Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [NiCl2(C26H24P2)], has arisen as a result of the unexpected reduction (hydrogenation) of the trans-1,2-bis­(di­phenyl­phosphino)­ethene ligand. The hydro­thermal reaction conditions have produced a third polymorphic form of the compound which has twofold symmetry, crystallizes in an enantiomer-selective manner and contains an unexpectedly short C—C (ethane) bond. Contacts of the form C—H...Cl are present, one involving alkyl and the other aryl hydrogen, with C...Cl distances of 3.556 (4) and 3.664 (6) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003961/gg1036sup1.cif
Contains datablocks global, C(150), C(293), A(150)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003961/gg1036C150sup2.hkl
Contains datablock C(150)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003961/gg1036C293sup3.hkl
Contains datablock C(293)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003961/gg1036A150sup4.hkl
Contains datablock A(150)

CCDC references: 166965; 166966; 166967

Comment top

The Cambridge Structural Database (Allen & Kennard, 1993) accessed at the chemical database service of the EPSRC (Fletcher et al., 1996) provides three reports of structures for the title compound. Spek et al. (1987) reported the structure of the dichloromethane solvate (FUJXUD) which was subsequently re-examined by Busby et al. (1993) and designated form B along with a second unsolvated structure (form A - PIFDUD). The structure of form A was later determined with greater precision (PIFDUD01: Davies et al., 1998). Following the notation of Busby et al. (1993) we designate the polymorph described here as form C. In the following discussion the various structures (polymorphs) are designated simply by letter as A, B or C and in addition the 150 and 293 K structures presented here are further differentiated as A(150), C(150) and C(293). \sch

The molecules of C (Fig. 1) contain a twofold crystallographic symmetry axis passing through Ni and the mid-point of the C1—C1i bond, symmetry operation i: -x,y,-z. Thus, in addition to Ni in the 2a special positions of the space group I2 the asymmetric unit consists of one Cl and half of the ligand comprising P, the ethane C1 and C2 to C13 of the phenyl groups attached to P. The latter are in the 4 b general positions. According to Busby et al. (1993) molecules of B possess similar but non-crystallographic twofold axial symmetry while those of A do not due to the disposition of the phenyl groups. In all of the polymorphs the coordination of Ni remains essentially similar in the form of a slight tetrahedral distortion from a square-planar arrangement.

Solely on the basis of the mode of preparation of C (see below) it was assumed initially that in forming the complex C the original trans substituted diphosphinoalkene had simply undergone transformation to the cis form. However the length of the putative CC bond provoked investigation of a model with two rather than one H attached to C1 resulting in a small but significant improvement in the R factor. The correctness of this model was confirmed by proton NMR and supported by elemental analysis and the discovery of crystals of A in admixture with C, one of which was used to provide intensity data at 150 K [A(150)] whose analysis is presented here merely for comparison purposes (Fig. 2 and Table 3).

It follows that in the synthesis of C, accompanied by some A, by the method described below the initial phosphine disubstituted alkene ligand has undergone hydrogenation. This is comparable with the dihalobis(triphenylphosphine)nickel(II) catalysed hydrogenation of methyl linoleate with THF as the hydrogen source (Itatani & Bailar, 1967) supported by the detailed investigation of the generation of H2 in a similar system as reported by Davies et al. (1998).

In the scheme, molecules of A, B and C are handed because relative to the immediate coordination of Ni with Cl down below the plane of the paper (small rectangles) the C—C ethane bond of the ligand may be either rotated clockwise (i) or anticlockwise (ii). Centrosymmetric A and B are racemic in this respect but C is not. By coincidence the molecules of C(293) correspond to i and those of C(150), with a second crystal, to ii.

Table 3 shows that the molecules of A, B and C are very similar except that the ethane C—C of the ligand is approximately 0.1 Å shorter in C than in A or B. The dihedral angles around this bond, while of opposite sign for the enantiomers C(293) and C(150), are smaller in magnitude than the corresponding values in A or B.

Short C—C bonds in ligands of this type are by no means uncommon and extreme cases are, for example, values of 1.380 (10) Å in trans-bis[1,2-bis(dimethylphosphino)ethane]-P,P'-dichlorochromium(II) (DAJDUN: Girolami et al., 1985) or 1.326 (10) Å in dichlorobis[1,2-bis(dimethylphosphino)ethane]iron(II) (BAWSOH: di Vaira et al., 1981) and are usually accounted for by disorder or extreme thermal displacement or a combination of both. However, in the case of C the complete success of the refinement of the absolute structure in both instances with no evidence of twinning or any other form of disorder leaves the shortness of the ethane C—C bond still to be accounted for by other means. Decrease in the temperature of data collection from 293 to 150 K has no effect on this C—C bond length in A but causes an increase in length by about 1% in C. This can be attributed to libration in the case of C but the change is small compared with the overall discrepancy between C and A or B. There is, however, one feature in the structure of C which is totally absent in A or B. This is the hydrogen-bond type contact of the form C1—H1A···Cl present in Fig. 3 and Tables 1 and 2 which interconnects the molecules in columns propagated in the direction of the polar axis b. In this arrangement Cl donates electron density to the alkyl H which is then presumed to release electron density to the C to which it is attached thus imparting some double bond character to the C—C bond and thus shortening it. If this is the case the effect is surprisingly large. There is also present in C an aryl H contact of the form C12—H12.·Cl which serves to interconnect the columns of molecules in sheets parallel to (1,0,1). Both of these contacts were elucidated by means of PLATON (Spek, 1990).

Related literature top

For related literature, see: di Vaira Midolini Sacconi (1981); Allen & Kennard (1993); Busby et al. (1993); Davies et al. (1998); Fletcher et al. (1996); Girolami et al. (1985); Itatani & Bailar (1967); Spek (1990); Spek et al. (1987).

Experimental top

trans-1,2-Bis(diphenylphosphino)ethene (114 mg, 0.288 mmol), nickel chloride hexahydrate (68 mg, 0.286 mmol) and ethanol (10 ml) were placed in a 23 ml Parr bomb. After sealing, the bomb was heated at 100°Ch-1 to 423 K and maintained at this temperature for 48 h. Thereafter the bomb was cooled to 293 K at a rate of 5 °Ch-1. After opening, the brown yellow crystals were collected by filtration, washed with ethanol and air dried to afford C as an analytically pure solid.

Found C 59.1, H 4.5% (C26H24Cl2NiP2 requires C 59.2, H, 4.6%). IR (KBr) 1638m, 1618m, 1476w, 1433 s, 1406w, 1385w, 1306w, 1274w, 1186w, 1160w, 1129w, 1102 s, 1069s h, 1025w, 997w, 875w, 847w, 813m, 782w, 748 s, 717 s, 704m, 689 s, and 652w (cm-1). 1H NMR (250 MHz, CDCl3) δH 8.0 m and 7.5 m (20H) and 2.1 m (4H): c.f. footnote a, Table 1 of Davies et al. (1998).

Refinement top

The room temperature structure of C was solved initially simply by extracting feasible positions for non-H from a difference map phased by placing Ni at the origin of the space group I2/m. This readily produced an image of a pair of superposed molecules and it was comparatively easy to select one of these and continue refinement in the true space group (I2). The coordinates thus derived were used along with appropriately modified cell dimension as starting parameters for the refinement of the 150 K structure of C. Starting parameters for the refinement of A(150) were likewise taken from the literature data (PIFDUD: Busby et al., 1993). In all three refinements H were placed in calculated positions and refined with a riding model with Ueq 1.2 x Uiso of the C to which they were attached. The absolute structures of C(150) and C(293) are based on 1170 and 1187 Friedel pairs, respectively.

Computing details top

For all compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A molecule of C showing the atom-labelling scheme. Selected symmetry related [symmetry operation (i) -x, y, -z] atoms are labelled. Non-H are shown as 50% probability ellipsoids and H as open circles.
[Figure 2] Fig. 2. A molecule of A(150) showing the atom-labelling scheme. The representation is the same as that of Fig. 1.
[Figure 3] Fig. 3. Part of a layer parallel to (1,0,1), which is also the plane of projection, of C—H.·Cl connected (dashed lines) molecules of C. The cell edge b runs down the page and aside from the omission of aryl H not involved in hydrogen bond formation the representation is the same as in the other figures.
C(150) Dichloro[1,2-bis(diphenylphosphino)ethane]nickel(II) (form C at 150 K) top
Crystal data top
[NiCl2(C26H24P2)]F(000) = 544
Mr = 528.0Dx = 1.406 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 12.4551 (14) ÅCell parameters from 5686 reflections
b = 7.9901 (8) Åθ = 3.0–27.5°
c = 13.0350 (19) ŵ = 1.13 mm1
β = 105.983 (5)°T = 150 K
V = 1247.1 (3) Å3Needle, brown yellow
Z = 20.20 × 0.03 × 0.03 mm
Data collection top
Kappa-CCD
diffractometer
2686 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1512
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 810
Tmin = 0.887, Tmax = 0.999l = 1316
5686 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.0327P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2686 reflectionsΔρmax = 0.54 e Å3
141 parametersΔρmin = 0.58 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.01 (2)
Crystal data top
[NiCl2(C26H24P2)]V = 1247.1 (3) Å3
Mr = 528.0Z = 2
Monoclinic, I2Mo Kα radiation
a = 12.4551 (14) ŵ = 1.13 mm1
b = 7.9901 (8) ÅT = 150 K
c = 13.0350 (19) Å0.20 × 0.03 × 0.03 mm
β = 105.983 (5)°
Data collection top
Kappa-CCD
diffractometer
2686 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1946 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.999Rint = 0.064
5686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.54 e Å3
S = 1.04Δρmin = 0.58 e Å3
2686 reflectionsAbsolute structure: (Flack, 1983)
141 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H placed in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00232 (10)0.00000.0292 (2)
Cl0.12373 (12)0.18440 (10)0.02446 (11)0.0361 (4)
P0.11397 (13)0.19118 (12)0.01230 (11)0.0328 (4)
C10.0589 (4)0.3925 (5)0.0186 (5)0.0511 (15)
H1A0.08950.48440.01590.061*
H1B0.08230.41140.09670.061*
C20.1253 (4)0.2100 (5)0.1465 (4)0.0335 (11)
C30.0519 (4)0.1211 (6)0.2281 (4)0.0381 (11)
H30.00420.05320.21250.046*
C40.0598 (4)0.1304 (6)0.3316 (4)0.0463 (13)
H40.00940.06850.38640.056*
C50.1396 (5)0.2279 (6)0.3558 (4)0.0466 (13)
H50.14550.23250.42680.056*
C60.2112 (4)0.3190 (7)0.2765 (4)0.0485 (13)
H60.26640.38760.29310.058*
C70.2036 (4)0.3118 (6)0.1727 (4)0.0479 (14)
H70.25260.37730.11890.058*
C80.2531 (4)0.1743 (5)0.0763 (4)0.0377 (12)
C90.3384 (4)0.1065 (7)0.0432 (4)0.0533 (14)
H90.32540.07180.02890.064*
C100.4453 (5)0.0874 (7)0.1145 (4)0.0659 (17)
H100.50420.04020.09070.079*
C110.4641 (5)0.1373 (7)0.2190 (5)0.0574 (15)
H110.53630.12590.26740.069*
C120.3795 (6)0.2026 (7)0.2529 (5)0.0620 (16)
H120.39250.23720.32500.074*
C130.2737 (5)0.2192 (7)0.1825 (4)0.0541 (15)
H130.21450.26200.20780.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0407 (5)0.0235 (4)0.0315 (5)0.0000.0235 (3)0.000
Cl0.0486 (9)0.0256 (6)0.0435 (8)0.0021 (6)0.0286 (7)0.0019 (5)
P0.0414 (9)0.0268 (6)0.0384 (8)0.0027 (6)0.0245 (7)0.0014 (6)
C10.084 (4)0.020 (2)0.067 (4)0.001 (2)0.050 (4)0.000 (2)
C20.035 (3)0.034 (2)0.037 (3)0.008 (2)0.020 (2)0.010 (2)
C30.042 (3)0.042 (3)0.035 (3)0.004 (2)0.018 (2)0.007 (2)
C40.050 (3)0.049 (3)0.042 (3)0.003 (3)0.017 (3)0.007 (2)
C50.052 (3)0.058 (3)0.036 (3)0.008 (3)0.023 (3)0.008 (3)
C60.046 (3)0.064 (3)0.042 (3)0.009 (3)0.024 (3)0.011 (3)
C70.042 (3)0.062 (3)0.046 (3)0.009 (3)0.022 (3)0.006 (3)
C80.047 (3)0.036 (3)0.034 (3)0.010 (2)0.019 (2)0.0011 (19)
C90.049 (3)0.070 (4)0.039 (3)0.015 (3)0.008 (3)0.016 (3)
C100.061 (4)0.092 (4)0.043 (4)0.013 (3)0.011 (3)0.010 (3)
C110.059 (4)0.073 (4)0.035 (3)0.012 (3)0.003 (3)0.006 (3)
C120.073 (5)0.084 (4)0.029 (3)0.026 (3)0.014 (3)0.002 (3)
C130.062 (4)0.067 (4)0.042 (3)0.014 (3)0.029 (3)0.019 (3)
Geometric parameters (Å, º) top
Ni—P2.1346 (13)C5—C61.373 (7)
Ni—Pi2.1346 (13)C5—H50.9500
Ni—Cli2.2054 (13)C6—C71.384 (7)
Ni—Cl2.2054 (13)C6—H60.9500
P—C21.800 (4)C7—H70.9500
P—C81.804 (5)C8—C91.364 (7)
P—C11.836 (4)C8—C131.384 (7)
C1—C1i1.413 (10)C9—C101.407 (8)
C1—H1A0.9900C9—H90.9500
C1—H1B0.9900C10—C111.376 (7)
C2—C71.383 (6)C10—H100.9500
C2—C31.392 (6)C11—C121.354 (8)
C3—C41.381 (7)C11—H110.9500
C3—H30.9500C12—C131.388 (8)
C4—C51.366 (7)C12—H120.9500
C4—H40.9500C13—H130.9500
P—Ni—Pi87.18 (7)C4—C5—C6119.5 (5)
P—Ni—Cli173.87 (6)C4—C5—H5120.3
Pi—Ni—Cli87.78 (4)C6—C5—H5120.3
P—Ni—Cl87.78 (4)C5—C6—C7120.5 (5)
Pi—Ni—Cl173.87 (6)C5—C6—H6119.7
Cli—Ni—Cl97.45 (7)C7—C6—H6119.7
C2—P—C8108.1 (2)C2—C7—C6120.6 (5)
C2—P—C1105.9 (2)C2—C7—H7119.7
C8—P—C1106.0 (2)C6—C7—H7119.7
C2—P—Ni111.42 (17)C9—C8—C13118.2 (5)
C8—P—Ni116.05 (15)C9—C8—P121.4 (4)
C1—P—Ni108.77 (16)C13—C8—P120.2 (4)
C1i—C1—P109.9 (3)C8—C9—C10120.8 (5)
C1i—C1—H1A109.7C8—C9—H9119.6
P—C1—H1A109.7C10—C9—H9119.6
C1i—C1—H1B109.7C11—C10—C9119.7 (6)
P—C1—H1B109.7C11—C10—H10120.2
H1A—C1—H1B108.2C9—C10—H10120.2
C7—C2—C3118.1 (4)C12—C11—C10119.9 (5)
C7—C2—P122.6 (4)C12—C11—H11120.0
C3—C2—P119.3 (3)C10—C11—H11120.0
C4—C3—C2120.7 (4)C11—C12—C13120.2 (5)
C4—C3—H3119.6C11—C12—H12119.9
C2—C3—H3119.6C13—C12—H12119.9
C5—C4—C3120.5 (5)C8—C13—C12121.1 (5)
C5—C4—H4119.7C8—C13—H13119.4
C3—C4—H4119.7C12—C13—H13119.4
Pi—Ni—P—C2106.36 (17)C4—C5—C6—C70.5 (8)
Cl—Ni—P—C270.14 (15)C3—C2—C7—C62.6 (7)
Pi—Ni—P—C8129.38 (19)P—C2—C7—C6178.3 (4)
Cl—Ni—P—C854.11 (17)C5—C6—C7—C21.4 (7)
Pi—Ni—P—C110.0 (2)C2—P—C8—C928.5 (5)
Cl—Ni—P—C1173.5 (2)C1—P—C8—C9141.7 (4)
C2—P—C1—C1i85.2 (5)Ni—P—C8—C997.4 (4)
C8—P—C1—C1i160.1 (5)C2—P—C8—C13156.2 (4)
Ni—P—C1—C1i34.6 (5)C1—P—C8—C1343.0 (4)
C8—P—C2—C743.2 (4)Ni—P—C8—C1377.8 (4)
C1—P—C2—C770.0 (4)C13—C8—C9—C101.8 (8)
Ni—P—C2—C7171.9 (3)P—C8—C9—C10177.2 (4)
C8—P—C2—C3137.6 (4)C8—C9—C10—C110.1 (9)
C1—P—C2—C3109.1 (4)C9—C10—C11—C120.7 (9)
Ni—P—C2—C39.0 (4)C10—C11—C12—C130.1 (9)
C7—C2—C3—C42.0 (7)C9—C8—C13—C122.7 (8)
P—C2—C3—C4178.8 (4)P—C8—C13—C12178.1 (4)
C2—C3—C4—C50.3 (7)C11—C12—C13—C81.9 (8)
C3—C4—C5—C61.0 (8)P—C1—C1i—Pi42.7 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Clii0.992.693.556 (4)147
C12—H12···Cliii0.952.743.664 (6)166
Symmetry codes: (ii) x, y1, z; (iii) x1/2, y1/2, z1/2.
C(293) Dichloro[1,2-bis(diphenylphosphino)ethane]nickel(II) (form C at 293 K) top
Crystal data top
[NiCl2(C26H24P2)]F(000) = 544
Mr = 528.0Dx = 1.379 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 12.5688 (15) ÅCell parameters from 4976 reflections
b = 8.0208 (8) Åθ = 3.0–30.1°
c = 13.0871 (9) ŵ = 1.11 mm1
β = 105.531 (4)°T = 293 K
V = 1271.2 (2) Å3Needle, brown yellow
Z = 20.35 × 0.07 × 0.05 mm
Data collection top
Kappa-CCD
diffractometer
2861 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 30.1°, θmin = 3.0°
ϕ and ω scansh = 1613
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 108
Tmin = 0.896, Tmax = 0.955l = 1516
4976 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0223P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2861 reflectionsΔρmax = 0.27 e Å3
141 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.01 (2)
Crystal data top
[NiCl2(C26H24P2)]V = 1271.2 (2) Å3
Mr = 528.0Z = 2
Monoclinic, I2Mo Kα radiation
a = 12.5688 (15) ŵ = 1.11 mm1
b = 8.0208 (8) ÅT = 293 K
c = 13.0871 (9) Å0.35 × 0.07 × 0.05 mm
β = 105.531 (4)°
Data collection top
Kappa-CCD
diffractometer
2861 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1576 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.955Rint = 0.050
4976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.27 e Å3
S = 0.95Δρmin = 0.34 e Å3
2861 reflectionsAbsolute structure: (Flack, 1983)
141 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H placed in claculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00204 (12)0.00000.0450 (2)
Cl0.12129 (14)0.18466 (10)0.02479 (13)0.0599 (5)
P0.11247 (15)0.19034 (13)0.01417 (13)0.0512 (5)
C10.0578 (4)0.3909 (5)0.0161 (6)0.085 (2)
H1A0.08560.47960.02010.102*
H1B0.08290.41180.09170.102*
C20.1245 (4)0.2097 (6)0.1476 (4)0.0530 (13)
C30.0545 (5)0.1204 (7)0.2277 (5)0.0670 (15)
H30.00130.05170.21210.080*
C40.0619 (5)0.1312 (8)0.3301 (5)0.0811 (18)
H40.01400.06920.38290.097*
C50.1385 (6)0.2317 (8)0.3556 (5)0.0870 (19)
H50.14350.23920.42500.104*
C60.2073 (5)0.3206 (9)0.2766 (5)0.091 (2)
H60.26060.38860.29240.109*
C70.1999 (5)0.3126 (7)0.1746 (5)0.0770 (18)
H70.24660.37760.12270.092*
C80.2490 (5)0.1755 (6)0.0730 (4)0.0589 (15)
C90.3342 (5)0.1083 (8)0.0431 (5)0.088 (2)
H90.32260.06940.02600.105*
C100.4392 (7)0.0956 (9)0.1126 (7)0.119 (3)
H100.49710.05460.08820.143*
C110.4581 (7)0.1420 (9)0.2153 (7)0.107 (2)
H110.52760.12960.26260.129*
C120.3729 (8)0.2070 (10)0.2474 (6)0.107 (3)
H120.38470.24130.31740.128*
C130.2686 (6)0.2237 (8)0.1785 (6)0.094 (2)
H130.21140.26750.20290.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0650 (5)0.0320 (4)0.0479 (5)0.0000.0325 (4)0.000
Cl0.0807 (12)0.0392 (9)0.0738 (12)0.0059 (7)0.0450 (10)0.0022 (7)
P0.0683 (12)0.0386 (8)0.0574 (11)0.0049 (7)0.0352 (10)0.0008 (7)
C10.127 (6)0.031 (3)0.122 (6)0.005 (3)0.076 (6)0.000 (3)
C20.058 (3)0.060 (3)0.047 (3)0.001 (3)0.024 (3)0.012 (3)
C30.078 (4)0.067 (3)0.065 (4)0.006 (3)0.033 (4)0.012 (3)
C40.098 (5)0.095 (4)0.053 (4)0.001 (4)0.024 (4)0.011 (3)
C50.108 (6)0.108 (5)0.055 (4)0.013 (4)0.039 (4)0.026 (4)
C60.083 (5)0.130 (6)0.064 (5)0.026 (4)0.029 (4)0.027 (4)
C70.073 (4)0.098 (5)0.065 (4)0.023 (3)0.028 (3)0.012 (3)
C80.068 (4)0.069 (4)0.043 (4)0.017 (3)0.021 (3)0.010 (2)
C90.071 (5)0.115 (5)0.066 (5)0.027 (4)0.002 (4)0.025 (4)
C100.099 (6)0.164 (7)0.077 (6)0.019 (5)0.004 (5)0.017 (5)
C110.109 (7)0.125 (6)0.079 (6)0.022 (5)0.007 (5)0.012 (5)
C120.132 (8)0.130 (6)0.054 (5)0.047 (6)0.020 (6)0.012 (4)
C130.097 (6)0.122 (5)0.072 (5)0.028 (4)0.041 (5)0.033 (4)
Geometric parameters (Å, º) top
Ni—Pi2.1340 (15)C5—C61.358 (8)
Ni—P2.1340 (15)C5—H50.9300
Ni—Cl2.1999 (14)C6—C71.364 (8)
Ni—Cli2.1999 (14)C6—H60.9300
P—C81.792 (6)C7—H70.9300
P—C21.800 (5)C8—C91.348 (7)
P—C11.833 (4)C8—C131.390 (7)
C1—C1i1.400 (11)C9—C101.392 (9)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—C111.353 (9)
C2—C71.372 (6)C10—H100.9300
C2—C31.375 (7)C11—C121.355 (9)
C3—C41.371 (7)C11—H110.9300
C3—H30.9300C12—C131.384 (9)
C4—C51.364 (7)C12—H120.9300
C4—H40.9300C13—H130.9300
Pi—Ni—P87.38 (8)C6—C5—C4118.1 (6)
Pi—Ni—Cl174.60 (7)C6—C5—H5121.0
P—Ni—Cl88.13 (4)C4—C5—H5121.0
Pi—Ni—Cli88.13 (4)C5—C6—C7121.6 (6)
P—Ni—Cli174.60 (7)C5—C6—H6119.2
Cl—Ni—Cli96.51 (8)C7—C6—H6119.2
C8—P—C2108.0 (2)C6—C7—C2120.8 (6)
C8—P—C1105.7 (3)C6—C7—H7119.6
C2—P—C1105.5 (3)C2—C7—H7119.6
C8—P—Ni116.12 (16)C9—C8—C13117.1 (6)
C2—P—Ni112.12 (19)C9—C8—P122.8 (4)
C1—P—Ni108.68 (15)C13—C8—P119.9 (5)
C1i—C1—P110.7 (3)C8—C9—C10121.8 (6)
C1i—C1—H1A109.5C8—C9—H9119.1
P—C1—H1A109.5C10—C9—H9119.1
C1i—C1—H1B109.5C11—C10—C9120.9 (7)
P—C1—H1B109.5C11—C10—H10119.6
H1A—C1—H1B108.1C9—C10—H10119.6
C7—C2—C3117.6 (5)C10—C11—C12118.0 (8)
C7—C2—P123.0 (4)C10—C11—H11121.0
C3—C2—P119.4 (4)C12—C11—H11121.0
C4—C3—C2121.0 (5)C11—C12—C13121.7 (7)
C4—C3—H3119.5C11—C12—H12119.2
C2—C3—H3119.5C13—C12—H12119.2
C5—C4—C3120.9 (6)C12—C13—C8120.4 (6)
C5—C4—H4119.5C12—C13—H13119.8
C3—C4—H4119.5C8—C13—H13119.8
Pi—Ni—P—C8128.3 (2)C4—C5—C6—C70.9 (11)
Cl—Ni—P—C854.67 (19)C5—C6—C7—C22.0 (10)
Pi—Ni—P—C2106.9 (2)C3—C2—C7—C62.3 (8)
Cl—Ni—P—C270.10 (18)P—C2—C7—C6178.8 (5)
Pi—Ni—P—C19.4 (2)C2—P—C8—C929.7 (6)
Cl—Ni—P—C1173.6 (3)C1—P—C8—C9142.2 (5)
C8—P—C1—C1i158.0 (6)Ni—P—C8—C997.2 (5)
C2—P—C1—C1i87.7 (6)C2—P—C8—C13154.9 (4)
Ni—P—C1—C1i32.7 (7)C1—P—C8—C1342.4 (5)
C8—P—C2—C744.0 (5)Ni—P—C8—C1378.2 (4)
C1—P—C2—C768.7 (5)C13—C8—C9—C103.4 (10)
Ni—P—C2—C7173.1 (4)P—C8—C9—C10178.9 (5)
C8—P—C2—C3137.1 (4)C8—C9—C10—C113.8 (12)
C1—P—C2—C3110.2 (5)C9—C10—C11—C122.5 (12)
Ni—P—C2—C38.0 (5)C10—C11—C12—C131.1 (12)
C7—C2—C3—C41.5 (8)C11—C12—C13—C80.9 (11)
P—C2—C3—C4179.5 (4)C9—C8—C13—C122.0 (9)
C2—C3—C4—C50.4 (9)P—C8—C13—C12177.6 (5)
C3—C4—C5—C60.0 (10)P—C1—C1i—Pi40.6 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Clii0.972.733.570 (4)145
C12—H12···Cliii0.932.803.714 (8)168
Symmetry codes: (ii) x, y+1, z; (iii) x1/2, y+1/2, z1/2.
A(150) Dichloro[1,2-bis(diphenylphosphino)ethane]nickel(II) - form A at 150 K top
Crystal data top
[NiCl2(C26H24P2)]F(000) = 1088
Mr = 528.0Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2779 (3) ÅCell parameters from 20644 reflections
b = 13.3386 (4) Åθ = 2.9–27.5°
c = 15.8739 (5) ŵ = 1.20 mm1
β = 98.7953 (16)°T = 150 K
V = 2359.85 (12) Å3Block, brown yellow
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Kappa-CCD
diffractometer
5198 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode4070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1617
Tmin = 0.706, Tmax = 0.950l = 1720
9650 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.0545P]
where P = (Fo2 + 2Fc2)/3
5198 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[NiCl2(C26H24P2)]V = 2359.85 (12) Å3
Mr = 528.0Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2779 (3) ŵ = 1.20 mm1
b = 13.3386 (4) ÅT = 150 K
c = 15.8739 (5) Å0.20 × 0.15 × 0.10 mm
β = 98.7953 (16)°
Data collection top
Kappa-CCD
diffractometer
5198 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
4070 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.950Rint = 0.042
9650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.06Δρmax = 0.71 e Å3
5198 reflectionsΔρmin = 0.54 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H placed in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.12587 (3)0.22015 (2)0.205630 (17)0.02078 (11)
Cl10.00827 (6)0.26607 (5)0.29716 (4)0.03211 (17)
Cl20.28647 (6)0.20315 (5)0.30257 (4)0.03251 (17)
P10.02871 (6)0.21138 (4)0.10837 (4)0.01938 (16)
P20.23140 (6)0.18286 (5)0.10808 (4)0.02161 (16)
C10.0152 (2)0.14116 (18)0.01856 (14)0.0243 (5)
H1A0.02180.06880.03220.029*
H1B0.04520.15020.03310.029*
C20.1355 (2)0.18237 (19)0.00392 (14)0.0242 (5)
H2A0.12630.25120.01950.029*
H2B0.17080.13950.03670.029*
C30.1398 (2)0.33733 (19)0.01982 (16)0.0326 (6)
H30.14620.27950.05510.039*
C40.1845 (3)0.4287 (2)0.05265 (18)0.0414 (7)
H40.22080.43340.11060.050*
C50.1761 (2)0.5120 (2)0.00163 (19)0.0372 (7)
H50.20810.57400.02420.045*
C60.1221 (3)0.5067 (2)0.08139 (19)0.0387 (7)
H60.11610.56500.11620.046*
C70.0760 (2)0.41594 (18)0.11475 (17)0.0321 (6)
H70.03750.41240.17220.039*
C80.0860 (2)0.33079 (17)0.06458 (15)0.0223 (5)
C90.2623 (2)0.1870 (2)0.14406 (16)0.0305 (6)
H90.27380.25610.13070.037*
C100.3546 (3)0.1312 (2)0.16905 (18)0.0381 (7)
H100.42950.16220.17270.046*
C110.3384 (3)0.0307 (2)0.18870 (18)0.0381 (7)
H110.40230.00720.20530.046*
C120.2296 (3)0.0145 (2)0.18430 (17)0.0348 (6)
H120.21880.08370.19760.042*
C130.1368 (2)0.04049 (18)0.16066 (16)0.0290 (6)
H130.06120.00950.15930.035*
C140.1527 (2)0.14153 (17)0.13868 (14)0.0220 (5)
C150.4070 (2)0.33062 (19)0.15635 (17)0.0310 (6)
H150.38010.33080.21020.037*
C160.4969 (2)0.3955 (2)0.14067 (18)0.0367 (7)
H160.53230.43960.18440.044*
C170.5354 (2)0.3970 (2)0.06276 (18)0.0361 (7)
H170.59750.44160.05290.043*
C180.4841 (2)0.3338 (2)0.00121 (17)0.0345 (6)
H180.51050.33490.05520.041*
C190.3937 (2)0.26838 (19)0.01345 (16)0.0289 (6)
H190.35740.22580.03110.035*
C200.3558 (2)0.26465 (18)0.09234 (15)0.0247 (5)
C210.2416 (2)0.0095 (2)0.17806 (17)0.0315 (6)
H210.19250.01720.21630.038*
C220.2717 (3)0.1096 (2)0.18212 (17)0.0359 (7)
H220.24270.15180.22270.043*
C230.3436 (3)0.1487 (2)0.12780 (18)0.0372 (7)
H230.36640.21730.13220.045*
C240.3825 (3)0.0890 (2)0.06739 (19)0.0406 (7)
H240.43010.11670.02870.049*
C250.3525 (2)0.01224 (19)0.06254 (17)0.0334 (6)
H250.38020.05350.02080.040*
C260.2825 (2)0.05310 (18)0.11831 (14)0.0237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0267 (2)0.01972 (19)0.01563 (18)0.00147 (12)0.00224 (13)0.00248 (12)
Cl10.0376 (4)0.0391 (4)0.0209 (3)0.0012 (3)0.0082 (3)0.0078 (3)
Cl20.0364 (4)0.0371 (4)0.0216 (3)0.0029 (3)0.0033 (3)0.0010 (3)
P10.0255 (4)0.0141 (3)0.0183 (3)0.0019 (2)0.0026 (3)0.0016 (2)
P20.0266 (3)0.0201 (3)0.0180 (3)0.0041 (3)0.0029 (2)0.0003 (3)
C10.0349 (14)0.0170 (12)0.0199 (11)0.0033 (10)0.0011 (10)0.0046 (10)
C20.0320 (14)0.0234 (13)0.0174 (11)0.0083 (11)0.0041 (10)0.0025 (10)
C30.0409 (16)0.0228 (13)0.0322 (14)0.0019 (12)0.0007 (12)0.0011 (11)
C40.0484 (19)0.0334 (16)0.0390 (16)0.0042 (14)0.0038 (14)0.0115 (13)
C50.0358 (16)0.0212 (13)0.0564 (18)0.0063 (12)0.0125 (14)0.0154 (13)
C60.0531 (19)0.0176 (13)0.0484 (18)0.0049 (12)0.0175 (14)0.0021 (13)
C70.0455 (17)0.0219 (13)0.0298 (14)0.0024 (12)0.0081 (12)0.0023 (11)
C80.0256 (13)0.0146 (11)0.0280 (13)0.0027 (9)0.0078 (10)0.0041 (10)
C90.0332 (15)0.0249 (13)0.0329 (14)0.0049 (11)0.0029 (11)0.0065 (11)
C100.0283 (15)0.0367 (16)0.0498 (17)0.0036 (12)0.0070 (13)0.0082 (14)
C110.0328 (16)0.0364 (16)0.0454 (16)0.0082 (13)0.0072 (13)0.0131 (13)
C120.0466 (18)0.0212 (13)0.0373 (15)0.0031 (12)0.0086 (13)0.0096 (12)
C130.0303 (14)0.0214 (13)0.0353 (14)0.0040 (11)0.0056 (11)0.0027 (11)
C140.0276 (13)0.0189 (12)0.0189 (11)0.0016 (10)0.0019 (10)0.0004 (10)
C150.0358 (15)0.0279 (14)0.0301 (14)0.0014 (12)0.0071 (11)0.0037 (11)
C160.0350 (16)0.0341 (16)0.0405 (16)0.0020 (13)0.0037 (13)0.0013 (13)
C170.0290 (15)0.0293 (15)0.0507 (17)0.0024 (12)0.0083 (13)0.0101 (13)
C180.0391 (16)0.0310 (15)0.0356 (15)0.0052 (13)0.0134 (12)0.0090 (13)
C190.0325 (15)0.0266 (14)0.0280 (14)0.0055 (11)0.0055 (11)0.0028 (11)
C200.0253 (13)0.0221 (13)0.0263 (13)0.0060 (10)0.0032 (10)0.0025 (10)
C210.0382 (16)0.0285 (14)0.0289 (13)0.0054 (12)0.0091 (11)0.0025 (12)
C220.0449 (17)0.0292 (15)0.0334 (14)0.0003 (13)0.0054 (13)0.0099 (12)
C230.0429 (17)0.0180 (13)0.0491 (17)0.0033 (12)0.0018 (14)0.0026 (12)
C240.0450 (18)0.0280 (15)0.0524 (18)0.0078 (13)0.0196 (15)0.0082 (14)
C250.0345 (15)0.0259 (14)0.0430 (16)0.0012 (12)0.0163 (13)0.0007 (12)
C260.0272 (13)0.0195 (12)0.0237 (12)0.0041 (10)0.0014 (10)0.0001 (10)
Geometric parameters (Å, º) top
Ni—P12.1479 (7)C10—H100.9500
Ni—P22.1507 (7)C11—C121.378 (4)
Ni—Cl12.1987 (7)C11—H110.9500
Ni—Cl22.2017 (7)C12—C131.377 (4)
P1—C141.806 (2)C12—H120.9500
P1—C81.817 (2)C13—C141.397 (3)
P1—C11.836 (2)C13—H130.9500
P2—C261.824 (2)C15—C161.384 (4)
P2—C201.824 (3)C15—C201.400 (4)
P2—C21.832 (2)C15—H150.9500
C1—C21.515 (3)C16—C171.372 (4)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.377 (4)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.388 (4)
C3—C81.387 (3)C18—H180.9500
C3—C41.389 (4)C19—C201.384 (4)
C3—H30.9500C19—H190.9500
C4—C51.370 (4)C21—C221.377 (4)
C4—H40.9500C21—C261.394 (3)
C5—C61.366 (4)C21—H210.9500
C5—H50.9500C22—C231.374 (4)
C6—C71.390 (4)C22—H220.9500
C6—H60.9500C23—C241.369 (4)
C7—C81.382 (3)C23—H230.9500
C7—H70.9500C24—C251.391 (4)
C9—C101.387 (4)C24—H240.9500
C9—C141.390 (3)C25—C261.385 (3)
C9—H90.9500C25—H250.9500
C10—C111.381 (4)
P1—Ni—P286.99 (2)C11—C10—C9120.4 (3)
P1—Ni—Cl189.13 (3)C11—C10—H10119.8
P2—Ni—Cl1175.09 (3)C9—C10—H10119.8
P1—Ni—Cl2170.87 (3)C12—C11—C10120.1 (3)
P2—Ni—Cl289.58 (3)C12—C11—H11119.9
Cl1—Ni—Cl294.69 (3)C10—C11—H11119.9
C14—P1—C8108.04 (11)C13—C12—C11120.0 (2)
C14—P1—C1104.80 (11)C13—C12—H12120.0
C8—P1—C1105.82 (11)C11—C12—H12120.0
C14—P1—Ni114.40 (8)C12—C13—C14120.5 (2)
C8—P1—Ni115.43 (8)C12—C13—H13119.7
C1—P1—Ni107.48 (8)C14—C13—H13119.7
C26—P2—C20109.92 (11)C9—C14—C13119.2 (2)
C26—P2—C2102.24 (11)C9—C14—P1121.53 (19)
C20—P2—C2103.81 (11)C13—C14—P1119.26 (19)
C26—P2—Ni110.95 (8)C16—C15—C20119.6 (2)
C20—P2—Ni118.82 (8)C16—C15—H15120.2
C2—P2—Ni109.59 (8)C20—C15—H15120.2
C2—C1—P1106.75 (16)C17—C16—C15120.8 (3)
C2—C1—H1A110.4C17—C16—H16119.6
P1—C1—H1A110.4C15—C16—H16119.6
C2—C1—H1B110.4C16—C17—C18120.0 (3)
P1—C1—H1B110.4C16—C17—H17120.0
H1A—C1—H1B108.6C18—C17—H17120.0
C1—C2—P2106.37 (16)C17—C18—C19119.8 (2)
C1—C2—H2A110.5C17—C18—H18120.1
P2—C2—H2A110.5C19—C18—H18120.1
C1—C2—H2B110.5C20—C19—C18120.7 (3)
P2—C2—H2B110.5C20—C19—H19119.7
H2A—C2—H2B108.6C18—C19—H19119.7
C8—C3—C4119.9 (2)C19—C20—C15118.9 (2)
C8—C3—H3120.1C19—C20—P2119.7 (2)
C4—C3—H3120.1C15—C20—P2121.12 (19)
C5—C4—C3120.1 (3)C22—C21—C26120.5 (2)
C5—C4—H4119.9C22—C21—H21119.8
C3—C4—H4119.9C26—C21—H21119.8
C6—C5—C4120.5 (2)C23—C22—C21120.3 (3)
C6—C5—H5119.7C23—C22—H22119.8
C4—C5—H5119.7C21—C22—H22119.8
C5—C6—C7119.9 (3)C24—C23—C22120.1 (2)
C5—C6—H6120.1C24—C23—H23120.0
C7—C6—H6120.1C22—C23—H23120.0
C8—C7—C6120.2 (2)C23—C24—C25120.1 (3)
C8—C7—H7119.9C23—C24—H24119.9
C6—C7—H7119.9C25—C24—H24119.9
C7—C8—C3119.4 (2)C26—C25—C24120.3 (2)
C7—C8—P1120.48 (19)C26—C25—H25119.9
C3—C8—P1120.16 (18)C24—C25—H25119.9
C10—C9—C14119.8 (2)C25—C26—C21118.7 (2)
C10—C9—H9120.1C25—C26—P2121.32 (19)
C14—C9—H9120.1C21—C26—P2119.72 (18)
P2—Ni—P1—C14133.90 (9)C10—C9—C14—P1178.8 (2)
Cl1—Ni—P1—C1449.11 (9)C12—C13—C14—C92.4 (4)
P2—Ni—P1—C899.80 (9)C12—C13—C14—P1179.79 (19)
Cl1—Ni—P1—C877.19 (9)C8—P1—C14—C913.5 (2)
P2—Ni—P1—C117.99 (9)C1—P1—C14—C9126.0 (2)
Cl1—Ni—P1—C1165.02 (9)Ni—P1—C14—C9116.57 (19)
P1—Ni—P2—C26105.03 (9)C8—P1—C14—C13169.21 (19)
Cl2—Ni—P2—C2666.50 (9)C1—P1—C14—C1356.7 (2)
P1—Ni—P2—C20126.14 (9)Ni—P1—C14—C1360.7 (2)
Cl2—Ni—P2—C2062.33 (9)C20—C15—C16—C170.9 (4)
P1—Ni—P2—C27.13 (9)C15—C16—C17—C180.3 (4)
Cl2—Ni—P2—C2178.66 (9)C16—C17—C18—C190.2 (4)
C14—P1—C1—C2167.27 (16)C17—C18—C19—C201.2 (4)
C8—P1—C1—C278.67 (18)C18—C19—C20—C152.4 (4)
Ni—P1—C1—C245.18 (17)C18—C19—C20—P2176.75 (19)
P1—C1—C2—P249.90 (18)C16—C15—C20—C192.2 (4)
C26—P2—C2—C181.44 (17)C16—C15—C20—P2176.5 (2)
C20—P2—C2—C1164.21 (16)C26—P2—C20—C1976.5 (2)
Ni—P2—C2—C136.30 (17)C2—P2—C20—C1932.3 (2)
C8—C3—C4—C50.5 (4)Ni—P2—C20—C19154.24 (17)
C3—C4—C5—C61.2 (4)C26—P2—C20—C15109.3 (2)
C4—C5—C6—C70.5 (4)C2—P2—C20—C15142.0 (2)
C5—C6—C7—C80.9 (4)Ni—P2—C20—C1520.0 (2)
C6—C7—C8—C31.5 (4)C26—C21—C22—C230.7 (4)
C6—C7—C8—P1178.7 (2)C21—C22—C23—C242.1 (4)
C4—C3—C8—C70.9 (4)C22—C23—C24—C252.0 (5)
C4—C3—C8—P1179.4 (2)C23—C24—C25—C260.5 (4)
C14—P1—C8—C797.8 (2)C24—C25—C26—C211.0 (4)
C1—P1—C8—C7150.4 (2)C24—C25—C26—P2174.9 (2)
Ni—P1—C8—C731.7 (2)C22—C21—C26—C250.9 (4)
C14—P1—C8—C382.4 (2)C22—C21—C26—P2174.9 (2)
C1—P1—C8—C329.4 (2)C20—P2—C26—C2546.3 (2)
Ni—P1—C8—C3148.08 (19)C2—P2—C26—C2563.5 (2)
C14—C9—C10—C110.1 (4)Ni—P2—C26—C25179.76 (19)
C9—C10—C11—C120.6 (4)C20—P2—C26—C21139.8 (2)
C10—C11—C12—C130.3 (4)C2—P2—C26—C21110.4 (2)
C11—C12—C13—C141.8 (4)Ni—P2—C26—C216.4 (2)
C10—C9—C14—C131.5 (4)

Experimental details

C(150)C(293)A(150)
Crystal data
Chemical formula[NiCl2(C26H24P2)][NiCl2(C26H24P2)][NiCl2(C26H24P2)]
Mr528.0528.0528.0
Crystal system, space groupMonoclinic, I2Monoclinic, I2Monoclinic, P21/c
Temperature (K)150293150
a, b, c (Å)12.4551 (14), 7.9901 (8), 13.0350 (19)12.5688 (15), 8.0208 (8), 13.0871 (9)11.2779 (3), 13.3386 (4), 15.8739 (5)
β (°) 105.983 (5) 105.531 (4) 98.7953 (16)
V3)1247.1 (3)1271.2 (2)2359.85 (12)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.131.111.20
Crystal size (mm)0.20 × 0.03 × 0.030.35 × 0.07 × 0.050.20 × 0.15 × 0.10
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.887, 0.9990.896, 0.9550.706, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
5686, 2686, 1946 4976, 2861, 1576 9650, 5198, 4070
Rint0.0640.0500.042
(sin θ/λ)max1)0.6500.7060.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.04 0.049, 0.100, 0.95 0.042, 0.117, 1.06
No. of reflections268628615198
No. of parameters141141280
No. of restraints110
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.580.27, 0.340.71, 0.54
Absolute structure(Flack, 1983)(Flack, 1983)?
Absolute structure parameter0.01 (2)0.01 (2)?

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for C(150) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cli0.992.693.556 (4)147
C12—H12···Clii0.952.743.664 (6)166
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) for C(293) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cli0.972.733.570 (4)145
C12—H12···Clii0.932.803.714 (8)168
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2.
Selected bond lengths and angles (Å and °) for A, B and C. top
AA'A(150)BC(293)C(150)
Ni—Cl2.199 (2)2.1990 (6)2.2002 (4)2.2003 (11)2.1999 (14)2.0254 (13)
Ni—P2.154 (2)2.1524 (6)2.1493 (5)2.1507 (11)2.1340 (15)2.1346 (13)
P—C11.837 (5)1.832 (2)1.8340 (14)1.834 (4)1.833 (4)1.836 (4)
P—C21.814 (4)1.820 (2)1.8200 (14)1.808 (3)1.800 (4)1.800 (4)
P—C81.818 (4)1.816 (2)1.8150 (14)1.811 (3)1.792 (6)1.804 (4)
C1—C1i1.516 (11)1.508 (3)1.515 (3)1.523 (7)1.400 (11)1.413 (10)
Ni—P—C1108.3 (2)108.33 (6)108.54 (6)109.27 (12)108.68 (15)108.77 (16)
Ni—P—C2113.34 (13)113.50 (6)113.19 (6)110.98 (12)112.12 (19)111.42 (17)
Ni—P—C8116.66 (13)116.81 (6)116.61 (6)119.43 (12)116.12 (16)116.05 (15)
Cl—Ni—Cli94.60 (9)94.59 (3)94.69 (3)95.47 (4)96.51 (8)97.45 (7)
Cl—Ni—P89.29 (6)89.32 (2)89.36 (2)88.84 (4)88.13 (4)87.78 (4)
Cl—Ni—Pi173.18 (8)173.13 (3)172.98 (2)175.12 (5)174.60 (7)173.87 (6)
P—Ni—Pi87.24 (10)87.18 (3)86.99 (2)86.93 (4)87.38 (8)87.18 (7)
C1—P—C2103.8 (2)104.00 (9)104.03 (8)104.85 (14)105.5 (3)105.9 (2)
C1—P—C8104.5 (2)104.71 (8)104.30 (8)104.80 (14)105.7 (3)106.0 (2)
C2—P—C8109.0 (2)108.30 (8)108.98 (8)106.35 (14)108.0 (2)108.1 (2)
P—C1—C1i106.8 (3)107.08 (14)106.56 (11)107.0 (2)110.7 (3)109.9 (3)
P-C1-C1i-Pi49.6 (6)49.3 (2)49.90 (18)47.8 (4)40.6 (8)-42.7 (6)
The bond and angle designations are those appropriate for the symmetric molecules of C (symmetry operation i: -x,y,-z) and therefore data for A (PIFDUD: Busby et al., 1993), A' (PIFDUD01: Davies et al., 1998), A(150) (this work) and B (FUJXUD: Spek et al., 1987) are for the most part given as pairwise mean values with su's adjusted accordingly. For all except A(150), C(293) and C(150) PLATON (Spek, 1990) was used to compute distances and angles from cif data from the Cambridge structural database.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds