Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Molecules of di­phenyl(2-thio­xo-1,3-di­thiole-4,5-di­thiol­ato-S,S′)­plumbane, [Pb(C3S5)(C6H5)2], are linked into sheets via two intermolecular Pb...Sthione interactions of 3.322 (4) and 3.827 (4) Å; the Pb centre has a distorted octahedral geometry. In contrast, mol­ecules of ­di­phenyl(2-thio­xo-1,3-di­thiole-4,5-di­thiol­ato-S,S′)­stannane, [Sn(C3S5)(C6H5)2], are linked into chains via a single intermolecular Sn—Sthione interaction of 2.8174 (9) Å; the Sn centre has a distorted trigonal-bipy­ramidal geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101004474/gg1047sup1.cif
Contains datablocks global, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004474/gg1047IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004474/gg1047IVsup3.hkl
Contains datablock IV

CCDC references: 169918; 169919

Comment top

While structures of various neutral diorganotin 1,2-dithiolates, (I), are listed in the Cambridge Structural Database (Allen & Kennard, 1993) at the chemical database service of the EPSRC (Fletcher et al., 1996), there are no entries for diorganolead derivatives, (II). In order to compare related diorganolead- and diorganotin-1,2-dithiolato complexes, the structures of (2-thioxo-1,3-dithiole-4,5-dithiolato-S,S')diphenyllead, Ph2Pb(dmit), (III), and of (2-thioxo-1,3-dithiole-4,5-dithiolato-S,S')diphenyltin, Ph2Sn(dmit), (IV), have been determined. \sch

The two compounds are isostructural in the sense that they crystallize in the same space group and that the atomic coordinates and cell dimensions are similar. However, the two molecules exhibit differences in the geometries at the metal atom centre and in the intermolecular interactions. The atom-labelling schemes for (III) and (IV) are shown in Figs. 1 and 2, respectively, and selected geometric parameters are listed in Table 1.

Molecules of (III) are linked into sheets via secondary Pb···Sthione intermolecular interactions [Pb···S5i 3.322 (4) and Pb···S5ii 3.827 (4) Å; symmetry codes: (i) 1/2 - x, y - 1/2, z - 1/2; (ii) x - 1/2, 1/2 - y, z; Fig. 3a]. Thus, the Pb centre is six coordinate, with a distorted octahedral geometry, as shown by the bond angles at Pb (Table 1). The chelate bite angle is 87.33 (11)°. The secondary Pb···S bonds are considerably longer than the primary and intramolecular Pb···S bonds [2.561 (4) and 2.591 (4) Å], but are both within the van der Waals radii sum of 4.14 Å for Pb and S. The shorter Pb···S5i bond links molecules into zigzag chains, while the longer Pb···S5ii bond links the chains into sheets. S···S separations [S2···S5i 3.515 (6) Å], at just less than the van der Waals radii sum of 3.60 Å, further augment the chain formation.

The six-coordinate structure of (III) has similiarities with that of molecule B in monoclinic Et2Sn(dmit) (Allan et al., 2001), in which the Sn centre forms one secondary bond [Sn···S 3.555 (2) Å] and a much longer second Sn···S contact at 3.927 (2) Å, the latter just being within the van der Waals radii sum of 4.05 Å.

In contrast with (III), molecules of (IV) are solely linked into chains via a single secondary Sn···Sthione intermolecular interaction [Sn—S5i 2.8174 (9) Å: symmetry code: (i) 1/2 - x, y - 1/2, z - 1/2; Fig. 3 b]. The next shortest Sn···S separation is at a distance of 4.7683 (10) Å [symmetry code: x - 1/2, 1/2 - y, z], which is much longer than the sum of the van der Waals radii of 4.05 Å for Sn and S. Thus, the Sn centre in (IV) is five-coordinate, with a distorted trigonal bipyramidal geometry (Fig. 2). The degree of distortion along the pathway from trigonal bipyramidal toward square planar is calculated to be 33%, using the τ parameter of Addison et al. (1984), or 23%, using the Berry pseudorotational coordinate of Holmes (1984). The axial sites are occupied by the intermolecular thione S and S1 [Sn—S1 2.5327 (9) Å]. The equatorial Sn—S2 bond length is shorter, as expected, at 2.4547 (10) Å. PLATON (Spek, 1994) recognized the two hydrogen bonds in (IV) (Table 2).

Compound (IV) has a similar chain structure to those reported for orthorhombic Et2Sn(dmit), Me2Sn(dmit) and PhMeSn(dmit) (Allan et al., 2001; Doidge-Harrison, Irvine, Khan et al., 1996), although both Et2Sn(dmit) and Me2Sn(dmit) also possess interchain S···S interactions of less than 3.60 Å (Allan et al., 2001), while neither PhMeSn(dmit) (Doidge-Harrison, Irvine, Khan et al., 1996) nor (IV) exhibit these. Comparisons of selected geometric parameters of the four compounds are shown in Table 3. The variations in the intermolecular Sn—Sthione bond lengths follow from no obvious steric or electronic property of the organic groups. There are also significant differences in the molecular C—Sn—C and the intermolecular CS···Sn angles in the four compounds.

Experimental top

Compounds (III) (Doidge-Harrison, Irvine, Spencer et al., 1996) and (IV) (Doidge-Harrison, Irvine, Khan et al., 1996) were prepared by published routes and recrystallized from EtOH. Crystals of (III) formed very thin plates and data were collected at room temperature; consequently, the data for (III) were of poorer quality than those for (IV), which were collected at 150 K on larger crystals.

Refinement top

All H atoms were placed in geometrical positions and refined using a riding model, with C—H = 0.93–0.95 Å. The number of Friedel-related reflections for each compound was 1825 for (III) and 1623 for (IV).

Computing details top

Data collection: SMART (Bruker, 1999) for (III); DENZO (Otwinowski and Minor, 1997) and COLLECT (Nonius, 1998) for (IV). Cell refinement: SAINT (Bruker, 1999) for (III); DENZO and COLLECT for (IV). Data reduction: SAINT for (III); DENZO and COLLECT for (IV). For both compounds, program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEP-3 for Windows (Farrugia, 1997) for (III); ORTEX in OSCAIL (McArdle, 1994, 2000), ORTEP-3 for Windows (Farrugia, 1997) for (IV). For both compounds, software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (III), with displacement ellipsoids drawn at the ??% probability level and H atoms shown as small spheres of arbitrary radii [symmetry codes: (i) 1/2 - x, y - 1/2, z - 1/2; (ii) x - 1/2, y - 1/2, z].
[Figure 2] Fig. 2. The asymmetric unit of (IV), with displacement ellipsoids drawn at the ??% probability level and H atoms shown as small spheres of arbitrary radii [symmetry code: (i) 1/2 - x, y - 1/2, z - 1/2].
[Figure 3] Fig. 3. The projection of the structures of (III) and (IV) down [010], showing the formation of (a) a two-dimensional sheet and (b) a one-dimensional chain [symmetry codes: (i) 1/2 - x, y - 1/2, z - 1/2; (ii) x - 1/2, y - 1/2, z]. Phenyl groups have been omitted for clarity.
(III) (2-thioxo-1,3-dithiole-4,5-dithiolato-S,S')diphenylplumbane top
Crystal data top
[Pb(C3S5)(C6H5)2]F(000) = 1048
Mr = 557.73Dx = 2.152 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4683 reflections
a = 17.5109 (9) Åθ = 2.3–30.1°
b = 9.5222 (5) ŵ = 10.40 mm1
c = 10.3232 (5) ÅT = 295 K
V = 1721.31 (15) Å3Plate, dark red
Z = 40.25 × 0.18 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5088 independent reflections
Radiation source: fine-focus sealed tube3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.10
ϕ/ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2626
Tmin = 0.181, Tmax = 0.819k = 1412
16869 measured reflectionsl = 1215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0573P)2 + 8.9418P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5088 reflectionsΔρmax = 1.89 e Å3
190 parametersΔρmin = 2.04 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.015 (14)
Crystal data top
[Pb(C3S5)(C6H5)2]V = 1721.31 (15) Å3
Mr = 557.73Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.5109 (9) ŵ = 10.40 mm1
b = 9.5222 (5) ÅT = 295 K
c = 10.3232 (5) Å0.25 × 0.18 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5088 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3310 reflections with I > 2σ(I)
Tmin = 0.181, Tmax = 0.819Rint = 0.10
16869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140Δρmax = 1.89 e Å3
S = 1.01Δρmin = 2.04 e Å3
5088 reflectionsAbsolute structure: (Flack, 1983)
190 parametersAbsolute structure parameter: 0.015 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.08628 (2)0.13212 (3)0.00325 (8)0.03829 (13)
S10.1517 (2)0.2027 (4)0.2122 (3)0.0436 (7)
S20.1990 (2)0.2470 (4)0.1204 (4)0.0467 (8)
C10.2274 (7)0.2957 (11)0.1439 (12)0.032 (2)
C20.2460 (7)0.3119 (12)0.0162 (17)0.038 (3)
S30.28893 (19)0.3763 (3)0.2535 (3)0.0410 (7)
S40.32587 (17)0.4180 (3)0.0129 (5)0.0431 (7)
C30.3496 (7)0.4526 (13)0.1441 (14)0.042 (3)
S50.4263 (2)0.5511 (5)0.1844 (4)0.0575 (10)
C40.1033 (6)0.0949 (10)0.009 (2)0.033 (3)
C50.1673 (9)0.1433 (14)0.0732 (14)0.047 (3)
H50.19940.08080.11600.056*
C60.1832 (10)0.2850 (15)0.0733 (16)0.057 (4)
H60.22670.31840.11480.068*
C70.1343 (12)0.3775 (13)0.012 (3)0.073 (6)
H70.14650.47240.00690.087*
C80.0685 (9)0.3300 (13)0.0422 (15)0.053 (4)
H80.03370.39430.07530.063*
C90.0520 (8)0.1884 (12)0.0489 (14)0.044 (3)
H90.00820.15640.09050.053*
C100.0077 (6)0.2859 (10)0.0212 (14)0.033 (3)
C110.0379 (10)0.3305 (17)0.1341 (19)0.045 (4)
H110.01970.29430.21190.054*
C120.0940 (9)0.427 (2)0.135 (2)0.057 (5)
H120.11500.45420.21420.069*
C130.1208 (8)0.4854 (15)0.023 (2)0.059 (5)
H130.15910.55300.02710.070*
C140.0919 (10)0.445 (2)0.094 (2)0.064 (6)
H140.10970.48520.17060.077*
C150.0335 (11)0.3404 (19)0.096 (2)0.052 (4)
H150.01310.30920.17400.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03712 (19)0.02808 (14)0.0497 (2)0.00494 (15)0.0089 (3)0.0037 (4)
S10.0466 (18)0.0458 (15)0.0383 (18)0.0138 (14)0.0006 (14)0.0028 (13)
S20.049 (2)0.058 (2)0.0335 (18)0.0018 (16)0.0024 (15)0.0090 (15)
C10.034 (6)0.033 (5)0.030 (6)0.001 (5)0.000 (5)0.003 (4)
C20.032 (5)0.045 (5)0.038 (9)0.002 (4)0.000 (6)0.012 (6)
S30.0404 (16)0.0501 (16)0.0326 (16)0.0116 (14)0.0012 (12)0.0051 (13)
S40.0383 (13)0.0511 (13)0.040 (2)0.0023 (11)0.0042 (18)0.0010 (19)
C30.037 (7)0.041 (6)0.049 (8)0.003 (5)0.001 (6)0.002 (5)
S50.050 (2)0.067 (2)0.056 (2)0.0265 (18)0.0096 (17)0.0075 (18)
C40.031 (5)0.033 (4)0.035 (7)0.007 (3)0.008 (7)0.001 (6)
C50.051 (8)0.048 (7)0.042 (8)0.008 (6)0.004 (6)0.001 (6)
C60.058 (9)0.052 (7)0.060 (10)0.028 (7)0.010 (7)0.009 (7)
C70.113 (14)0.034 (5)0.071 (13)0.012 (7)0.027 (14)0.004 (8)
C80.067 (9)0.031 (5)0.060 (11)0.007 (6)0.013 (7)0.010 (5)
C90.041 (7)0.035 (5)0.057 (9)0.003 (5)0.006 (6)0.006 (5)
C100.034 (5)0.031 (4)0.034 (8)0.006 (4)0.001 (5)0.002 (5)
C110.040 (8)0.040 (7)0.055 (10)0.008 (6)0.001 (7)0.003 (6)
C120.048 (10)0.052 (9)0.072 (14)0.003 (7)0.012 (9)0.005 (8)
C130.043 (7)0.053 (7)0.079 (15)0.017 (6)0.001 (9)0.001 (9)
C140.066 (12)0.059 (11)0.068 (14)0.028 (9)0.015 (9)0.012 (10)
C150.054 (10)0.052 (9)0.051 (10)0.005 (7)0.007 (7)0.002 (7)
Geometric parameters (Å, º) top
Pb1—C42.185 (10)C6—C71.38 (3)
Pb1—C102.210 (10)C6—H60.9300
Pb1—S22.561 (4)C7—C81.36 (3)
Pb1—S12.591 (4)C7—H70.9300
Pb1—S5i3.322 (4)C8—C91.380 (17)
Pb1—S5ii3.827 (4)C8—H80.9300
S1—C11.742 (12)C9—H90.9300
S2—C21.746 (16)C10—C111.35 (2)
C1—C21.37 (2)C10—C151.39 (2)
C1—S31.741 (13)C11—C121.34 (3)
C2—S41.752 (12)C11—H110.9300
S3—C31.713 (14)C12—C131.37 (3)
S4—C31.706 (15)C12—H120.9300
C3—S51.690 (13)C13—C141.37 (3)
C4—C51.384 (19)C13—H130.9300
C4—C91.397 (18)C14—C151.43 (3)
C5—C61.378 (19)C14—H140.9300
C5—H50.9300C15—H150.9300
C4—Pb1—C10139.6 (4)C6—C5—H5120.3
C4—Pb1—S2110.2 (4)C4—C5—H5120.3
C10—Pb1—S2104.5 (3)C5—C6—C7119.9 (15)
C4—Pb1—S198.5 (5)C5—C6—H6120.1
C10—Pb1—S1103.3 (3)C7—C6—H6120.1
S2—Pb1—S187.33 (11)C8—C7—C6120.1 (11)
C4—Pb1—S5i80.5 (5)C8—C7—H7120.0
C10—Pb1—S5i91.3 (4)C6—C7—H7120.0
S2—Pb1—S5i72.07 (12)C7—C8—C9121.7 (14)
S1—Pb1—S5i157.32 (11)C7—C8—H8119.2
C4—Pb1—S5ii67.7 (4)C9—C8—H8119.2
C10—Pb1—S5ii78.5 (3)C8—C9—C4117.8 (14)
S2—Pb1—S5ii176.61 (11)C8—C9—H9121.1
S1—Pb1—S5ii90.44 (11)C4—C9—H9121.1
S5i—Pb1—S5ii109.68 (6)C11—C10—C15120.5 (11)
C1—S1—Pb196.9 (4)C11—C10—Pb1124.9 (11)
C2—S2—Pb197.6 (5)C15—C10—Pb1114.6 (11)
C2—C1—S3115.5 (9)C12—C11—C10120.7 (18)
C2—C1—S1129.0 (10)C12—C11—H11119.7
S3—C1—S1115.6 (7)C10—C11—H11119.7
C1—C2—S2128.9 (10)C11—C12—C13121 (2)
C1—C2—S4114.9 (11)C11—C12—H12119.3
S2—C2—S4116.2 (10)C13—C12—H12119.3
C3—S3—C198.2 (6)C12—C13—C14120.5 (13)
C3—S4—C298.2 (7)C12—C13—H13119.7
S5—C3—S4122.3 (8)C14—C13—H13119.7
S5—C3—S3124.5 (9)C13—C14—C15118.1 (18)
S4—C3—S3113.1 (7)C13—C14—H14120.9
C5—C4—C9120.9 (11)C15—C14—H14120.9
C5—C4—Pb1117.8 (9)C10—C15—C14118.8 (18)
C9—C4—Pb1121.3 (10)C10—C15—H15120.6
C6—C5—C4119.4 (14)C14—C15—H15120.6
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z.
(IV) (2-thioxo-1,3-dithiole-4,5-dithiolato-S,S')diphenylstannane top
Crystal data top
[Sn(C3S5)(C6H5)2]F(000) = 920
Mr = 469.23Dx = 1.875 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6500 reflections
a = 17.3574 (5) Åθ = 2.9–27.5°
b = 9.2270 (2) ŵ = 2.15 mm1
c = 10.3775 (2) ÅT = 150 K
V = 1662.03 (7) Å3Needle, orange-red
Z = 40.48 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3622 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ/ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
h = 2219
Tmin = 0.425, Tmax = 0.882k = 1111
11483 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0284P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3622 reflectionsΔρmax = 0.68 e Å3
190 parametersΔρmin = 1.25 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (19)
Crystal data top
[Sn(C3S5)(C6H5)2]V = 1662.03 (7) Å3
Mr = 469.23Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.3574 (5) ŵ = 2.15 mm1
b = 9.2270 (2) ÅT = 150 K
c = 10.3775 (2) Å0.48 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3622 independent reflections
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
3405 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.882Rint = 0.039
11483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.68 e Å3
S = 1.08Δρmin = 1.25 e Å3
3622 reflectionsAbsolute structure: (Flack, 1983)
190 parametersAbsolute structure parameter: 0.004 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.101604 (10)0.16708 (2)0.01258 (3)0.01963 (8)
S10.15889 (5)0.22305 (10)0.20630 (8)0.02618 (18)
S20.20835 (5)0.30346 (10)0.10939 (9)0.02471 (19)
C10.2330 (2)0.3346 (3)0.1525 (4)0.0195 (7)
C20.25333 (18)0.3662 (4)0.0302 (3)0.0195 (7)
S30.28947 (5)0.41349 (9)0.27232 (7)0.02238 (18)
S40.33083 (5)0.48353 (9)0.01353 (7)0.0260 (2)
C30.34947 (19)0.5097 (4)0.1743 (3)0.0239 (7)
S50.42116 (5)0.61976 (11)0.22192 (8)0.0286 (2)
C40.10113 (16)0.0625 (4)0.0153 (3)0.0209 (8)
C50.1555 (2)0.1267 (4)0.0932 (3)0.0237 (7)
H50.19170.06830.13830.028*
C60.1577 (2)0.2763 (4)0.1062 (4)0.0328 (9)
H60.19700.32050.15640.039*
C70.1024 (2)0.3614 (5)0.0455 (5)0.0368 (10)
H70.10330.46380.05510.044*
C80.0463 (2)0.2964 (4)0.0288 (4)0.0339 (9)
H80.00760.35380.06870.041*
C90.0463 (2)0.1474 (4)0.0455 (3)0.0260 (8)
H90.00860.10320.09880.031*
C100.00310 (17)0.2880 (3)0.0017 (4)0.0211 (6)
C110.0392 (2)0.3451 (4)0.1098 (4)0.0259 (9)
H110.01930.32540.19330.031*
C120.1045 (2)0.4312 (5)0.0957 (4)0.0327 (10)
H120.12890.47100.16970.039*
C130.1338 (2)0.4585 (4)0.0237 (4)0.0330 (9)
H130.17820.51790.03240.040*
C140.0995 (2)0.4010 (5)0.1318 (5)0.0418 (11)
H140.12080.41870.21460.050*
C150.0337 (2)0.3168 (4)0.1186 (4)0.0313 (10)
H150.00940.27850.19330.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02078 (12)0.01665 (12)0.02147 (13)0.00217 (8)0.00251 (10)0.00229 (10)
S10.0325 (5)0.0270 (4)0.0190 (4)0.0096 (4)0.0022 (3)0.0003 (4)
S20.0286 (5)0.0293 (5)0.0162 (4)0.0022 (4)0.0007 (3)0.0030 (3)
C10.0190 (18)0.0171 (18)0.0224 (18)0.0023 (12)0.0013 (14)0.0032 (12)
C20.0183 (17)0.0192 (17)0.0211 (17)0.0005 (14)0.0018 (12)0.0017 (13)
S30.0245 (4)0.0247 (4)0.0180 (4)0.0053 (3)0.0001 (3)0.0032 (3)
S40.0270 (4)0.0307 (5)0.0204 (5)0.0052 (4)0.0024 (3)0.0024 (3)
C30.0237 (18)0.0210 (18)0.0271 (18)0.0003 (15)0.0012 (13)0.0017 (13)
S50.0290 (5)0.0344 (5)0.0225 (4)0.0116 (4)0.0057 (4)0.0064 (4)
C40.0212 (17)0.0141 (16)0.027 (2)0.0018 (11)0.0057 (12)0.0044 (13)
C50.0240 (18)0.0205 (18)0.0266 (18)0.0004 (15)0.0018 (14)0.0021 (15)
C60.042 (2)0.021 (2)0.036 (2)0.0039 (17)0.0010 (17)0.0034 (17)
C70.052 (3)0.019 (2)0.039 (2)0.0010 (16)0.0072 (17)0.0031 (18)
C80.038 (2)0.0292 (19)0.034 (2)0.0146 (16)0.0032 (19)0.0129 (19)
C90.0253 (18)0.0257 (18)0.027 (2)0.0032 (14)0.0045 (13)0.0054 (13)
C100.0212 (15)0.0152 (14)0.0268 (18)0.0008 (12)0.0009 (14)0.0002 (16)
C110.025 (2)0.029 (2)0.023 (2)0.0036 (15)0.0013 (15)0.0049 (14)
C120.028 (2)0.028 (2)0.042 (3)0.0066 (15)0.0080 (15)0.0036 (18)
C130.0211 (18)0.033 (2)0.045 (3)0.0076 (15)0.0022 (16)0.0079 (16)
C140.035 (3)0.047 (3)0.043 (3)0.0057 (18)0.0156 (17)0.005 (2)
C150.030 (2)0.035 (2)0.029 (2)0.0041 (16)0.0048 (17)0.0053 (16)
Geometric parameters (Å, º) top
Sn1—C102.135 (3)C6—C71.392 (6)
Sn1—C42.138 (3)C6—H60.9500
Sn1—S22.4547 (10)C7—C81.379 (6)
Sn1—S12.5327 (9)C7—H70.9500
Sn1—S5i2.8174 (9)C8—C91.386 (5)
Sn1—S5ii4.7683 (10)C8—H80.9500
S1—C11.740 (4)C9—H90.9500
S2—C21.745 (3)C10—C151.383 (6)
C1—C21.349 (5)C10—C111.389 (5)
C1—S31.742 (4)C11—C121.393 (5)
C2—S41.735 (3)C11—H110.9500
S3—C31.705 (3)C12—C131.363 (6)
S4—C31.717 (3)C12—H120.9500
C3—S51.681 (3)C13—C141.375 (6)
S5—Sn1iii2.8175 (9)C13—H130.9500
C4—C51.377 (5)C14—C151.389 (6)
C4—C91.383 (5)C14—H140.9500
C5—C61.387 (4)C15—H150.9500
C5—H50.9500
C10—Sn1—C4120.47 (11)C4—C5—H5119.9
C10—Sn1—S2113.34 (8)C6—C5—H5119.9
C4—Sn1—S2124.49 (8)C5—C6—C7119.9 (4)
C10—Sn1—S1100.38 (10)C5—C6—H6120.0
C4—Sn1—S194.72 (9)C7—C6—H6120.0
S2—Sn1—S188.06 (3)C8—C7—C6119.6 (4)
C10—Sn1—S5i90.77 (11)C8—C7—H7120.2
C4—Sn1—S5i88.74 (9)C6—C7—H7120.2
S2—Sn1—S5i77.59 (3)C7—C8—C9120.1 (4)
S1—Sn1—S5i164.51 (3)C7—C8—H8120.0
C10—Sn1—S5ii72.77 (8)C9—C8—H8120.0
C4—Sn1—S5ii51.58 (8)C4—C9—C8120.3 (4)
S2—Sn1—S5ii171.57 (3)C4—C9—H9119.8
S1—Sn1—S5ii85.03 (2)C8—C9—H9119.8
S5i—Sn1—S5ii108.722 (16)C15—C10—C11118.9 (3)
C1—S1—Sn197.09 (13)C15—C10—Sn1118.4 (3)
C2—S2—Sn199.67 (11)C11—C10—Sn1122.6 (3)
C2—C1—S1128.5 (3)C10—C11—C12119.9 (4)
C2—C1—S3115.7 (3)C10—C11—H11120.1
S1—C1—S3115.7 (2)C12—C11—H11120.1
C1—C2—S4115.6 (3)C13—C12—C11120.3 (4)
C1—C2—S2126.3 (3)C13—C12—H12119.8
S4—C2—S2118.10 (18)C11—C12—H12119.8
C3—S3—C197.78 (16)C12—C13—C14120.6 (3)
C3—S4—C297.86 (16)C12—C13—H13119.7
S5—C3—S3126.3 (2)C14—C13—H13119.7
S5—C3—S4120.7 (2)C13—C14—C15119.4 (4)
S3—C3—S4113.05 (19)C13—C14—H14120.3
C3—S5—Sn1iii106.11 (12)C15—C14—H14120.3
C5—C4—C9119.7 (3)C10—C15—C14120.8 (4)
C5—C4—Sn1120.2 (2)C10—C15—H15119.6
C9—C4—Sn1120.1 (2)C14—C15—H15119.6
C4—C5—C6120.2 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.952.843.434 (4)122
C11—H11···S5i0.952.703.401 (4)131
Symmetry code: (i) x+1/2, y1/2, z1/2.

Experimental details

(III)(IV)
Crystal data
Chemical formula[Pb(C3S5)(C6H5)2][Sn(C3S5)(C6H5)2]
Mr557.73469.23
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)295150
a, b, c (Å)17.5109 (9), 9.5222 (5), 10.3232 (5)17.3574 (5), 9.2270 (2), 10.3775 (2)
V3)1721.31 (15)1662.03 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)10.402.15
Crystal size (mm)0.25 × 0.18 × 0.020.48 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Empirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.181, 0.8190.425, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
16869, 5088, 3310 11483, 3622, 3405
Rint0.100.039
(sin θ/λ)max1)0.7560.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.140, 1.01 0.028, 0.061, 1.08
No. of reflections50883622
No. of parameters190190
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.89, 2.040.68, 1.25
Absolute structure(Flack, 1983)(Flack, 1983)
Absolute structure parameter0.015 (14)0.004 (19)

Computer programs: SMART (Bruker, 1999), DENZO (Otwinowski and Minor, 1997) and COLLECT (Nonius, 1998), SAINT (Bruker, 1999), DENZO and COLLECT, SAINT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEP-3 for Windows (Farrugia, 1997), ORTEX in OSCAIL (McArdle, 1994, 2000), ORTEP-3 for Windows (Farrugia, 1997), CIFTAB (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.952.843.434 (4)122
C11—H11···S5i0.952.703.401 (4)131
Symmetry code: (i) x+1/2, y1/2, z1/2.
Selected geometric parameters for (III) and (IV) (Å, °) top
(III) at 295 K(IV) at 150 K
M-C42.185 (10)2.138 (3)
M-C102.210 (10)2.135 (3)
M-S12.591 (4)2.5327 (9)
M-S22.561 (4)2.4547 (10)
M-S5i3.322 (4)2.8174 (9)
M-S5ii3.827 (4)
S1-M1-S287.33 (11)88.06 (3)
C4-M1-S198.5 (5)94.72 (5)
C10-M1-S1103.3 (3)100.38 (10)
C4-M1-S2110.2 (4)124.49 (8)
C10-M1-S2104.5 (3)113.34 (9)
C4-M1-C10139.6 (4)120.47 (11)
C4-M1-S5i80.5 (5)88.74 (9)
C10-M1-S5i91.3 (4)90.77 (11)
S1-M1-S5i157.32 (11)164.51 (3)
S2-M1-S5i72.07 (12)77.59 (3)
C4-M1-S5ii67.7 (4)
C10-M1-S5ii78.5 (3)
S2-M1-S5ii176.61 (11)
S1-M1-S5ii90.44 (11)
S5i-M1-S5ii109.68 (6)
C3i-S5i-M1108.4 (5)106.11 (12)
Symmetry codes: (i) 1/2 - x, y - 1/2, z - 1/2; (ii) x - 1/2, 1/2 - y, z
Comparison of selected parameters in five-coordinate R2Sn(dmit) compounds (Å, °) top
CompoundIntermolecular Sn-SCS-SnC-Sn-CTemperature (K)
Me2Sn(dmit)a3.001 (2)116.4 (3)126.3 (3)150
2.960 (2)114.1 (3)119.5 (5)
Et2Sn(dmit)a3.037 (4)112.1 (5)128.7 (8)295
orthorhombica3.0083 (15)111.1 (2)130.8 (2)150
MePhSn(dmit)b3.139 (1)113.1 (1)115.8 (1)295
Ph2Sn(dmit)c2.8174 (9)106.11 (12)120.47 (11)150
a Allan et al. (2001); b Doidge-Harrison, Irvine, Khan et al., 1996; c this work.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds