Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C11H12N4O5·C2H6OS, the molecular components are linked by a short hydrogen bond with dimensions O...O 2.517 (2) Å and O—H...O 168°. Paired C—H...O hydrogen bonds [C...O 3.362 (2) and 3.382 (2) Å; C—H...O 157 and 140°] generate cyclic centrosymmetric four-component aggregates reinforced by aromatic π–π-stacking interactions, and further C—H...O hydrogen bonds [C...O 3.472 (3) and 3.521 (2) Å; C—H...O 156 and 157°] link these aggregates into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003250/gg1046sup1.cif
Contains datablocks global, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003250/gg10461sup2.hkl
Contains datablock 1

CCDC reference: 164665

Comment top

Synthetic analogues of naturally occurring polyaza-heteroaromatic compounds, such as pteridines, are of considerable interest because of their extensive pharmaceutical potential, for example, as inhibitors of folic acid biosynthesis (Lang et al., 1995) and their action as antiallergic (Ferrand et al., 1996), antihelminthic (Ochoa et al., 1996), anti-inflammatory (Cottam et al., 1996) and antiviral agents (Molina et al., 1999). We report here the structure of one such synthetic pteridine, methyl 7-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropteridine-6-carboxylate, C11H12N4O5, (1), which is a useful intermediate for the synthesis of folic acid analogues (Molina et al., 1999) and which crystallizes from dimethyl sulfoxide (DMSO) solution as the monosolvate, i.e. (1).DMSO.

The bond lengths within the heteroaromatic portion of the molecule show clearly that form (1) carrying a hydroxyl group at position 7 is the correct representation, as opposed to the possible alternative tautomer (1a). In particular, the C7—O7 distance is very similar to the C62—O62 distance in the ester portion and much greater than the C2—O2 and C4—O4 distances; secondly, the bond lengths in the pyrazine portion of the heterocycle indicate considerable aromatic delocalization, with C—N distances consistently shorter than those in the pyrimidinedione portion. Moreover, the hydroxyl group O7—H7 forms a rather short and strong O—H···O hydrogen bond with O1 in the DMSO component as hydrogen-bond acceptor (Table 2), which could favour tautomer (1) over (1a). The non-H atoms in (1) are virtually coplanar, apart from those in the methoxycarbonyl fragment (Table 1). Overall, the bond lengths in the heterocyclic ring are similar to those in the unsubstituted pteridine-2,4-dione (2) (Norrestam et al., 1972) and in methylated pteridinediones in a variety of metal complexes retrieved from the Cambridge Structural Database (CSD; Allen & Kennard, 1993), exemplified by PUSJUI (Hueso-Ureña et al., 1998a), GAZTOQ, GAZZOW and GEBKUT (Hueso-Ureña et al., 1998b), and LIVJIJ (Hueso-Ureña et al., 1999).

The molecules of (1) and DMSO are linked by a series of hydrogen bonds (Table 2) into chains of fused centrosymmetric rings. In addition to the O—H···O hydrogen bond within the asymmetric unit (Fig. 1), there are C—H···O hydrogen bonds which link pairs of such units into centrosymmetric four-component aggregates: atoms C61 and C71 in the asymmetric unit at (x, y, z) act as donors, via H612 and H711, respectively, to O2 and O4, both at (-x, 2 - y, 1 - z), so generating a centrosymmetric dimer in which the two individual hydrogen bonds generate R22(18) and R44(24) rings, respectively (Fig. 2). The effect of these mutually reinforcing C—H···O hydrogen bonds is further enhanced by aromatic ππ-stacking interactions between the two heteroaromatic rings within this cyclic aggregate; the perpendicular distance between the two ring planes is ca 3.41 Å, and the centroid offset between the pyrazine ring in one pteridine and the pyrimidine ring in the other is only ca 0.46 Å giving almost perfect overlap.

The four-component cyclic aggregates are linked into chains by a further pair of C—H···O hydrogen bonds: C31 at (x, y, z) acts as donor, via H311, to O1 at (x, y, -1 + z), while C71 at (x, y, -1 + z) acts as donor, via H712, to O2 at (x, y, z), so generating an R22(9) motif (Fig. 3). These interactions serve to link the cyclic aggregates (Fig. 2) into chains running parallel to the [001] direction, in which the cyclic aggregates are centred at (0, 1, 0.5+n) (n = zero or integer) and the rings between them are centred at (0, 1, n) (n = zero or integer).

Related literature top

For related literature, see: Allen & Kennard (1993); Cottam et al. (1996); Ferrand et al. (1996); Hueso-Ureña, Jiménez-Pulido, Moreno-Carretero, Quirós-Olazábal & Salas-Peregrín (1998a, 1998b, 1999); Lang et al. (1995); Molina et al. (1999); Norrestam et al. (1972); Ochoa et al. (1996).

Experimental top

A sample of (1) was prepared according to the published method of Molina et al. (1999). Crystals of (1).DMSO suitable for single-crystal X-ray diffraction were grown from a solution of (1) in DMSO.

Refinement top

The title compound crystallized in the triclinic system, and space group P1 was assumed and confirmed by the analysis. H atoms were treated as riding atoms, with C—H distances of 0.98 (CH3) or 0.99 Å (CH2), except for H7, whose position was located on a difference map and thereafter kept fixed.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (1).DMSO showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (1).DMSO showing the formation of a cyclic centrosymmetric four-component aggregate. The atoms marked with an asterisk (*) are at the symmetry position (-x, 2 - y, 1 - z). For clarity, the H atoms bonded to C11 and C31 have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (1).DMSO showing formation of a [001] chain. For clarity, H atoms bonded to C11 and C61 have been omitted. Atoms marked with a hash (#) are at the symmetry position (x, y, -1 + z).
Methyl 7-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropteridine-6-carboxylate– dimethyl sulfoxide (1/1) top
Crystal data top
C11H12N4O5·C2H6OSZ = 2
Mr = 358.37F(000) = 376
Triclinic, P1Dx = 1.457 Mg m3
a = 8.8926 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2539 (2) ÅCell parameters from 3282 reflections
c = 10.8500 (4) Åθ = 2.9–27.1°
α = 62.2233 (10)°µ = 0.24 mm1
β = 82.4797 (10)°T = 150 K
γ = 69.1050 (14)°Lath, colourless
V = 817.03 (4) Å30.25 × 0.10 × 0.10 mm
Data collection top
KappaCCD
diffractometer
3528 independent reflections
Radiation source: fine-focus sealed X-ray tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ scans, and ω scans with κ offsetsθmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.943, Tmax = 0.977k = 1313
7717 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1126P]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C11H12N4O5·C2H6OSγ = 69.1050 (14)°
Mr = 358.37V = 817.03 (4) Å3
Triclinic, P1Z = 2
a = 8.8926 (2) ÅMo Kα radiation
b = 10.2539 (2) ŵ = 0.24 mm1
c = 10.8500 (4) ÅT = 150 K
α = 62.2233 (10)°0.25 × 0.10 × 0.10 mm
β = 82.4797 (10)°
Data collection top
KappaCCD
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2790 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.977Rint = 0.037
7717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3528 reflectionsΔρmin = 0.47 e Å3
222 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891]which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20984 (17)0.78664 (15)0.49222 (15)0.0223 (3)
C110.2364 (2)0.62775 (19)0.6044 (2)0.0315 (4)
C20.19117 (19)0.81001 (19)0.35871 (19)0.0225 (4)
O20.19373 (15)0.70316 (14)0.33631 (14)0.0311 (3)
N30.16521 (17)0.96046 (16)0.25231 (15)0.0228 (3)
C310.1448 (2)0.9872 (2)0.1094 (2)0.0312 (4)
C40.1674 (2)1.08632 (19)0.26898 (19)0.0230 (4)
C4a0.18943 (19)1.05304 (18)0.41223 (18)0.0197 (4)
O40.14977 (17)1.21352 (14)0.16784 (13)0.0344 (3)
N50.18648 (16)1.17123 (15)0.43783 (15)0.0216 (3)
C60.20671 (19)1.13969 (18)0.56744 (18)0.0203 (4)
C610.1968 (2)1.26821 (19)0.60216 (19)0.0241 (4)
O610.47876 (16)1.17528 (19)0.65920 (17)0.0440 (4)
C620.3422 (2)1.23076 (19)0.68481 (19)0.0249 (4)
O620.30103 (14)1.27098 (14)0.78809 (13)0.0270 (3)
C630.4326 (3)1.2460 (2)0.8712 (2)0.0394 (5)
C70.2319 (2)0.98491 (19)0.67638 (18)0.0215 (4)
O70.25198 (16)0.95999 (14)0.80495 (13)0.0288 (3)
N80.23388 (17)0.86859 (16)0.65320 (15)0.0220 (3)
C8a0.21190 (19)0.90451 (18)0.51996 (18)0.0190 (4)
S10.25987 (6)0.54432 (5)1.05050 (5)0.02738 (16)
C710.0732 (2)0.5694 (2)1.1328 (2)0.0313 (4)
C720.3856 (2)0.4063 (2)1.2018 (2)0.0391 (5)
O10.29834 (17)0.69205 (14)1.00686 (13)0.0348 (3)
H1110.15540.58830.59480.047*
H1120.22740.62930.69470.047*
H1130.34420.55930.59870.047*
H3110.17450.88640.10780.047*
H3120.21421.04510.04820.047*
H3130.03211.04820.07670.047*
H6110.18471.36580.51450.029*
H6120.09971.28710.65610.029*
H6310.49521.13400.91780.059*
H6320.38941.28300.94130.059*
H6330.50231.30390.81070.059*
H70.26700.84450.88030.035*
H7110.01410.64361.06210.047*
H7120.07460.61021.19810.047*
H7130.05580.46841.18360.047*
H7210.49840.38121.17590.059*
H7220.35720.31081.24600.059*
H7230.37090.45051.26720.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0283 (8)0.0203 (7)0.0226 (8)0.0112 (6)0.0017 (6)0.0111 (6)
C110.0483 (12)0.0204 (9)0.0274 (11)0.0163 (8)0.0001 (9)0.0082 (8)
C20.0200 (9)0.0252 (8)0.0273 (10)0.0091 (7)0.0015 (7)0.0150 (8)
O20.0406 (8)0.0296 (7)0.0345 (8)0.0168 (6)0.0033 (6)0.0204 (6)
N30.0257 (8)0.0239 (7)0.0220 (8)0.0077 (6)0.0024 (6)0.0127 (6)
C310.0385 (11)0.0335 (10)0.0263 (10)0.0093 (9)0.0037 (8)0.0180 (9)
C40.0244 (9)0.0217 (8)0.0243 (10)0.0075 (7)0.0014 (7)0.0110 (8)
C4a0.0203 (8)0.0197 (8)0.0211 (9)0.0075 (7)0.0000 (7)0.0099 (7)
O40.0549 (9)0.0244 (7)0.0222 (7)0.0137 (6)0.0056 (6)0.0073 (6)
N50.0225 (7)0.0207 (7)0.0234 (8)0.0085 (6)0.0012 (6)0.0106 (6)
C60.0191 (8)0.0201 (8)0.0230 (9)0.0064 (7)0.0005 (7)0.0107 (7)
C610.0281 (9)0.0212 (8)0.0258 (10)0.0082 (7)0.0005 (7)0.0128 (7)
O610.0260 (8)0.0636 (10)0.0617 (11)0.0150 (7)0.0093 (7)0.0457 (9)
C620.0288 (10)0.0219 (8)0.0297 (10)0.0123 (7)0.0050 (8)0.0145 (8)
O620.0300 (7)0.0289 (6)0.0283 (7)0.0099 (5)0.0016 (5)0.0172 (6)
C630.0417 (12)0.0438 (12)0.0398 (13)0.0138 (10)0.0104 (9)0.0218 (10)
C70.0224 (8)0.0237 (8)0.0219 (9)0.0097 (7)0.0037 (7)0.0124 (7)
O70.0462 (8)0.0245 (6)0.0192 (7)0.0150 (6)0.0012 (6)0.0103 (5)
N80.0259 (8)0.0221 (7)0.0212 (8)0.0107 (6)0.0020 (6)0.0106 (6)
C8a0.0174 (8)0.0212 (8)0.0228 (9)0.0087 (7)0.0025 (6)0.0122 (7)
S10.0375 (3)0.0246 (2)0.0236 (3)0.0140 (2)0.00578 (19)0.0123 (2)
C710.0286 (10)0.0290 (9)0.0352 (11)0.0074 (8)0.0011 (8)0.0153 (9)
C720.0287 (10)0.0299 (10)0.0411 (13)0.0105 (8)0.0020 (9)0.0019 (9)
O10.0563 (9)0.0267 (7)0.0234 (7)0.0239 (6)0.0003 (6)0.0054 (6)
Geometric parameters (Å, º) top
N1—C21.376 (2)C31—H3110.9800
C2—N31.386 (2)C31—H3120.9800
N3—C41.391 (2)C31—H3130.9800
C4—C4a1.452 (2)C6—C611.502 (2)
N5—C4a1.355 (2)C61—C621.501 (2)
N5—C61.310 (2)C61—H6110.9900
C6—C71.426 (2)C61—H6120.9900
C7—N81.323 (2)O62—C631.447 (2)
N1—C8a1.381 (2)C63—H6310.9800
N8—C8a1.338 (2)C63—H6320.9800
C4a—C8a1.382 (2)C63—H6330.9800
C2—O21.220 (2)O7—H71.050
C4—O41.223 (2)S1—O11.5148 (13)
C62—O611.200 (2)S1—C721.770 (2)
C62—O621.332 (2)S1—C711.7723 (19)
C7—O71.320 (2)C71—H7110.9800
N1—C111.464 (2)C71—H7120.9800
C11—H1110.9800C71—H7130.9800
C11—H1120.9800C72—H7210.9800
C11—H1130.9800C72—H7220.9800
N3—C311.467 (2)C72—H7230.9800
C2—N1—C8a122.15 (14)C6—C61—H612109.0
C2—N1—C11116.88 (14)H611—C61—H612107.8
C8a—N1—C11120.89 (15)O61—C62—O62124.12 (17)
N1—C11—H111109.5O61—C62—C61124.41 (17)
N1—C11—H112109.5O62—C62—C61111.45 (14)
H111—C11—H112109.5C62—O62—C63116.13 (15)
N1—C11—H113109.5O62—C63—H631109.5
H111—C11—H113109.5O62—C63—H632109.5
H112—C11—H113109.5H631—C63—H632109.5
O2—C2—N1121.04 (16)O62—C63—H633109.5
O2—C2—N3121.89 (17)H631—C63—H633109.5
N1—C2—N3117.05 (14)H632—C63—H633109.5
C2—N3—C4125.12 (15)O7—C7—N8119.82 (15)
C2—N3—C31117.68 (14)O7—C7—C6117.48 (15)
C4—N3—C31117.06 (14)N8—C7—C6122.70 (16)
N3—C31—H311109.5C7—O7—H7113.6
N3—C31—H312109.5C7—N8—C8a115.78 (15)
H311—C31—H312109.5N8—C8a—N1117.35 (14)
N3—C31—H313109.5N8—C8a—C4a122.67 (15)
H311—C31—H313109.5N1—C8a—C4a119.97 (15)
H312—C31—H313109.5O1—S1—C72103.63 (9)
O4—C4—N3120.46 (16)O1—S1—C71106.23 (9)
O4—C4—C4a124.74 (16)C72—S1—C7197.93 (9)
N3—C4—C4a114.79 (14)S1—C71—H711109.5
N5—C4a—C8a120.82 (16)S1—C71—H712109.5
N5—C4a—C4118.42 (14)H711—C71—H712109.5
C8a—C4a—C4120.76 (15)S1—C71—H713109.5
C6—N5—C4a117.84 (14)H711—C71—H713109.5
N5—C6—C7120.17 (15)H712—C71—H713109.5
N5—C6—C61119.93 (15)S1—C72—H721109.5
C7—C6—C61119.85 (15)S1—C72—H722109.5
C62—C61—C6112.81 (14)H721—C72—H722109.5
C62—C61—H611109.0S1—C72—H723109.5
C6—C61—H611109.0H721—C72—H723109.5
C62—C61—H612109.0H722—C72—H723109.5
C8a—N1—C2—O2178.16 (15)C6—C61—C62—O62137.11 (15)
C11—N1—C2—O21.4 (2)C7—C6—C61—C6255.9 (2)
C8a—N1—C2—N33.5 (2)N5—C6—C61—C62126.59 (17)
C11—N1—C2—N3179.70 (14)O61—C62—O62—C630.7 (3)
O2—C2—N3—C4177.14 (16)C61—C62—O62—C63177.54 (15)
N1—C2—N3—C44.5 (2)N5—C6—C7—O7179.82 (14)
O2—C2—N3—C311.6 (2)C61—C6—C7—O72.6 (2)
N1—C2—N3—C31179.91 (15)N5—C6—C7—N80.9 (3)
C2—N3—C4—O4176.93 (15)C61—C6—C7—N8176.61 (15)
C31—N3—C4—O41.4 (2)O7—C7—N8—C8a179.73 (14)
C2—N3—C4—C4a3.9 (2)C6—C7—N8—C8a0.5 (2)
C31—N3—C4—C4a179.42 (14)C7—N8—C8a—N1178.66 (14)
O4—C4—C4a—N51.8 (3)C7—N8—C8a—C4a0.4 (2)
N3—C4—C4a—N5177.41 (14)C2—N1—C8a—N8178.73 (14)
O4—C4—C4a—C8a178.62 (16)C11—N1—C8a—N82.1 (2)
N3—C4—C4a—C8a2.2 (2)C2—N1—C8a—C4a2.2 (2)
C8a—C4a—N5—C60.5 (2)C11—N1—C8a—C4a178.83 (15)
C4—C4a—N5—C6179.91 (14)N5—C4a—C8a—N80.9 (3)
C4a—N5—C6—C70.4 (2)C4—C4a—C8a—N8179.47 (15)
C4a—N5—C6—C61177.14 (14)N5—C4a—C8a—N1178.11 (14)
C6—C61—C62—O6144.7 (2)C4—C4a—C8a—N11.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O11.051.482.517 (2)168
C31—H311···O1i0.982.563.472 (3)156
C61—H612···O2ii0.982.573.382 (2)140
C71—H711···O4ii0.982.443.362 (2)157
C71—H712···O2iii0.982.603.521 (2)157
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N4O5·C2H6OS
Mr358.37
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.8926 (2), 10.2539 (2), 10.8500 (4)
α, β, γ (°)62.2233 (10), 82.4797 (10), 69.1050 (14)
V3)817.03 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.943, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7717, 3528, 2790
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.05
No. of reflections3528
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.47

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2001), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C21.376 (2)N1—C8a1.381 (2)
C2—N31.386 (2)N8—C8a1.338 (2)
N3—C41.391 (2)C4a—C8a1.382 (2)
C4—C4a1.452 (2)C2—O21.220 (2)
N5—C4a1.355 (2)C4—O41.223 (2)
N5—C61.310 (2)C62—O611.200 (2)
C6—C71.426 (2)C62—O621.332 (2)
C7—N81.323 (2)C7—O71.320 (2)
C6—C61—C62—O6144.7 (2)C7—C6—C61—C6255.9 (2)
C6—C61—C62—O62137.11 (15)N5—C6—C61—C62126.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O11.051.482.517 (2)168
C31—H311···O1i0.982.563.472 (3)156
C61—H612···O2ii0.982.573.382 (2)140
C71—H711···O4ii0.982.443.362 (2)157
C71—H712···O2iii0.982.603.521 (2)157
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z+1; (iii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds