Download citation
Download citation
link to html
The structures of the ketotins determined here, [SnCl2(C6H11O)2] and [Sn(C3S5)(C6H11O)2], respectively, along with that previously reported for [MeC(O)CH2CMe2]2SnI2, are compared with the structures of the analogous estertins [MeOC(O)CH2CH2]2SnX2. Pairwise comparison of the mean ketotin [estertin] Sn-X and Sn-O distances as Sn-X 2.4422 (4) [2.4054 (7) Å], 2.4970 (4) [2.471 (2) Å] and 2.8463 (4) [2.7788 (8) Å] and Sn-O 2.4926 (12) [2.528 (1) Å], 2.6110 (11) [2.629 (7) Å] and 2.435 (3) [2.525 (4) Å] (for X = Cl, S and I, respectively) clearly demonstrates the superior donor ability of the ketotin O atom in chelate formation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009659/gg1064sup1.cif
Contains datablocks global, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009659/gg1064IVsup2.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009659/gg1064Vsup3.hkl
Contains datablock V

CCDC references: 173351; 173352

Comment top

γ-Oxoalkyltin compounds, such as [RC(O)CH2CR'2]2SnX2 [(I), X = Cl] and [ROC(O)CH2CR'2]2SnX2 [(II): X = Cl], are readily available from the reactions of Sn, HCl and RC(O)CHCR'2 or ROC(O)CHCR'2 (Hutton & Oakes, 1976). Of the two groups of compounds, it is the so-called estertins, (II), which have attracted the greater interest. Considerable attention has been paid to the coordination chemistry of estertin compounds, especially the ability of the organic ligand to act as a chelating-C,O group (Wang & Liu, 2000; Zhang et al., 2000; Balasubramanian et al., 1997, and references therein). While fewer studies have been reported on the ketotin compounds, (I), their coordination chemistry should be equally as diverse and worthy of investigation. Recently, the crystal structure of diiodobis(4-methylpentan-2-onato-C4,O)tin(IV), [MeC(O)CH2CMe2]2SnI2 (III), was reported and compared to that of [MeOC(O)CH2CH2]2SnI2 (Howie & Wardell, 2000).

As shown by the crystal structures of two further ketotin compounds, dichlorobis(4-methylpentan-2-onato-C4,O)tin(IV), [MeC(O)CH2CMe2]2SnCl2, (IV), and [bis(4-methylpentan-2-onato-C4,O)(2-thioxo-1,3-dithiole-4,5-dithiolato- S,S')tin(IV), [MeC(O)CH2CMe2]2Sn(dmit)], (V), subtle changes in the geometries about the six-coordinate tin centres in [MeC(O)CH2CMe2]2SnX2 result from changing the X2 functional groups. Selected geometric parameters for (IV) and (V) are listed in Table 1. \sch

As in the structure of (III) above, both MeC(O)CH2CMe2 ligands act as chelating-C4,O groups in each of (IV) and (V). However, there are differing degrees of asymmetry in the Sn—O bond lengths of the chelating ligands within each of the three compounds: Δd(Sn—O) is 0.165 (2) Å in (V), 0.098 (2) Å in (IV), and 0.010 (6) and 0.004 (6) Å in the two independent molecules of (III). The geometry at tin in (III) is best described as being distorted octahedral. This distortion is due, in the main, to the chelate bite angles being ca 75°, which have a consequential effect on the trans angles, between 160.4 (2) and 163.68 (11)°, in (III). There is even greater octahedral distortion in (IV): despite similar chelate bite angles [72.80 (8) and 75.17 (8)°], the trans-angles in (IV) are quite different, 172.28 (4), 165.21 (5) and 152.23 (10)°. As in (III), the C atoms in (IV) are trans to each other with each of the O atoms trans to a halide. The longer Sn—O bond is trans to the shorter Sn—X bond. The structure of (V), with three chelating ligands, is still further displaced from octahedral, with the three largest angles subtended at the Sn atom being 161.13 (4) (O1—Sn—S1), 155.25 (4) (O2—Sn—S2) and only 131.15 (9)° (C1—Sn—C7). The bite angle of the dmit ligand is 87.95 (2)°, near ideal for a cis-relationship in an octahedral array, and so this cannot on geometric grounds be the cause of the further displacement from an octahedral geometry. A description of the geometry as a distorted trigonal prism also appears rather far-fetched, since for this structure, all trans angles would be expected to be near 136° for the ideal arrangement. Another possible description for the structure of (V) is a bicapped tetrahedron, with the two C and two S atoms in the tetrahedral sites and with the two O atoms capping this tetrahedron. However, the angles subtended by the C and S atoms at Sn range from 87.95 (2) to 131.15 (9)° and are thus far from ideal. A highly distorted six-coordinate complex seems thus to be the most appropriate description for the geometry. A similar situation pertains for the estertin analogue, [MeOC(O)CH2CH2]2Sn(dmit), although it was not mentioned in the publication (Buchanan et al., 1996). The five-membered chelate rings, Sn—O—C—C—C, have similar envelope conformations, and as expected from geometric considerations, the MeC(O)CH2CMe2 chelate bite angle generally increases with a decrease in the Sn—O bond length.

The mean Sn—O bond lengths are 2.435 (2) Å overall in (III), 2.4926 (12) Å in (IV), and 2.6110 (11) Å in (V), all determined at 150 (2) K. Corresponding values for [MeOC(O)CH2CH2]2SnX2, (VI), determined at 300 (2) K are 2.525 (4) [(VI): X = I] (Balasubramanian et al., 1997), 2.528 (7) [(VI): X = Cl] (Ng, 1993) and 2.629 (2) Å [(VI): X2 = dmit] (Buchanan et al., 1996). If the mean Sn—O bond lengths can be taken as a guide and assuming little bond shortening on reducing the temperature, the MeC(O)CH2CMe2 ligand appears to be the stronger chelating group. Selected comparisons of the geometric parameters for analogous ketotin and estertin compounds are in Table 2.

Experimental top

[MeC(O)CH2CMe2]2SnCl2 4 was prepared according to a published procedure (Hutton & Oakes, 1976) and was recrystallized from EtOH solution, m.p. 432–433 K, literature value 431 K (Hutton & Oakes, 1976). [MeC(O)CH2CMe2]2Sn(dmit) (V) was obtained from (IV) (0.2 mmol) and [NEt4]2[Zn(dmit)2] (0.1 mmol) in acetone (30 ml). The reaction mixture was refluxed for 30 min, left overnight and evaporated to leave a red-brown residue. The residue was crystallized by slow evaporation of a solution in acetone/EtOH. Dark orange-red crystals were collected, which darkened on heating and finally decomposed to a black residue at 461–465 K. Analysis found: C 35.3, H 4.4; calculated for C15H22O2S5Sn: C, 35.1, H 4.3%. 1H NMR (250 MHz, CDCl3): δ: 1.43 (s, 6H, J119,117Sn-1H 111.7, 106.8 Hz, Me2C),2.28 (s, 3H, MeCO), 2.96 (s, 2H, J119,117Sn-1H 116.6, 112.3 Hz, CH2).

Refinement top

In the final stages, in both cases, H were introduced in calculated positions with C—H 0.98 [0.99 Å] and refined with a riding model with Uiso 1.5 [1.2] × Ueq of the non-H to which they are attached for methyl [methylene] H.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (IV) showing the atom-labelling scheme. Non-H are shown as 50% ellipsoids and H as open circles. Dashed lines represent Sn—O bonds.
[Figure 2] Fig. 2. The molecular structure of (V) represented as Fig. 1.
(IV) Dichlorobis(4-methylpentane-2-onato-C4,O)tin(IV) top
Crystal data top
[SnCl2(C6H11O)2]F(000) = 776
Mr = 387.89Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6242 (2) ÅCell parameters from 23928 reflections
b = 11.9846 (3) Åθ = 1.0–27.5°
c = 14.5866 (3) ŵ = 1.90 mm1
β = 106.1048 (17)°T = 150 K
V = 1616.42 (6) Å3Block, colourless
Z = 40.28 × 0.18 × 0.16 mm
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
3654 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ and ω scans to fill the Ewald sphereh = 1212
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
k = 1515
Tmin = 0.600, Tmax = 0.744l = 1818
20493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.0246P]
where P = (Fo2 + 2Fc2)/3
3654 reflections(Δ/σ)max = 0.002
160 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[SnCl2(C6H11O)2]V = 1616.42 (6) Å3
Mr = 387.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6242 (2) ŵ = 1.90 mm1
b = 11.9846 (3) ÅT = 150 K
c = 14.5866 (3) Å0.28 × 0.18 × 0.16 mm
β = 106.1048 (17)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
3654 independent reflections
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
3167 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.744Rint = 0.054
20493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.08Δρmax = 0.75 e Å3
3654 reflectionsΔρmin = 1.19 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structures of (IV) and (V) were solved and refined by standard procedures.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Δρ(min) -1.19 e Å3 0.73 Å from SN

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.243801 (15)0.721769 (13)0.245875 (10)0.01803 (8)
Cl10.32156 (8)0.88417 (6)0.34571 (5)0.03558 (17)
Cl20.12116 (7)0.82261 (6)0.09852 (5)0.03388 (17)
O10.33318 (19)0.61248 (15)0.39185 (12)0.0284 (4)
C10.0490 (3)0.6674 (2)0.28288 (18)0.0242 (5)
C20.0865 (3)0.5603 (2)0.34109 (18)0.0267 (5)
H2A0.02030.55360.38210.032*
H2B0.06710.49630.29640.032*
C30.2377 (3)0.5507 (2)0.40285 (17)0.0236 (5)
C40.2706 (3)0.4615 (2)0.4774 (2)0.0332 (6)
H4A0.37410.44410.49460.050*
H4B0.21480.39440.45240.050*
H4C0.24440.48770.53410.050*
C50.0035 (3)0.7588 (3)0.3423 (2)0.0355 (7)
H5A0.08380.73510.35910.053*
H5B0.01650.82790.30500.053*
H5C0.08170.77180.40070.053*
C60.0730 (3)0.6439 (3)0.1901 (2)0.0364 (7)
H6A0.03880.58990.15090.055*
H6B0.09980.71350.15440.055*
H6C0.15750.61350.20660.055*
O20.2186 (2)0.52865 (15)0.17109 (13)0.0317 (4)
C70.4405 (3)0.6898 (2)0.20261 (18)0.0215 (5)
C80.3982 (3)0.6169 (2)0.11418 (17)0.0245 (5)
H8A0.35510.66510.05840.029*
H8B0.48710.58350.10450.029*
C90.2936 (3)0.5247 (2)0.11618 (18)0.0251 (5)
C100.2811 (3)0.4303 (2)0.0486 (2)0.0343 (6)
H10A0.37000.38570.06660.052*
H10B0.26660.45930.01620.052*
H10C0.19860.38340.05070.052*
C110.5507 (3)0.6299 (2)0.2846 (2)0.0284 (6)
H11A0.50990.55880.29810.043*
H11B0.57270.67690.34180.043*
H11C0.63960.61580.26620.043*
C120.5043 (3)0.8001 (2)0.1787 (2)0.0318 (6)
H12A0.58500.78410.15190.048*
H12B0.53910.84460.23690.048*
H12C0.42950.84180.13200.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01900 (12)0.01841 (11)0.01804 (12)0.00038 (6)0.00741 (8)0.00066 (5)
Cl10.0464 (4)0.0284 (3)0.0363 (4)0.0105 (3)0.0189 (3)0.0115 (3)
Cl20.0353 (4)0.0413 (4)0.0263 (3)0.0129 (3)0.0107 (3)0.0131 (3)
O10.0261 (9)0.0339 (10)0.0243 (10)0.0017 (8)0.0056 (8)0.0082 (8)
C10.0186 (12)0.0303 (13)0.0264 (13)0.0000 (10)0.0107 (10)0.0010 (10)
C20.0276 (13)0.0283 (13)0.0265 (14)0.0070 (11)0.0115 (11)0.0015 (10)
C30.0316 (14)0.0227 (12)0.0185 (12)0.0002 (10)0.0102 (11)0.0011 (9)
C40.0406 (16)0.0294 (14)0.0323 (15)0.0028 (12)0.0147 (13)0.0072 (11)
C50.0356 (17)0.0403 (16)0.0385 (18)0.0069 (13)0.0233 (15)0.0034 (13)
C60.0208 (13)0.0531 (19)0.0340 (16)0.0058 (12)0.0053 (12)0.0024 (13)
O20.0329 (10)0.0323 (10)0.0345 (11)0.0078 (8)0.0173 (9)0.0086 (8)
C70.0200 (12)0.0212 (12)0.0269 (13)0.0014 (9)0.0125 (10)0.0017 (10)
C80.0289 (13)0.0263 (13)0.0213 (13)0.0035 (10)0.0122 (11)0.0012 (10)
C90.0284 (13)0.0265 (13)0.0187 (13)0.0022 (10)0.0039 (11)0.0007 (9)
C100.0426 (17)0.0337 (15)0.0280 (15)0.0046 (13)0.0121 (13)0.0085 (11)
C110.0210 (13)0.0309 (14)0.0338 (15)0.0034 (10)0.0085 (11)0.0035 (11)
C120.0322 (16)0.0264 (13)0.0420 (18)0.0036 (11)0.0188 (14)0.0043 (12)
Geometric parameters (Å, º) top
Sn—C12.189 (2)C6—H6A0.9800
Sn—C72.189 (2)C6—H6B0.9800
Sn—Cl12.4216 (6)C6—H6C0.9800
Sn—O12.4439 (17)O2—C91.219 (3)
Sn—Cl22.4629 (6)C7—C81.517 (3)
Sn—O22.5414 (18)C7—C121.537 (3)
O1—C31.225 (3)C7—C111.539 (4)
C1—C21.525 (4)C8—C91.500 (4)
C1—C51.535 (4)C8—H8A0.9900
C1—C61.551 (4)C8—H8B0.9900
C2—C31.489 (4)C9—C101.484 (4)
C2—H2A0.9900C10—H10A0.9800
C2—H2B0.9900C10—H10B0.9800
C3—C41.495 (3)C10—H10C0.9800
C4—H4A0.9800C11—H11A0.9800
C4—H4B0.9800C11—H11B0.9800
C4—H4C0.9800C11—H11C0.9800
C5—H5A0.9800C12—H12A0.9800
C5—H5B0.9800C12—H12B0.9800
C5—H5C0.9800C12—H12C0.9800
C1—Sn—C7152.53 (10)H5B—C5—H5C109.5
C1—Sn—Cl1103.53 (7)C1—C6—H6A109.5
C7—Sn—Cl199.57 (7)C1—C6—H6B109.5
C1—Sn—O175.17 (8)H6A—C6—H6B109.5
C7—Sn—O191.94 (8)C1—C6—H6C109.5
Cl1—Sn—O186.07 (5)H6A—C6—H6C109.5
C1—Sn—Cl297.21 (7)H6B—C6—H6C109.5
C7—Sn—Cl294.46 (7)C9—O2—Sn108.28 (16)
Cl1—Sn—Cl297.11 (2)C8—C7—C12109.4 (2)
O1—Sn—Cl2172.28 (4)C8—C7—C11110.9 (2)
C1—Sn—O281.27 (8)C12—C7—C11110.2 (2)
C7—Sn—O272.80 (8)C8—C7—Sn107.21 (16)
Cl1—Sn—O2165.21 (5)C12—C7—Sn110.30 (17)
O1—Sn—O281.63 (6)C11—C7—Sn108.78 (16)
Cl2—Sn—O296.13 (5)C9—C8—C7115.5 (2)
C3—O1—Sn110.03 (16)C9—C8—H8A108.4
C2—C1—C5110.3 (2)C7—C8—H8A108.4
C2—C1—C6109.7 (2)C9—C8—H8B108.4
C5—C1—C6110.9 (2)C7—C8—H8B108.4
C2—C1—Sn107.55 (16)H8A—C8—H8B107.5
C5—C1—Sn108.96 (18)O2—C9—C10120.8 (2)
C6—C1—Sn109.39 (16)O2—C9—C8120.5 (2)
C3—C2—C1116.2 (2)C10—C9—C8118.7 (2)
C3—C2—H2A108.2C9—C10—H10A109.5
C1—C2—H2A108.2C9—C10—H10B109.5
C3—C2—H2B108.2H10A—C10—H10B109.5
C1—C2—H2B108.2C9—C10—H10C109.5
H2A—C2—H2B107.4H10A—C10—H10C109.5
O1—C3—C2121.1 (2)H10B—C10—H10C109.5
O1—C3—C4120.8 (2)C7—C11—H11A109.5
C2—C3—C4118.0 (2)C7—C11—H11B109.5
C3—C4—H4A109.5H11A—C11—H11B109.5
C3—C4—H4B109.5C7—C11—H11C109.5
H4A—C4—H4B109.5H11A—C11—H11C109.5
C3—C4—H4C109.5H11B—C11—H11C109.5
H4A—C4—H4C109.5C7—C12—H12A109.5
H4B—C4—H4C109.5C7—C12—H12B109.5
C1—C5—H5A109.5H12A—C12—H12B109.5
C1—C5—H5B109.5C7—C12—H12C109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
C1—C5—H5C109.5H12B—C12—H12C109.5
H5A—C5—H5C109.5
C1—Sn—O1—C320.70 (17)C7—Sn—O2—C925.20 (17)
C7—Sn—O1—C3134.72 (17)Cl1—Sn—O2—C985.8 (2)
Cl1—Sn—O1—C3125.82 (16)O1—Sn—O2—C9119.87 (18)
O2—Sn—O1—C362.42 (16)Cl2—Sn—O2—C967.58 (17)
C7—Sn—C1—C238.6 (3)C1—Sn—C7—C852.1 (3)
Cl1—Sn—C1—C2107.89 (16)Cl1—Sn—C7—C8160.93 (15)
O1—Sn—C1—C225.75 (16)O1—Sn—C7—C8112.73 (16)
Cl2—Sn—C1—C2152.97 (16)Cl2—Sn—C7—C862.94 (16)
O2—Sn—C1—C257.84 (16)O2—Sn—C7—C832.10 (15)
C7—Sn—C1—C5158.1 (2)C1—Sn—C7—C12171.1 (2)
Cl1—Sn—C1—C511.65 (19)Cl1—Sn—C7—C1241.92 (19)
O1—Sn—C1—C593.80 (19)O1—Sn—C7—C12128.26 (19)
Cl2—Sn—C1—C587.48 (18)Cl2—Sn—C7—C1256.07 (19)
O2—Sn—C1—C5177.39 (19)O2—Sn—C7—C12151.1 (2)
C7—Sn—C1—C680.5 (3)C1—Sn—C7—C1168.0 (3)
Cl1—Sn—C1—C6132.98 (17)Cl1—Sn—C7—C1179.05 (17)
O1—Sn—C1—C6144.9 (2)O1—Sn—C7—C117.29 (17)
Cl2—Sn—C1—C633.85 (19)Cl2—Sn—C7—C11177.04 (16)
O2—Sn—C1—C661.28 (18)O2—Sn—C7—C1187.92 (17)
C5—C1—C2—C386.2 (3)C12—C7—C8—C9161.4 (2)
C6—C1—C2—C3151.4 (2)C11—C7—C8—C976.8 (3)
Sn—C1—C2—C332.5 (3)Sn—C7—C8—C941.8 (2)
Sn—O1—C3—C28.8 (3)Sn—O2—C9—C10168.7 (2)
Sn—O1—C3—C4169.74 (19)Sn—O2—C9—C89.9 (3)
C1—C2—C3—O115.4 (3)C7—C8—C9—O220.0 (4)
C1—C2—C3—C4166.0 (2)C7—C8—C9—C10161.4 (2)
C1—Sn—O2—C9163.97 (19)
(V) Bis(4-methylpentan-2-onato-C4,O)(2-thioxo-1,3-dithiole-4,5-dithiolato- S,S')tin(IV) top
Crystal data top
[Sn(C3S5)(C6H11O)2]F(000) = 1032
Mr = 513.32Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0670 (2) ÅCell parameters from 10433 reflections
b = 15.4499 (4) Åθ = 2.9–27.5°
c = 12.2682 (2) ŵ = 1.73 mm1
β = 94.7892 (16)°T = 150 K
V = 2090.34 (7) Å3Block, orange
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
4730 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode4025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scans to fill the Ewald sphereh = 1414
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
k = 2020
Tmin = 0.542, Tmax = 0.823l = 1515
15800 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.0744P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4730 reflectionsΔρmax = 0.91 e Å3
215 parametersΔρmin = 1.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (3)
Crystal data top
[Sn(C3S5)(C6H11O)2]V = 2090.34 (7) Å3
Mr = 513.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0670 (2) ŵ = 1.73 mm1
b = 15.4499 (4) ÅT = 150 K
c = 12.2682 (2) Å0.24 × 0.20 × 0.12 mm
β = 94.7892 (16)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
4730 independent reflections
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
4025 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.823Rint = 0.051
15800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.04Δρmax = 0.91 e Å3
4730 reflectionsΔρmin = 1.22 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Δρ(min) -1.22 e Å-3 0.88 Å from SN.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.773178 (13)0.117397 (10)0.261396 (11)0.01697 (8)
S10.81911 (6)0.04061 (4)0.24790 (5)0.02649 (15)
S20.69113 (6)0.08679 (4)0.44053 (5)0.02783 (16)
S30.75976 (6)0.18645 (4)0.39406 (5)0.02501 (14)
S40.66033 (6)0.08015 (4)0.55587 (5)0.02579 (15)
S50.67930 (6)0.27136 (4)0.59297 (5)0.03389 (17)
C130.7591 (2)0.07497 (15)0.36810 (18)0.0208 (5)
C140.7111 (2)0.02485 (15)0.44350 (18)0.0217 (5)
C150.6979 (2)0.18375 (16)0.51941 (18)0.0244 (5)
O10.67012 (15)0.25720 (10)0.30748 (12)0.0245 (4)
C10.6228 (2)0.13653 (15)0.13698 (18)0.0198 (5)
C20.6066 (2)0.23362 (15)0.11984 (18)0.0243 (5)
H2A0.66840.25430.07210.029*
H2B0.52590.24420.08100.029*
C30.6169 (2)0.28596 (15)0.22333 (18)0.0214 (5)
C40.5636 (3)0.37467 (15)0.2217 (2)0.0312 (6)
H4A0.48010.37170.24250.047*
H4B0.56370.39890.14790.047*
H4C0.61190.41170.27350.047*
C50.6449 (2)0.09123 (17)0.02974 (19)0.0286 (6)
H5A0.66020.02960.04360.043*
H5B0.71540.11720.00100.043*
H5C0.57330.09790.02220.043*
C60.5087 (2)0.09954 (17)0.1821 (2)0.0325 (6)
H6A0.49350.12990.24980.049*
H6B0.52040.03770.19740.049*
H6C0.43920.10730.12810.049*
O20.92474 (16)0.09580 (11)0.10283 (14)0.0282 (4)
C70.9406 (2)0.19061 (16)0.29817 (18)0.0231 (5)
C81.0454 (2)0.13478 (17)0.2641 (2)0.0290 (6)
H8A1.12020.17010.26940.035*
H8B1.05810.08620.31650.035*
C91.0261 (2)0.09835 (16)0.1503 (2)0.0283 (6)
C101.1341 (3)0.0643 (2)0.0984 (3)0.0491 (8)
H10A1.10780.02070.04340.074*
H10B1.19070.03800.15450.074*
H10C1.17440.11200.06320.074*
C110.9356 (2)0.27561 (16)0.2332 (2)0.0336 (6)
H11A1.01370.30550.24510.050*
H11B0.87140.31260.25800.050*
H11C0.91860.26300.15520.050*
C120.9574 (2)0.2109 (2)0.4201 (2)0.0380 (7)
H12A1.03040.24610.43540.057*
H12B0.96590.15670.46160.057*
H12C0.88670.24280.44170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02002 (11)0.01302 (11)0.01805 (11)0.00041 (6)0.00262 (7)0.00045 (5)
S10.0409 (4)0.0150 (3)0.0255 (3)0.0059 (3)0.0143 (3)0.0025 (2)
S20.0421 (4)0.0181 (3)0.0254 (3)0.0058 (3)0.0154 (3)0.0016 (2)
S30.0329 (3)0.0163 (3)0.0259 (3)0.0007 (3)0.0029 (2)0.0046 (2)
S40.0302 (3)0.0250 (3)0.0230 (3)0.0009 (3)0.0073 (2)0.0056 (3)
S50.0417 (4)0.0277 (4)0.0315 (4)0.0098 (3)0.0014 (3)0.0131 (3)
C130.0228 (12)0.0154 (12)0.0242 (12)0.0008 (10)0.0025 (9)0.0047 (9)
C140.0251 (13)0.0185 (12)0.0220 (12)0.0007 (10)0.0044 (9)0.0058 (9)
C150.0205 (12)0.0266 (14)0.0250 (12)0.0053 (10)0.0046 (9)0.0058 (10)
O10.0289 (9)0.0187 (9)0.0255 (9)0.0046 (7)0.0009 (7)0.0015 (7)
C10.0203 (12)0.0172 (12)0.0214 (12)0.0001 (9)0.0009 (9)0.0015 (9)
C20.0269 (13)0.0184 (13)0.0268 (13)0.0034 (10)0.0022 (9)0.0013 (10)
C30.0216 (12)0.0143 (12)0.0288 (13)0.0025 (10)0.0049 (9)0.0028 (10)
C40.0384 (16)0.0217 (14)0.0334 (15)0.0092 (11)0.0028 (11)0.0011 (10)
C50.0336 (15)0.0264 (14)0.0248 (13)0.0001 (12)0.0039 (10)0.0063 (11)
C60.0258 (14)0.0310 (15)0.0408 (16)0.0089 (12)0.0033 (11)0.0024 (12)
O20.0298 (10)0.0288 (10)0.0266 (9)0.0039 (8)0.0055 (7)0.0051 (7)
C70.0210 (12)0.0242 (13)0.0240 (12)0.0038 (10)0.0012 (9)0.0057 (10)
C80.0232 (14)0.0316 (15)0.0320 (14)0.0026 (11)0.0012 (10)0.0027 (11)
C90.0274 (15)0.0220 (13)0.0368 (15)0.0029 (11)0.0106 (11)0.0021 (11)
C100.0336 (17)0.052 (2)0.064 (2)0.0048 (15)0.0194 (14)0.0246 (16)
C110.0335 (15)0.0231 (14)0.0454 (16)0.0100 (12)0.0109 (12)0.0038 (12)
C120.0309 (15)0.0511 (19)0.0310 (14)0.0043 (13)0.0030 (11)0.0115 (13)
Geometric parameters (Å, º) top
Sn—C12.182 (2)C4—H4C0.9800
Sn—C72.185 (2)C5—H5A0.9800
Sn—S22.4921 (6)C5—H5B0.9800
Sn—S12.5018 (6)C5—H5C0.9800
Sn—O12.5286 (16)C6—H6A0.9800
Sn—O22.6933 (16)C6—H6B0.9800
S1—C131.749 (2)C6—H6C0.9800
S2—C141.739 (2)O2—C91.221 (3)
S3—C151.735 (2)C7—C121.525 (3)
S3—C131.751 (2)C7—C81.531 (3)
S4—C151.722 (3)C7—C111.535 (3)
S4—C141.754 (2)C8—C91.504 (3)
S5—C151.649 (2)C8—H8A0.9900
C13—C141.349 (3)C8—H8B0.9900
O1—C31.228 (3)C9—C101.496 (4)
C1—C21.523 (3)C10—H10A0.9800
C1—C51.528 (3)C10—H10B0.9800
C1—C61.531 (3)C10—H10C0.9800
C2—C31.502 (3)C11—H11A0.9800
C2—H2A0.9900C11—H11B0.9800
C2—H2B0.9900C11—H11C0.9800
C3—C41.492 (3)C12—H12A0.9800
C4—H4A0.9800C12—H12B0.9800
C4—H4B0.9800C12—H12C0.9800
C1—Sn—C7131.15 (9)H4A—C4—H4C109.5
C1—Sn—S2109.25 (6)H4B—C4—H4C109.5
C7—Sn—S2106.33 (6)C1—C5—H5A109.5
C1—Sn—S1103.49 (6)C1—C5—H5B109.5
C7—Sn—S1110.20 (7)H5A—C5—H5B109.5
S2—Sn—S187.95 (2)C1—C5—H5C109.5
C1—Sn—O173.07 (7)H5A—C5—H5C109.5
C7—Sn—O184.38 (7)H5B—C5—H5C109.5
S2—Sn—O176.14 (4)C1—C6—H6A109.5
S1—Sn—O1161.13 (4)C1—C6—H6B109.5
C1—Sn—O289.78 (7)H6A—C6—H6B109.5
C7—Sn—O269.20 (7)C1—C6—H6C109.5
S2—Sn—O2155.25 (4)H6A—C6—H6C109.5
S1—Sn—O271.88 (4)H6B—C6—H6C109.5
O1—Sn—O2125.95 (5)C9—O2—Sn104.75 (15)
C13—S1—Sn98.45 (8)C12—C7—C8110.5 (2)
C14—S2—Sn98.73 (8)C12—C7—C11109.3 (2)
C15—S3—C1398.15 (11)C8—C7—C11109.6 (2)
C15—S4—C1498.55 (11)C12—C7—Sn109.93 (16)
C14—C13—S1127.07 (18)C8—C7—Sn107.49 (16)
C14—C13—S3115.82 (17)C11—C7—Sn110.06 (16)
S1—C13—S3117.11 (13)C9—C8—C7114.3 (2)
C13—C14—S2127.70 (18)C9—C8—H8A108.7
C13—C14—S4115.45 (18)C7—C8—H8A108.7
S2—C14—S4116.84 (13)C9—C8—H8B108.7
S5—C15—S4125.23 (14)C7—C8—H8B108.7
S5—C15—S3122.80 (16)H8A—C8—H8B107.6
S4—C15—S3111.97 (13)O2—C9—C10121.4 (2)
C3—O1—Sn108.34 (14)O2—C9—C8120.5 (2)
C2—C1—C5110.96 (19)C10—C9—C8118.1 (2)
C2—C1—C6109.1 (2)C9—C10—H10A109.5
C5—C1—C6109.7 (2)C9—C10—H10B109.5
C2—C1—Sn107.70 (15)H10A—C10—H10B109.5
C5—C1—Sn111.88 (15)C9—C10—H10C109.5
C6—C1—Sn107.46 (16)H10A—C10—H10C109.5
C3—C2—C1114.45 (19)H10B—C10—H10C109.5
C3—C2—H2A108.6C7—C11—H11A109.5
C1—C2—H2A108.6C7—C11—H11B109.5
C3—C2—H2B108.6H11A—C11—H11B109.5
C1—C2—H2B108.6C7—C11—H11C109.5
H2A—C2—H2B107.6H11A—C11—H11C109.5
O1—C3—C4120.3 (2)H11B—C11—H11C109.5
O1—C3—C2120.9 (2)C7—C12—H12A109.5
C4—C3—C2118.8 (2)C7—C12—H12B109.5
C3—C4—H4A109.5H12A—C12—H12B109.5
C3—C4—H4B109.5C7—C12—H12C109.5
H4A—C4—H4B109.5H12A—C12—H12C109.5
C3—C4—H4C109.5H12B—C12—H12C109.5
C1—Sn—S1—C13106.65 (10)O2—Sn—C1—C526.37 (16)
C7—Sn—S1—C13109.32 (10)C7—Sn—C1—C6151.54 (15)
S2—Sn—S1—C132.66 (8)S2—Sn—C1—C617.05 (17)
O1—Sn—S1—C1329.61 (15)S1—Sn—C1—C675.52 (16)
O2—Sn—S1—C13168.09 (9)O1—Sn—C1—C685.25 (16)
C1—Sn—S2—C14101.56 (10)O2—Sn—C1—C6146.81 (16)
C7—Sn—S2—C14112.47 (11)C5—C1—C2—C3164.82 (19)
S1—Sn—S2—C142.01 (8)C6—C1—C2—C374.3 (3)
O1—Sn—S2—C14167.74 (9)Sn—C1—C2—C342.1 (2)
O2—Sn—S2—C1436.85 (13)Sn—O1—C3—C4170.60 (18)
Sn—S1—C13—C143.4 (2)Sn—O1—C3—C28.0 (2)
Sn—S1—C13—S3175.98 (11)C1—C2—C3—O121.4 (3)
C15—S3—C13—C142.3 (2)C1—C2—C3—C4159.9 (2)
C15—S3—C13—S1178.18 (14)C1—Sn—O2—C9168.32 (17)
S1—C13—C14—S22.1 (4)C7—Sn—O2—C933.45 (17)
S3—C13—C14—S2177.34 (14)S2—Sn—O2—C950.5 (2)
S1—C13—C14—S4179.33 (14)S1—Sn—O2—C987.41 (16)
S3—C13—C14—S41.2 (3)O1—Sn—O2—C999.57 (17)
Sn—S2—C14—C130.8 (2)C1—Sn—C7—C12130.29 (18)
Sn—S2—C14—S4177.80 (12)S2—Sn—C7—C125.14 (19)
C15—S4—C14—C130.5 (2)S1—Sn—C7—C1299.05 (17)
C15—S4—C14—S2179.24 (14)O1—Sn—C7—C1268.63 (17)
C14—S4—C15—S5177.69 (16)O2—Sn—C7—C12159.43 (19)
C14—S4—C15—S32.01 (15)C1—Sn—C7—C8109.41 (17)
C13—S3—C15—S5177.17 (15)S2—Sn—C7—C8115.16 (14)
C13—S3—C15—S42.54 (15)S1—Sn—C7—C821.26 (17)
C1—Sn—O1—C324.02 (15)O1—Sn—C7—C8171.07 (16)
C7—Sn—O1—C3112.13 (16)O2—Sn—C7—C839.13 (14)
S2—Sn—O1—C3139.50 (15)C1—Sn—C7—C119.9 (2)
S1—Sn—O1—C3106.16 (16)S2—Sn—C7—C11125.52 (14)
O2—Sn—O1—C352.93 (16)S1—Sn—C7—C11140.57 (14)
C7—Sn—C1—C234.2 (2)O1—Sn—C7—C1151.76 (15)
S2—Sn—C1—C2100.31 (15)O2—Sn—C7—C1180.19 (15)
S1—Sn—C1—C2167.12 (14)C12—C7—C8—C9169.7 (2)
O1—Sn—C1—C232.11 (14)C11—C7—C8—C969.8 (3)
O2—Sn—C1—C295.83 (15)Sn—C7—C8—C949.8 (2)
C7—Sn—C1—C588.02 (19)Sn—O2—C9—C10162.3 (2)
S2—Sn—C1—C5137.49 (15)Sn—O2—C9—C816.7 (3)
S1—Sn—C1—C544.92 (17)C7—C8—C9—O217.6 (4)
O1—Sn—C1—C5154.31 (18)C7—C8—C9—C10163.4 (2)

Experimental details

(IV)(V)
Crystal data
Chemical formula[SnCl2(C6H11O)2][Sn(C3S5)(C6H11O)2]
Mr387.89513.32
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)150150
a, b, c (Å)9.6242 (2), 11.9846 (3), 14.5866 (3)11.0670 (2), 15.4499 (4), 12.2682 (2)
β (°) 106.1048 (17) 94.7892 (16)
V3)1616.42 (6)2090.34 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.901.73
Crystal size (mm)0.28 × 0.18 × 0.160.24 × 0.20 × 0.12
Data collection
DiffractometerEnraf Nonius KappaCCD area detector
diffractometer
Enraf Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV: Blessing, 1995, 1997)
Multi-scan
(SORTAV: Blessing, 1995, 1997)
Tmin, Tmax0.600, 0.7440.542, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
20493, 3654, 3167 15800, 4730, 4025
Rint0.0540.051
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.08 0.029, 0.068, 1.04
No. of reflections36544730
No. of parameters160215
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.190.91, 1.22

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, °) for (IV) and (V) top
(IV)(V)
Sn—C12.189 (2)2.182 (2)
Sn—C72.189 (2)2.185 (2)
Sn—O12.4439 (17)2.5286 (16)
Sn—O22.5414 (18)2.6933 (16)
Sn—XA2.4216 (6)2.4921 (6)
Sn—XB2.4629 (6)2.5018 (6)
C1—Sn—C7152.53 (10)131.15 (9)
C1—Sn—XA103.53 (7)109.25 (6)
C7—Sn—XA99.57 (7)106.33 (6)
C1—Sn—O175.17 (8)73.07 (7)
C7—Sn–O191.94 (8)84.38 (7)
XA—Sn—O186.07 (5)76.14 (4)
C1—Sn—XB97.21 (7)103.49 (6)
C7—Sn—XB94.46 (7)110.20 (7)
XA—Sn—XB97.11 (2)87.95 (2)
O1—Sn—XB172.28 (4)161.13 (4)
C1—Sn—O281.27 (8)89.78 (7)
C7—Sn—O272.80 (8)69.20 (7)
XA—Sn—O2165.21 (5)155.25 (4)
O1—Sn—O281.63 (6)125.95 (5)
XB—Sn—O296.13 (5)71.88 (4)
For (IV): X = Cl; A = 1 and B = 2. For (V): X = S; A = 2 and B = 1.
Comparison of selected geometric parameters for (Å, °) for keto-tin [MeC(O)CH2CMe2]2SnX2 and ester-tin [MeC(O)CH2CH2]2SnX2. top
keto-tin at 150 (2)Kester-tin at 300 (2)K
X2dmitaCl2aI2bdmitcCl2dI2e
mol 1mol 2
largest angles161.13 (4)172.28 (4)163.68 (11)163.49 (10)162.3 (2)175.54 (6)173.7 (2)
at tin155.25 (4)165.21 (5)163.11 (11)162.56 (10)162.3 (2)175.18 (6)173.5 (2)
131.15 (9)152.53 (10)160.4 (2)161.1 (2)121.0 (4)144.5 (2)144.0 (5)
(Sn—X)mean2.4970 (4)2.4422 (4)2.8463 (4)2.8464 (4)2.471 (2)2.4054 (7)2.7788 (8)
Δ(Sn—X)0.0097 (8)0.0413 (8)0.0218 (7)0.0173 (7)0f0.0100 (13)0.0026 (16)
(Sn—O)mean2.6110 (11)2.4926 (12)2.433 (3)2.437 (3)2.629 (7)2.528 (1)2.525 (4)
Δ(Sn—O)0.165 (2)0.098 (2)0.010 (6)0.004 (6)0f0.017 (3)0.006 (8)
Notes: (a) This study; (b) Howie & Wardell (2000); (c) Buchanan et al. (1996); (d) Ng (1993); (e) Balasubramanian et al. (1997); (f) su's of bond length differences calculated as the square root of the sum of the squares of the su's of the individual observations not applicable to keto-tin with X = dmit due to the crystallographic 2-fold axial symmetry of this molecule; su's of the mean values one half those of the differences except in this case.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds