.018 (4)0.019 (4)0.021 (4)0.002 (3)0.002 (3)0.002 (3)
N4B0.029 (5)0.043 (5)0.039 (5)0.001 (4)0.002 (4)0.016 (4)
C5B0.028 (6)0.045 (7)0.047 (7)0.010 (5)0.007 (5)0.018 (5)
C51B0.051 (8)0.056 (8)0.044 (7)0.004 (6)0.008 (6)0.026 (6)
Pt20.0301 (3)0.0348 (4)0.0236 (3)0.0018 (2)0.0036 (2)0.0057 (2)
Cl10.0427 (15)0.0356 (14)0.0316 (14)0.0027 (11)0.0036 (12)0.0030 (11)
Cl20.0462 (16)0.0462 (16)0.0262 (13)0.0011 (12)0.0021 (11)0.0100 (12)
Cl30.0374 (15)0.0457 (16)0.0395 (15)0.0026 (12)0.0059 (12)0.0063 (13)
O10.042 (5)0.092 (7)0.048 (5)0.010 (5)0.004 (4)0.040 (5)
C20.045 (10)0.34 (4)0.20 (2)0.048 (16)0.041 (13)0.24 (3)
N30.040 (6)0.073 (7)0.034 (5)0.013 (5)0.001 (4)0.027 (5)
C40.17 (2)0.19 (3)0.060 (12)0.10 (2)0.031 (13)0.011 (14)
C50.25 (4)0.088 (17)0.30 (4)0.07 (2)0.21 (3)0.08 (2)
Geometric parameters (Å, º) top
Pt2—Cl12.320 (3)C2B—N21B1.338 (14)
Pt2—Cl22.317 (3)N21B—H21B0.88
Pt2—Cl32.323 (3)N21B—H22B0.88
Pt1—N3A2.019 (7)N3B—N4B1.360 (11)
Pt1—N3B2.037 (7)N4B—C5B1.293 (15)
S1A—C2A1.732 (9)C5B—C51B1.493 (15)
S1A—C5A1.736 (11)C51B—H51B0.98
C2A—N3A1.305 (11)C51B—H52B0.98
C2A—N21A1.315 (13)C51B—H53B0.98
N21A—H21A0.88O1—C21.060 (18)
N21A—H22A0.88C2—N31.238 (19)
N3A—N4A1.406 (11)C2—H20.95
N4A—C5A1.284 (13)N3—C41.39 (2)
C5A—C51A1.507 (15)N3—C51.42 (2)
C51A—H51A0.98C4—H410.98
C51A—H52A0.98C4—H420.98
C51A—H53A0.98C4—H430.98
S1B—C5B1.737 (13)C5—H510.98
S1B—C2B1.748 (11)C5—H520.98
C2B—N3B1.304 (13)C5—H530.98
N3A—Pt1—N3Ai180.0 (4)N21B—C2B—S1B121.5 (9)
N3A—Pt1—N3Bi90.2 (3)C2B—N21B—H21B120.0
N3A—Pt1—N3B89.8 (3)C2B—N21B—H22B120.0
N3Bi—Pt1—N3B180.0 (4)H21B—N21B—H22B120.0
Cl1—Pt2—Cl1ii180.0C2B—N3B—N4B114.6 (8)
Cl2ii—Pt2—Cl2180.0C2B—N3B—Pt1126.6 (7)
Cl3—Pt2—Cl3ii180.0N4B—N3B—Pt1118.7 (6)
Cl2—Pt2—Cl190.87 (10)C5B—N4B—N3B112.5 (9)
Cl2—Pt2—Cl1ii89.13 (10)N4B—C5B—C51B124.5 (11)
Cl2—Pt2—Cl390.74 (10)N4B—C5B—S1B113.9 (8)
Cl1—Pt2—Cl390.66 (10)C51B—C5B—S1B121.7 (9)
Cl2—Pt2—Cl3ii89.26 (10)C5B—C51B—H51B109.5
Cl1—Pt2—Cl3ii89.34 (10)C5B—C51B—H52B109.5
C2A—S1A—C5A87.5 (5)H51B—C51B—H52B109.5
N3A—C2A—N21A124.6 (8)C5B—C51B—H53B109.5
N3A—C2A—S1A112.0 (7)H51B—C51B—H53B109.5
N21A—C2A—S1A123.4 (7)H52B—C51B—H53B109.5
C2A—N21A—H21A120.0O1—C2—N3154 (3)
C2A—N21A—H22A120.0O1—C2—H2102.9
H21A—N21A—H22A120.0N3—C2—H2102.9
C2A—N3A—N4A114.8 (7)C2—N3—C4124 (2)
C2A—N3A—Pt1126.8 (6)C2—N3—C5113 (2)
N4A—N3A—Pt1118.3 (5)C4—N3—C5123 (2)
C5A—N4A—N3A110.2 (8)N3—C4—H41109.5
N4A—C5A—C51A122.6 (10)N3—C4—H42109.5
N4A—C5A—S1A115.4 (8)H41—C4—H42109.5
C51A—C5A—S1A122.0 (8)N3—C4—H43109.5
C5A—C51A—H51A109.5H41—C4—H43109.5
C5A—C51A—H52A109.5H42—C4—H43109.5
H51A—C51A—H52A109.5N3—C5—H51109.5
C5A—C51A—H53A109.5N3—C5—H52109.5
H51A—C51A—H53A109.5H51—C5—H52109.5
H52A—C51A—H53A109.5N3—C5—H53109.5
C5B—S1B—C2B87.0 (6)H51—C5—H53109.5
N3B—C2B—N21B126.7 (10)H52—C5—H53109.5
N3B—C2B—S1B111.8 (8)
C5A—S1A—C2A—N3A0.7 (8)C5B—S1B—C2B—N21B177.4 (9)
C5A—S1A—C2A—N21A177.8 (10)N21B—C2B—N3B—N4B176.0 (10)
N21A—C2A—N3A—N4A177.4 (10)S1B—C2B—N3B—N4B4.5 (10)
S1A—C2A—N3A—N4A0.3 (11)N21B—C2B—N3B—Pt12.0 (15)
N21A—C2A—N3A—Pt10.1 (15)S1B—C2B—N3B—Pt1177.5 (4)
S1A—C2A—N3A—Pt1177.3 (5)N3A—Pt1—N3B—C2B72.9 (8)
N3Bi—Pt1—N3A—C2A89.5 (9)N3Ai—Pt1—N3B—C2B107.1 (8)
N3B—Pt1—N3A—C2A90.5 (9)N3A—Pt1—N3B—N4B109.1 (6)
N3Bi—Pt1—N3A—N4A88.0 (7)N3Ai—Pt1—N3B—N4B70.9 (6)
N3B—Pt1—N3A—N4A92.0 (7)C2B—N3B—N4B—C5B3.8 (11)
C2A—N3A—N4A—C5A0.4 (12)Pt1—N3B—N4B—C5B178.0 (7)
Pt1—N3A—N4A—C5A178.2 (7)N3B—N4B—C5B—C51B178.2 (9)
N3A—N4A—C5A—C51A179.3 (10)N3B—N4B—C5B—S1B1.2 (11)
N3A—N4A—C5A—S1A0.9 (12)C2B—S1B—C5B—N4B1.0 (8)
C2A—S1A—C5A—N4A0.9 (9)C2B—S1B—C5B—C51B179.6 (9)
C2A—S1A—C5A—C51A179.3 (10)O1—C2—N3—C411 (5)
C5B—S1B—C2B—N3B3.1 (8)O1—C2—N3—C5173 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···O10.881.982.816 (12)158
N21A—H22A···Cl1iii0.882.623.389 (9)146
N21A—H22A···Cl3iv0.882.723.430 (10)139
N21B—H21B···O1i0.882.042.849 (14)153
N21B—H22B···Cl2v0.882.613.399 (12)150
N21B—H22B···Cl3vi0.882.823.516 (10)137
N21B—H22B···Cl1vi0.882.913.341 (10)112
C4—H41···Cl1vii0.982.823.44 (2)122
Symmetry codes: (i) x+1, y, z; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y1, z; (vi) x, y, z1; (vii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[PtCl2(C7H5N3O2S)2]·4C3H7NO[Pt(C3H5N3S)4][PtCl6]·2C3H7NO
Mr948.77604.86
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)150150
a, b, c (Å)11.137 (2), 12.671 (3), 14.409 (3)9.0397 (4), 9.3009 (4), 11.5241 (5)
α, β, γ (°)64.28 (3), 85.77 (3), 78.28 (3)109.027 (2), 91.850 (3), 91.785 (3)
V3)1793.4 (6)914.61 (7)
Z21
Radiation typeMo KαMo Kα
µ (mm1)4.248.35
Crystal size (mm)0.28 × 0.08 × 0.050.08 × 0.03 × 0.01
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Enraf-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.389, 0.8160.573, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
29010, 8177, 7229 6735, 3838, 2804
Rint0.0660.050
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.04 0.048, 0.135, 1.07
No. of reflections81773838
No. of parameters451216
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.45, 2.612.38, 2.59

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON97 (Spek, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Pt1—Cl12.2935 (14)Pt1—N3A2.015 (3)
Pt1—Cl22.3031 (13)Pt1—N3B2.023 (3)
N3A—Pt1—N3B178.80 (11)C9A—N3A—Pt1123.2 (3)
Cl1—Pt1—Cl2177.75 (3)C2B—N3B—Pt1124.8 (3)
C2A—N3A—Pt1125.5 (3)C9B—N3B—Pt1124.0 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···O1i0.881.982.778 (5)150
N21A—H22A···O11i0.881.892.765 (6)175
N21B—H21B···O1i0.882.002.804 (5)151
N21B—H22B···O6ii0.881.942.794 (5)164
C7A—H7A···O16iii0.952.473.212 (6)135
C17—H17···O62Biv0.952.543.455 (6)162
C4—H43···O1v0.982.473.416 (7)163
C5—H51···O61Avi0.982.493.050 (6)116
C9—H93···O60.982.372.766 (6)104
C14—H141···O110.982.332.738 (8)104
C15—H153···Cl1vii0.982.753.675 (5)158
C20—H203···O62Aviii0.982.433.271 (7)144
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y+2, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
Pt2—Cl12.320 (3)Pt1—N3A2.019 (7)
Pt2—Cl22.317 (3)Pt1—N3B2.037 (7)
Pt2—Cl32.323 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···O10.881.982.816 (12)158
N21A—H22A···Cl1i0.882.623.389 (9)146
N21A—H22A···Cl3ii0.882.723.430 (10)139
N21B—H21B···O1iii0.882.042.849 (14)153
N21B—H22B···Cl2iv0.882.613.399 (12)150
N21B—H22B···Cl3v0.882.823.516 (10)137
N21B—H22B···Cl1v0.882.913.341 (10)112
C4—H41···Cl1vi0.982.823.44 (2)122
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x, y, z1; (vi) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds