Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C23H23NO2SSi, at 100 K adopts a boat conformation which brings the C—H bond of an axial phenyl substituent into proximity [C...N = 3.376 (1) Å] with the aziridine lone pair. The factors which favour this conformation for bi­cyclo­[3.1.0]­hexane systems are considered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015638/gg1028sup1.cif
Contains datablocks global, I, km1600, km2099

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015638/gg1028Isup2.hkl
Contains datablock I

CCDC references: 158280; 158281; 158282

Comment top

While developing synthetic routes to novel amino acids and other compounds of biological interest, we have prepared and characterized the bicyclic compound 3,3-diphenyl-6-(p-toluenesulfonyl)-6-aza-3-silabicyclo[3.1.0]hexane, (I). The most striking structural feature revealed by our X-ray analysis is the boat conformation adopted by the bridged six-membered Si1/C1/C2/N1/C3/C4 ring (Fig. 1). This conformation places the aziridine system of (I) in a sterically hindered environment and we therefore offer some comments on the factors which favour its adoption.

The torsion angles in (I) (Table 1) indicate that the sequence of four carbon atoms C1–C4 is essentially planar. Atoms N1 and Si1 lie on the same side of the plane defined by these four C atoms so that it makes dihedral angles of 77.9 (1) and 12.5 (1)° with the C2/C3/N1 and Si1/C1/C4 flaps, respectively. The aziridine ring is thus almost normal to the rather flat envelope-shaped silacyclopentane ring. Excluding the N-tosyl substituent, the molecule has approximate Cs symmetry; the mirror plane passes through Si1, N1 and the midpoint of C2—C3, nearly coincides with the plane of the axial phenyl group attached to Si1 and is normal to the equatorial phenyl group. Exact Cs symmetry would lead to C26—C21—Si1—C11 and C21—Si1—C11—C12 torsion angles of 0 and 90°; the observed values in the structure are 4.90 (9) and 93.70 (9)°. The adoption of this conformation orients the C22—H22 bond of the axial phenyl group almost directly towards N1; the resulting H···N contact (Table 2) is 2.59 (2) Å, decreasing to 2.47 Å if the C—H bond is normalized to its neutron diffraction value (Jeffrey & Lewis, 1978; Taylor & Kennard, 1983). Although this contact is substantially shorter than 2.75 Å, the sum of the Bondi (1964) contact radii for H and N, its interpretation as a weak hydrogen bond still appears controversial (Mascal, 1998; Jeffrey, 1997).

To the best of our knowledge, (I) is the first silabicyclohexane derivative to be structurally characterized. However, more than 20 years ago, Morris and co-workers (1977) showed by X-ray analysis that the bicyclo[3.1.0]hexane derivative (II) with R = C(O)NHNCMe2 adopts the boat conformation despite an unfavourable αδ interaction. These authors argued that the boat form was energetically preferable to the chair conformer which would have eclipsed H—C—C—H arrangements across the Cβ—Cγ bonds and two unfavourable βδ interactions. Mastryukov et al. (1977) showed by electron diffraction and microwave spectroscopy that the parent hydrocarbon bicyclo[3.1.0]hexane (II) with R = H, also prefers the boat conformation. The current version of the Cambridge Structural Database (CSD; Allen & Kennard, 1993) contains results for 47 bicyclic compounds of types (II), (III) or (IV) (see Scheme). The puckering parameters (Cremer & Pople, 1975; Boeyens, 1978) for the bridged six-membered rings indicate that two well defined conformations represent this population: 37 molecules (including all ten epoxides and the single aziridine) have puckering parameters centred on a point in conformational space [Q = 1.03 Å, θ = 71 and ϕ = 180°] which defines a ring intermediate between the ideal boat (θ = 90 and ϕ = 180°) and envelope (θ = 55 and ϕ = 180°) transition state between boat and chair. Compound (I), with Q = 1.061 (1) Å, θ = 69.0 (1) and ϕ = 179.4 (1)°, clearly belongs to this conformational type. The remaining eight molecules have puckering parameters close to Q = 0.80 Å, θ = 33 and ϕ = 180°, and a conformation intermediate between envelope (θ = 55°) and chair (θ = 0°); all these molecules have at least three non-H substituents distributed over the Cα and Cδ ring atoms. This analysis indicates that the boat forms of (II)–(IV) are more stable than the corresponding chairs for the reasons given by Morris et al. (1977). Chair conformations are adopted only to relieve severe steric crowding of bulky substituents on the α and δ ring atoms. Compound (I) retains the boat conformation despite the resultant crowding of the aziridine group. We are planning further studies to see whether crowding lessens the reactivity of these systems.

In (I), C2—C3 [1.4979 (14) Å] is a little shorter than the adjacent C1—C2 and C3—C4 bonds [mean 1.5153 (11) Å], and the same trend is found in the 47 related molecules present in the CSD for which the corresponding mean values are 1.495 (3) and 1.512 (3) Å. This may reflect a substituent-induced shortening of the distal bonds of the three-membered rings of the type discussed by Allen (1980). Nonetheless, Mastryukov et al. (1977) pointed out that the Cγ—Cγ bond shared by the three- and five-membered rings of bicyclo[3.1.0]hexane, where no substituent effects are to be expected, is also unusually short [1.454 (9) Å]. The remaining bond lengths in (I) are unexceptional, although the S—O, S—N and N—C bonds are slightly longer than the corresponding mean values from the CSD [1.430, 1.642 and 1.472 Å, respectively; Allen et al., 1992].

Molecules of (I) interact mainly through C—H···O contacts; those with C—H···X > 120° and H···X < 2.60 Å are listed in Table 2 as potential hydrogen bonds. The intermolecular contacts involve only O1; the O2 atom is less available for such interactions because it is eclipsed by both C3 and C36 [C3—N1—S1—O2 = 3.43 (9)° and C36—C31—S1—O2 = -10.55 (10)°]. Distortions in bond angles involving S1 and N1 help to relieve the resulting overcrowding [e.g. cf. N1—S1—O2 111.86 (4)° and N1—S1—O1 105.65 (5)°].

Finally, we note that the structure of (I) at 295 K, determined from two data sets measured at normal resolution [to θ(Mo Kα) > 27°] on CCD and serial diffractometers, is essentially the same as that described here, except that the mean S—O bond length at 295 K (1.432 Å) agrees better with the value suggested by Allen et al. (1992). The results of the analyses of (I) at 295 K are included in the data deposited with this paper.

Experimental top

Reaction of diphenyldichlorosilane with magnesium and butadiene yields a silacyclopentene (see Scheme) which is thought to be formed via a diphenylsilylene intermediate (Mignani et al., 1995). Direct aziridination of its double bond using the protocol of Jeong et al. (1998), which involves reaction with chloramine-T in the presence of phenyltrimethylammonium tribromide (PTAB), produced the title compound (m.p. 370 K), which was characterized using IR, NMR and MS. νmax (KBr)/cm-1 3434, 3067, 3046, 3014, 2949, 2911, 1597, 1486, 1428, 1395, 1358, 1317, 1209, 1181, 1159, 807. δH (CDCl3, 400 MHz): 1.34 (2H, d, J = 16 Hz), 1.55 (2H, d, J = 16 Hz), 2.35 (3H, s), 3.42 (2H, s), 7.19–7.62 (14H, m, aryl H). δC (CDCl3, 100 MHz): 14.6 (2 C), 22.0, 46.9 (2 C), 127.9, 128.1, 128.5, 129.8, 129.9, 130.2, 134.9, 135.0, 135.1, 135.8, 136.6, 144.4. m/z (EI): 406.1 (MH+, 84%), 352 (100), 328 (76), 250 (63), 222 (17), 105 (7).

Refinement top

H atoms were refined freely [C—H 0.924 (17)–1.000 (18) Å], except for those attached to the C37 methyl group, which was defined as a riding rigid group and only its orientation was refined.

Computing details top

Data collection: SCALEPACK and DENZO (Otwinowski & Minor, 1997) for (I); Collect (Nonius BV, 1997-2000) for km1600; CAD-4 EXPRESS (Enraf Nonius, 1994) for km2099. Cell refinement: SCALEPACK and DENZO for (I); HKL SCALEPACK (Otwinowski & Minor 1997) for km1600; CAD-4 EXPRESS (Enraf Nonius, 1994) for km2099. Data reduction: SCALEPACK and DENZO for (I); HKL DENZO and SCALEPACK (Otwinowski & Minor 19 for km1600; XCAD4 (Harms & Wocadlo, 1995) for km2099. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 for km1600; SHELXS97 (Sheldrick, 1990) for km2099. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997) for (I); ORTEP-3 for Windows (Farrugia, 1997) for km1600; ORTEP (Farrugia, 1997) for km2099. Software used to prepare material for publication: WinGX (Farrugia, 1999) for (I), km2099; WinGX publication routines (Farrugia, 1999) for km1600.

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms are shown as spheres of arbitrary radii.
(I) top
Crystal data top
C23H23NO2SSiDx = 1.277 Mg m3
Mr = 405.57Melting point: 370 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2955 (1) ÅCell parameters from 39587 reflections
b = 8.6076 (1) Åθ = 1–35°
c = 26.5354 (3) ŵ = 0.23 mm1
β = 96.440 (1)°T = 100 K
V = 2109.75 (4) Å3Block, colourless
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 856
Data collection top
KappaCCD
diffractometer
Rint = 0.039
ϕ scans and ω scans with κ offsetsθmax = 34.9°, θmin = 3.1°
26689 measured reflectionsh = 1414
8784 independent reflectionsk = 1311
7613 reflections with I > 2σ(I)l = 4040
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.790P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.47 e Å3
8784 reflectionsΔρmin = 0.45 e Å3
334 parameters
Crystal data top
C23H23NO2SSiV = 2109.75 (4) Å3
Mr = 405.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2955 (1) ŵ = 0.23 mm1
b = 8.6076 (1) ÅT = 100 K
c = 26.5354 (3) Å0.3 × 0.2 × 0.2 mm
β = 96.440 (1)°
Data collection top
KappaCCD
diffractometer
7613 reflections with I > 2σ(I)
26689 measured reflectionsRint = 0.039
8784 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
8784 reflectionsΔρmin = 0.45 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17835 (3)0.72377 (3)0.468274 (9)0.01617 (6)
Si10.12849 (3)0.73784 (3)0.339713 (9)0.01329 (6)
O10.08123 (9)0.74901 (9)0.51374 (3)0.02183 (15)
O20.27101 (9)0.58909 (9)0.46584 (3)0.02511 (16)
N10.07549 (9)0.72718 (9)0.42104 (3)0.01459 (13)
C10.17628 (10)0.65441 (11)0.40578 (4)0.01660 (15)
C20.03313 (10)0.59885 (11)0.42143 (3)0.01590 (15)
C30.09409 (10)0.60350 (11)0.38147 (3)0.01649 (15)
C40.06377 (10)0.66007 (12)0.32962 (3)0.01671 (16)
C110.24623 (10)0.65632 (11)0.29318 (4)0.01629 (15)
C120.39053 (11)0.61592 (15)0.30814 (4)0.0241 (2)
C130.47786 (13)0.55497 (19)0.27360 (5)0.0327 (3)
C140.42237 (13)0.53479 (17)0.22310 (5)0.0299 (2)
C150.27992 (12)0.57465 (17)0.20743 (4)0.0278 (2)
C160.19275 (11)0.63426 (14)0.24231 (4)0.02286 (19)
C210.13592 (10)0.95457 (11)0.33727 (3)0.01501 (15)
C220.06531 (11)1.04575 (11)0.37085 (4)0.01830 (16)
C230.06796 (13)1.20713 (12)0.36832 (4)0.02196 (19)
C240.14396 (13)1.28043 (12)0.33273 (4)0.02280 (19)
C250.21691 (12)1.19286 (12)0.29971 (4)0.02075 (18)
C260.21116 (10)1.03123 (12)0.30164 (4)0.01755 (16)
C310.28420 (10)0.89115 (11)0.45552 (3)0.01601 (15)
C320.21949 (10)1.03607 (12)0.46449 (4)0.01798 (16)
C330.30174 (11)1.16967 (12)0.45460 (4)0.01966 (17)
C340.44848 (11)1.15999 (13)0.43590 (4)0.02177 (18)
C350.51108 (12)1.01351 (15)0.42755 (4)0.0254 (2)
C360.43020 (11)0.87854 (13)0.43712 (4)0.02209 (18)
C370.53640 (14)1.30571 (16)0.42543 (5)0.0327 (3)
H37A0.53651.33490.38970.049*
H37B0.49391.38990.44710.049*
H37C0.6361.28710.43270.049*
H1A0.2408 (17)0.5665 (19)0.4061 (6)0.025 (4)*
H1B0.2211 (19)0.728 (2)0.4305 (7)0.032 (4)*
H20.0281 (16)0.5242 (19)0.4482 (6)0.023 (4)*
H30.1733 (16)0.5309 (18)0.3848 (6)0.022 (4)*
H4A0.139 (2)0.738 (2)0.3165 (7)0.034 (5)*
H4B0.0687 (17)0.5723 (19)0.3058 (6)0.024 (4)*
H120.4321 (19)0.630 (2)0.3439 (7)0.034 (4)*
H130.575 (2)0.518 (2)0.2855 (7)0.047 (5)*
H140.4838 (18)0.488 (2)0.1992 (6)0.030 (4)*
H150.2460 (19)0.563 (2)0.1731 (7)0.035 (4)*
H160.096 (2)0.662 (2)0.2319 (7)0.038 (5)*
H220.0151 (18)0.996 (2)0.3943 (6)0.028 (4)*
H230.015 (2)1.266 (2)0.3905 (7)0.035 (5)*
H240.1464 (19)1.394 (2)0.3307 (7)0.038 (5)*
H250.2742 (19)1.2443 (19)0.2754 (7)0.031 (4)*
H260.2602 (18)0.9671 (19)0.2775 (6)0.028 (4)*
H320.1190 (18)1.044 (2)0.4780 (6)0.030 (4)*
H330.2565 (18)1.2705 (19)0.4593 (6)0.025 (4)*
H350.610 (2)1.008 (2)0.4167 (7)0.042 (5)*
H360.476 (2)0.774 (2)0.4309 (7)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02066 (11)0.01363 (10)0.01537 (10)0.00007 (7)0.00708 (7)0.00102 (7)
Si10.01555 (11)0.01197 (11)0.01277 (11)0.00153 (8)0.00341 (8)0.00025 (7)
O10.0286 (4)0.0230 (4)0.0142 (3)0.0054 (3)0.0038 (3)0.0017 (2)
O20.0306 (4)0.0162 (3)0.0315 (4)0.0050 (3)0.0163 (3)0.0003 (3)
N10.0176 (3)0.0128 (3)0.0140 (3)0.0003 (2)0.0047 (2)0.0000 (2)
C10.0177 (4)0.0169 (4)0.0153 (4)0.0040 (3)0.0023 (3)0.0011 (3)
C20.0212 (4)0.0121 (3)0.0150 (3)0.0027 (3)0.0048 (3)0.0019 (3)
C30.0199 (4)0.0140 (4)0.0163 (4)0.0022 (3)0.0054 (3)0.0021 (3)
C40.0182 (4)0.0186 (4)0.0135 (3)0.0006 (3)0.0026 (3)0.0016 (3)
C110.0178 (4)0.0150 (4)0.0169 (4)0.0008 (3)0.0055 (3)0.0005 (3)
C120.0194 (4)0.0336 (6)0.0198 (4)0.0040 (4)0.0049 (3)0.0019 (4)
C130.0193 (4)0.0525 (8)0.0273 (5)0.0086 (5)0.0072 (4)0.0055 (5)
C140.0232 (5)0.0420 (7)0.0266 (5)0.0016 (4)0.0117 (4)0.0097 (5)
C150.0232 (5)0.0413 (6)0.0200 (4)0.0005 (4)0.0070 (3)0.0092 (4)
C160.0195 (4)0.0319 (5)0.0178 (4)0.0031 (4)0.0048 (3)0.0039 (4)
C210.0180 (4)0.0130 (3)0.0142 (3)0.0002 (3)0.0024 (3)0.0007 (3)
C220.0269 (4)0.0131 (4)0.0156 (4)0.0011 (3)0.0057 (3)0.0002 (3)
C230.0347 (5)0.0136 (4)0.0179 (4)0.0014 (4)0.0049 (4)0.0019 (3)
C240.0347 (5)0.0135 (4)0.0197 (4)0.0044 (4)0.0006 (4)0.0006 (3)
C250.0259 (4)0.0172 (4)0.0192 (4)0.0054 (3)0.0026 (3)0.0029 (3)
C260.0189 (4)0.0171 (4)0.0172 (4)0.0015 (3)0.0044 (3)0.0014 (3)
C310.0170 (4)0.0157 (4)0.0160 (4)0.0000 (3)0.0046 (3)0.0018 (3)
C320.0155 (4)0.0166 (4)0.0217 (4)0.0004 (3)0.0015 (3)0.0009 (3)
C330.0200 (4)0.0167 (4)0.0222 (4)0.0015 (3)0.0020 (3)0.0003 (3)
C340.0203 (4)0.0241 (5)0.0207 (4)0.0053 (4)0.0011 (3)0.0003 (3)
C350.0173 (4)0.0290 (5)0.0287 (5)0.0005 (4)0.0025 (3)0.0031 (4)
C360.0189 (4)0.0229 (5)0.0244 (4)0.0030 (3)0.0019 (3)0.0051 (4)
C370.0278 (5)0.0297 (6)0.0393 (6)0.0118 (5)0.0018 (5)0.0036 (5)
Geometric parameters (Å, º) top
S1—O11.4399 (8)C15—H150.936 (18)
S1—O21.4413 (8)C16—H160.944 (18)
S1—N11.6597 (8)C21—C261.4024 (13)
S1—C311.7561 (10)C21—C221.4043 (13)
Si1—C111.8756 (9)C22—C231.3910 (14)
Si1—C211.8682 (10)C22—H220.924 (17)
Si1—C11.9004 (10)C23—C241.3924 (15)
Si1—C41.8991 (10)C23—H230.954 (19)
N1—C21.4958 (12)C24—C251.3889 (16)
N1—C31.4918 (12)C24—H240.98 (2)
C1—C21.5153 (13)C25—C261.3935 (14)
C1—H1A0.965 (16)C25—H250.986 (18)
C1—H1B0.971 (18)C26—H260.994 (17)
C2—C31.4979 (14)C31—C321.3938 (13)
C2—H20.962 (16)C31—C361.3941 (14)
C3—C41.5153 (13)C32—C331.3895 (14)
C3—H30.978 (16)C32—H320.965 (17)
C4—H4A1.000 (18)C33—C341.4008 (15)
C4—H4B0.983 (16)C33—H330.966 (16)
C11—C161.3982 (14)C34—C351.3959 (17)
C11—C121.3993 (14)C34—C371.5058 (16)
C12—C131.3934 (15)C35—C361.3916 (16)
C12—H120.991 (18)C35—H350.937 (19)
C13—C141.3916 (18)C36—H360.998 (18)
C13—H130.97 (2)C37—H37A0.98
C14—C151.3859 (17)C37—H37B0.98
C14—H140.986 (17)C37—H37C0.98
C15—C161.3946 (14)
O1—S1—O2118.31 (5)C13—C14—H14119.5 (10)
O1—S1—N1105.65 (5)C14—C15—C16119.91 (10)
O2—S1—N1111.86 (4)C14—C15—H15118.2 (11)
O1—S1—C31108.83 (5)C16—C15—H15121.9 (11)
O2—S1—C31109.40 (5)C15—C16—C11121.38 (10)
N1—S1—C31101.40 (4)C15—C16—H16120.5 (11)
C11—Si1—C1111.88 (4)C11—C16—H16118.1 (11)
C21—Si1—C1113.80 (4)C26—C21—C22117.95 (9)
C11—Si1—C4112.63 (4)C26—C21—Si1121.09 (7)
C21—Si1—C4112.64 (4)C22—C21—Si1120.96 (7)
C21—Si1—C11108.92 (4)C23—C22—C21121.03 (9)
C1—Si1—C496.65 (4)C23—C22—H22120.5 (11)
C3—N1—C260.18 (6)C21—C22—H22118.5 (11)
C2—N1—S1115.30 (6)C22—C23—C24119.89 (10)
C3—N1—S1119.20 (6)C22—C23—H23119.3 (11)
C2—C1—Si1104.51 (6)C24—C23—H23120.8 (11)
C2—C1—H1A108.3 (10)C25—C24—C23120.18 (10)
Si1—C1—H1A112.6 (9)C25—C24—H24119.3 (11)
C2—C1—H1B110.1 (11)C23—C24—H24120.5 (11)
Si1—C1—H1B114.5 (10)C24—C25—C26119.68 (9)
H1A—C1—H1B106.6 (13)C24—C25—H25120.4 (10)
N1—C2—C359.78 (6)C26—C25—H25119.9 (10)
N1—C2—C1112.20 (7)C25—C26—C21121.25 (9)
C1—C2—C3116.44 (8)C25—C26—H26120.6 (10)
N1—C2—H2114.2 (9)C21—C26—H26118.1 (10)
C3—C2—H2116.1 (9)C32—C31—C36120.94 (9)
C1—C2—H2122.0 (9)C32—C31—S1118.66 (7)
N1—C3—C260.04 (6)C36—C31—S1120.40 (8)
N1—C3—C4113.02 (8)C33—C32—C31119.38 (9)
C2—C3—C4116.04 (8)C33—C32—H32119.9 (11)
N1—C3—H3114.9 (9)C31—C32—H32120.7 (10)
C2—C3—H3117.5 (9)C32—C33—C34120.73 (10)
C4—C3—H3120.5 (9)C32—C33—H33119.8 (10)
C3—C4—Si1104.67 (6)C34—C33—H33119.5 (10)
C3—C4—H4A109.7 (11)C35—C34—C33118.82 (10)
Si1—C4—H4A114.8 (10)C35—C34—C37121.01 (10)
C3—C4—H4B109.7 (9)C33—C34—C37120.17 (11)
Si1—C4—H4B109.7 (9)C36—C35—C34121.20 (10)
H4A—C4—H4B108.1 (14)C36—C35—H35120.4 (12)
C16—C11—C12117.76 (9)C34—C35—H35118.4 (12)
C16—C11—Si1121.06 (7)C35—C36—C31118.92 (10)
C12—C11—Si1121.18 (7)C35—C36—H36120.6 (10)
C13—C12—C11121.17 (10)C31—C36—H36120.5 (10)
C13—C12—H12118.9 (10)C34—C37—H37A109.5
C11—C12—H12119.9 (10)C34—C37—H37B109.5
C14—C13—C12120.00 (11)H37A—C37—H37B109.5
C14—C13—H13120.1 (12)C34—C37—H37C109.5
C12—C13—H13119.7 (12)H37A—C37—H37C109.5
C15—C14—C13119.77 (10)H37B—C37—H37C109.5
C15—C14—H14120.7 (10)
O1—S1—N1—C3133.46 (7)C13—C14—C15—C160.2 (2)
O2—S1—N1—C33.43 (9)C14—C15—C16—C110.5 (2)
C31—S1—N1—C3113.06 (7)C12—C11—C16—C150.26 (17)
O1—S1—N1—C264.92 (7)Si1—C11—C16—C15179.58 (10)
O2—S1—N1—C265.10 (8)C11—Si1—C21—C264.90 (9)
C31—S1—N1—C2178.41 (7)C4—Si1—C21—C26120.80 (8)
C21—Si1—C1—C2107.11 (7)C1—Si1—C21—C26130.47 (8)
C11—Si1—C1—C2128.91 (6)C11—Si1—C21—C22175.58 (8)
C4—Si1—C1—C211.25 (7)C4—Si1—C21—C2258.72 (9)
S1—N1—C2—C3110.55 (7)C1—Si1—C21—C2250.01 (9)
C3—N1—C2—C1108.60 (9)C26—C21—C22—C231.02 (15)
S1—N1—C2—C1140.85 (7)Si1—C21—C22—C23178.51 (8)
Si1—C1—C2—N158.53 (8)C21—C22—C23—C241.31 (17)
Si1—C1—C2—C37.62 (9)C22—C23—C24—C250.11 (17)
S1—N1—C3—C2104.12 (7)C23—C24—C25—C261.35 (17)
C2—N1—C3—C4107.79 (9)C24—C25—C26—C211.64 (16)
S1—N1—C3—C4148.09 (7)C22—C21—C26—C250.46 (14)
C1—C2—C3—N1101.46 (9)Si1—C21—C26—C25179.99 (8)
N1—C2—C3—C4102.76 (9)O1—S1—C31—C3238.38 (9)
C1—C2—C3—C41.30 (12)O2—S1—C31—C32169.02 (7)
N1—C3—C4—Si157.16 (9)N1—S1—C31—C3272.70 (8)
C2—C3—C4—Si19.49 (10)O1—S1—C31—C36141.19 (8)
C21—Si1—C4—C3107.35 (7)O2—S1—C31—C3610.55 (10)
C11—Si1—C4—C3128.98 (6)N1—S1—C31—C36107.73 (8)
C1—Si1—C4—C311.92 (7)C36—C31—C32—C330.42 (15)
C21—Si1—C11—C1686.14 (9)S1—C31—C32—C33179.99 (8)
C4—Si1—C11—C1639.57 (10)C31—C32—C33—C340.15 (15)
C1—Si1—C11—C16147.18 (9)C32—C33—C34—C350.29 (16)
C21—Si1—C11—C1293.70 (9)C32—C33—C34—C37179.90 (10)
C4—Si1—C11—C12140.59 (9)C33—C34—C35—C360.47 (17)
C1—Si1—C11—C1232.98 (10)C37—C34—C35—C36179.93 (11)
C16—C11—C12—C130.33 (18)C34—C35—C36—C310.20 (17)
Si1—C11—C12—C13179.83 (11)C32—C31—C36—C350.25 (15)
C11—C12—C13—C140.7 (2)S1—C31—C36—C35179.81 (8)
C12—C13—C14—C150.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N10.92 (2)2.59 (2)3.376 (1)143 (1)
C2—H2···O1i0.96 (2)2.59 (2)3.457 (1)151 (1)
C32—H32···O1ii0.97 (2)2.57 (2)3.348 (1)138 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
(km1600) top
Crystal data top
C23H23NO2SSiF(000) = 856
Mr = 405.57Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4105 (2) ÅCell parameters from 21783 reflections
b = 8.6979 (1) Åθ = 1.0–27.5°
c = 26.7515 (5) ŵ = 0.22 mm1
β = 95.993 (1)°T = 293 K
V = 2177.69 (7) Å3Block, colourless
Z = 40.35 × 0.3 × 0.3 mm
Data collection top
KappaCCD
diffractometer
Rint = 0.017
CCD scansθmax = 27.5°, θmin = 3.2°
8807 measured reflectionsh = 1212
4916 independent reflectionsk = 1111
3807 reflections with I > 2σ(I)l = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.066P)2 + 0.5368P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.25 e Å3
4916 reflectionsΔρmin = 0.38 e Å3
253 parameters
Crystal data top
C23H23NO2SSiV = 2177.69 (7) Å3
Mr = 405.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4105 (2) ŵ = 0.22 mm1
b = 8.6979 (1) ÅT = 293 K
c = 26.7515 (5) Å0.35 × 0.3 × 0.3 mm
β = 95.993 (1)°
Data collection top
KappaCCD
diffractometer
3807 reflections with I > 2σ(I)
8807 measured reflectionsRint = 0.017
4916 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
4916 reflectionsΔρmin = 0.38 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17530 (5)0.72294 (5)0.468052 (18)0.05611 (16)
Si10.12932 (5)0.73530 (5)0.340399 (17)0.04385 (14)
O10.08056 (17)0.74833 (17)0.51276 (5)0.0712 (4)
O20.26601 (18)0.59055 (17)0.46587 (7)0.0818 (5)
N10.07328 (15)0.72568 (16)0.42104 (5)0.0469 (3)
C10.17403 (19)0.6521 (2)0.40544 (7)0.0538 (4)
H1A0.24020.56680.40470.065*
H1B0.21640.72960.42840.065*
C20.0330 (2)0.59847 (19)0.42102 (7)0.0525 (4)
H20.03370.51950.44720.063*
C30.0914 (2)0.6044 (2)0.38175 (7)0.0526 (4)
H30.16820.52910.38340.063*
C40.06028 (19)0.6604 (2)0.33082 (7)0.0526 (4)
H4A0.1260.74150.31890.063*
H4B0.06830.5770.30660.063*
C110.24514 (19)0.6540 (2)0.29406 (7)0.0507 (4)
C120.3854 (2)0.6104 (3)0.30814 (9)0.0729 (6)
H120.42320.62210.34150.087*
C130.4704 (3)0.5501 (4)0.27386 (11)0.0988 (9)
H130.56370.52040.28440.119*
C140.4180 (3)0.5339 (4)0.22475 (11)0.0957 (9)
H140.47580.49480.20160.115*
C150.2808 (3)0.5752 (4)0.20956 (10)0.0881 (8)
H150.24450.56370.17610.106*
C160.1955 (2)0.6344 (3)0.24403 (8)0.0718 (6)
H160.10180.66180.23320.086*
C210.13833 (18)0.9496 (2)0.33789 (6)0.0471 (4)
C220.0701 (2)1.0402 (2)0.37110 (7)0.0609 (5)
H220.02190.9930.39560.073*
C230.0727 (3)1.1990 (2)0.36836 (8)0.0724 (6)
H230.02561.25760.39060.087*
C240.1449 (3)1.2697 (2)0.33283 (8)0.0707 (6)
H240.14641.37650.3310.085*
C250.2148 (2)1.1843 (2)0.30012 (8)0.0652 (5)
H250.26511.23290.27650.078*
C260.2104 (2)1.0253 (2)0.30231 (7)0.0558 (4)
H260.25660.96790.27950.067*
C310.27995 (18)0.8887 (2)0.45497 (7)0.0506 (4)
C320.2189 (2)1.0313 (2)0.46442 (8)0.0595 (5)
H320.12361.0390.47750.071*
C330.2988 (2)1.1618 (2)0.45460 (8)0.0631 (5)
H330.25671.25740.46110.076*
C340.4408 (2)1.1538 (3)0.43525 (8)0.0677 (5)
C350.5001 (2)1.0104 (3)0.42628 (10)0.0820 (7)
H350.59571.0030.41350.098*
C360.4220 (2)0.8775 (3)0.43566 (9)0.0723 (6)
H360.4640.78190.42910.087*
C370.5277 (3)1.2985 (4)0.42501 (14)0.1049 (9)
H37A0.51761.33420.39160.157*
H37B0.49431.37630.44890.157*
H37C0.62651.27710.42810.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0705 (3)0.0485 (3)0.0528 (3)0.0005 (2)0.0224 (2)0.00484 (19)
Si10.0501 (3)0.0385 (2)0.0438 (3)0.00471 (19)0.00893 (19)0.00103 (17)
O10.0934 (10)0.0772 (10)0.0434 (7)0.0179 (8)0.0094 (7)0.0070 (6)
O20.0985 (11)0.0542 (8)0.1015 (12)0.0149 (8)0.0518 (9)0.0028 (8)
N10.0557 (8)0.0411 (7)0.0455 (8)0.0010 (6)0.0133 (6)0.0017 (6)
C10.0576 (10)0.0520 (10)0.0518 (10)0.0120 (8)0.0056 (8)0.0041 (8)
C20.0727 (11)0.0371 (8)0.0492 (9)0.0086 (8)0.0134 (8)0.0068 (7)
C30.0618 (10)0.0430 (9)0.0550 (10)0.0077 (8)0.0149 (8)0.0043 (7)
C40.0581 (10)0.0538 (10)0.0459 (9)0.0017 (8)0.0048 (7)0.0050 (7)
C110.0543 (9)0.0430 (9)0.0567 (10)0.0024 (8)0.0150 (8)0.0003 (7)
C120.0602 (11)0.0918 (17)0.0685 (13)0.0079 (11)0.0160 (10)0.0012 (12)
C130.0622 (13)0.140 (3)0.098 (2)0.0236 (15)0.0270 (13)0.0062 (18)
C140.0751 (15)0.126 (2)0.0929 (19)0.0026 (15)0.0389 (14)0.0306 (17)
C150.0761 (15)0.125 (2)0.0667 (14)0.0081 (15)0.0230 (11)0.0300 (14)
C160.0605 (11)0.0960 (17)0.0603 (12)0.0059 (11)0.0134 (9)0.0142 (11)
C210.0545 (9)0.0405 (8)0.0463 (9)0.0003 (7)0.0056 (7)0.0014 (7)
C220.0893 (14)0.0440 (10)0.0527 (10)0.0024 (9)0.0225 (10)0.0009 (8)
C230.1133 (18)0.0432 (10)0.0630 (13)0.0050 (11)0.0194 (12)0.0061 (9)
C240.1068 (17)0.0395 (10)0.0646 (13)0.0091 (10)0.0033 (12)0.0014 (8)
C250.0811 (13)0.0542 (11)0.0606 (12)0.0158 (10)0.0083 (10)0.0110 (9)
C260.0620 (10)0.0525 (10)0.0542 (10)0.0032 (9)0.0125 (8)0.0018 (8)
C310.0517 (9)0.0527 (10)0.0488 (9)0.0013 (8)0.0112 (7)0.0038 (8)
C320.0492 (9)0.0569 (11)0.0716 (12)0.0007 (9)0.0021 (9)0.0052 (9)
C330.0622 (11)0.0539 (11)0.0725 (13)0.0027 (9)0.0038 (9)0.0024 (9)
C340.0613 (11)0.0749 (14)0.0664 (13)0.0137 (11)0.0046 (9)0.0035 (10)
C350.0521 (11)0.0976 (19)0.0926 (17)0.0007 (12)0.0106 (11)0.0033 (14)
C360.0617 (12)0.0724 (14)0.0817 (15)0.0117 (11)0.0025 (10)0.0134 (11)
C370.0871 (18)0.099 (2)0.125 (2)0.0359 (16)0.0058 (16)0.0161 (18)
Geometric parameters (Å, º) top
S1—O21.4310 (15)C13—C141.361 (4)
S1—O11.4323 (15)C14—C151.360 (4)
S1—N11.6602 (14)C15—C161.384 (3)
S1—C311.7602 (19)C21—C261.391 (2)
Si1—C211.8675 (18)C21—C221.393 (2)
Si1—C111.8728 (18)C22—C231.383 (3)
Si1—C11.8907 (18)C23—C241.371 (3)
Si1—C41.8917 (18)C24—C251.367 (3)
N1—C31.486 (2)C25—C261.385 (3)
N1—C21.491 (2)C31—C321.379 (3)
C1—C21.506 (3)C31—C361.385 (3)
C2—C31.490 (3)C32—C331.372 (3)
C3—C41.504 (2)C33—C341.384 (3)
C11—C161.381 (3)C34—C351.377 (3)
C11—C121.387 (3)C34—C371.511 (3)
C12—C131.382 (3)C35—C361.379 (3)
O2—S1—O1118.34 (10)C12—C11—Si1121.78 (15)
O2—S1—N1111.74 (8)C13—C12—C11121.6 (2)
O1—S1—N1105.76 (9)C14—C13—C12120.2 (2)
O2—S1—C31109.38 (10)C15—C14—C13119.9 (2)
O1—S1—C31109.04 (9)C14—C15—C16119.8 (2)
N1—S1—C31101.16 (8)C11—C16—C15122.0 (2)
C21—Si1—C11108.76 (8)C26—C21—C22117.32 (17)
C21—Si1—C1114.11 (8)C26—C21—Si1121.61 (13)
C11—Si1—C1112.06 (8)C22—C21—Si1121.06 (13)
C21—Si1—C4112.62 (8)C23—C22—C21121.25 (19)
C11—Si1—C4112.71 (8)C24—C23—C22119.8 (2)
C1—Si1—C496.26 (8)C25—C24—C23120.42 (19)
C3—N1—C260.06 (12)C24—C25—C26119.78 (19)
C3—N1—S1119.52 (11)C25—C26—C21121.36 (19)
C2—N1—S1115.49 (11)C32—C31—C36119.89 (18)
C2—C1—Si1104.80 (12)C32—C31—S1119.11 (14)
C3—C2—N159.80 (11)C36—C31—S1121.00 (15)
C3—C2—C1116.37 (15)C33—C32—C31119.99 (18)
N1—C2—C1112.37 (14)C32—C33—C34121.2 (2)
N1—C3—C260.14 (11)C35—C34—C33118.0 (2)
N1—C3—C4113.09 (14)C35—C34—C37121.4 (2)
C2—C3—C4115.91 (16)C33—C34—C37120.6 (2)
C3—C4—Si1105.01 (12)C34—C35—C36121.89 (19)
C16—C11—C12116.45 (18)C35—C36—C31119.0 (2)
C16—C11—Si1121.77 (14)
O2—S1—N1—C33.94 (16)C13—C14—C15—C160.4 (5)
O1—S1—N1—C3134.01 (13)C12—C11—C16—C150.3 (4)
C31—S1—N1—C3112.34 (14)Si1—C11—C16—C15179.6 (2)
O2—S1—N1—C264.63 (15)C14—C15—C16—C110.2 (4)
O1—S1—N1—C265.44 (14)C11—Si1—C21—C266.02 (17)
C31—S1—N1—C2179.09 (12)C1—Si1—C21—C26131.92 (15)
C21—Si1—C1—C2107.09 (13)C4—Si1—C21—C26119.67 (15)
C11—Si1—C1—C2128.75 (12)C11—Si1—C21—C22175.40 (15)
C4—Si1—C1—C211.14 (13)C1—Si1—C21—C2249.49 (18)
S1—N1—C2—C3110.82 (13)C4—Si1—C21—C2258.92 (17)
C3—N1—C2—C1108.43 (17)C26—C21—C22—C230.7 (3)
S1—N1—C2—C1140.75 (13)Si1—C21—C22—C23177.95 (18)
Si1—C1—C2—C37.61 (18)C21—C22—C23—C240.8 (4)
Si1—C1—C2—N158.61 (16)C22—C23—C24—C250.2 (4)
S1—N1—C3—C2104.16 (14)C23—C24—C25—C261.2 (3)
C2—N1—C3—C4107.63 (18)C24—C25—C26—C211.3 (3)
S1—N1—C3—C4148.21 (13)C22—C21—C26—C250.3 (3)
C1—C2—C3—N1101.70 (16)Si1—C21—C26—C25178.96 (16)
N1—C2—C3—C4102.94 (17)O2—S1—C31—C32167.62 (15)
C1—C2—C3—C41.2 (2)O1—S1—C31—C3236.78 (18)
N1—C3—C4—Si157.37 (17)N1—S1—C31—C3274.37 (16)
C2—C3—C4—Si19.38 (18)O2—S1—C31—C3612.1 (2)
C21—Si1—C4—C3107.61 (13)O1—S1—C31—C36142.93 (17)
C11—Si1—C4—C3128.88 (12)N1—S1—C31—C36105.91 (17)
C1—Si1—C4—C311.79 (14)C36—C31—C32—C330.1 (3)
C21—Si1—C11—C1685.08 (18)S1—C31—C32—C33179.84 (16)
C1—Si1—C11—C16147.83 (18)C31—C32—C33—C340.1 (3)
C4—Si1—C11—C1640.5 (2)C32—C33—C34—C350.3 (3)
C21—Si1—C11—C1294.80 (18)C32—C33—C34—C37179.5 (2)
C1—Si1—C11—C1232.3 (2)C33—C34—C35—C360.5 (4)
C4—Si1—C11—C12139.57 (17)C37—C34—C35—C36179.7 (3)
C16—C11—C12—C130.3 (4)C34—C35—C36—C310.4 (4)
Si1—C11—C12—C13179.8 (2)C32—C31—C36—C350.1 (3)
C11—C12—C13—C140.9 (5)S1—C31—C36—C35179.60 (19)
C12—C13—C14—C151.0 (5)
(km2099) top
Crystal data top
C23H23NO2SSiF(000) = 856
Mr = 405.57Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4106 (6) ÅCell parameters from 25 reflections
b = 8.6993 (3) Åθ = 9.7–21.5°
c = 26.7493 (16) ŵ = 0.22 mm1
β = 96.000 (5)°T = 293 K
V = 2177.9 (2) Å3Needle, colourless
Z = 40.35 × 0.15 × 0.13 mm
Data collection top
Enraf Nonius TurboCAD4
diffractometer
Rint = 0.024
non–profiled ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: ψ scan
WinGX (Farrugia, 1999)
h = 1313
Tmin = 0.927, Tmax = 0.972k = 112
7898 measured reflectionsl = 373
6318 independent reflections3 standard reflections every 111 reflections
3267 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.7286P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.24 e Å3
6318 reflectionsΔρmin = 0.32 e Å3
253 parameters
Crystal data top
C23H23NO2SSiV = 2177.9 (2) Å3
Mr = 405.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4106 (6) ŵ = 0.22 mm1
b = 8.6993 (3) ÅT = 293 K
c = 26.7493 (16) Å0.35 × 0.15 × 0.13 mm
β = 96.000 (5)°
Data collection top
Enraf Nonius TurboCAD4
diffractometer
3267 reflections with I > 2σ(I)
Absorption correction: ψ scan
WinGX (Farrugia, 1999)
Rint = 0.024
Tmin = 0.927, Tmax = 0.9723 standard reflections every 111 reflections
7898 measured reflections intensity decay: none
6318 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.24 e Å3
6318 reflectionsΔρmin = 0.32 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17567 (7)0.72295 (7)0.46803 (2)0.05695 (17)
Si10.12927 (6)0.73523 (6)0.34040 (2)0.04442 (16)
O10.0809 (2)0.7483 (2)0.51273 (6)0.0707 (5)
O20.2666 (2)0.5906 (2)0.46564 (7)0.0822 (6)
N10.07364 (19)0.72565 (19)0.42104 (6)0.0469 (4)
C10.1736 (2)0.6523 (3)0.40558 (8)0.0537 (5)
H1A0.240.56720.40490.064*
H1B0.21550.730.42860.064*
C20.0325 (2)0.5983 (2)0.42101 (8)0.0523 (5)
H20.03320.51950.44720.063*
C30.0916 (2)0.6039 (2)0.38186 (8)0.0528 (5)
H30.16830.52860.38360.063*
C40.0603 (2)0.6598 (3)0.33091 (8)0.0530 (5)
H4A0.12620.74080.3190.064*
H4B0.06810.57640.30670.064*
C110.2451 (2)0.6540 (2)0.29414 (8)0.0500 (5)
C120.3852 (3)0.6100 (3)0.30825 (10)0.0726 (7)
H120.42280.6210.34160.087*
C130.4705 (3)0.5497 (4)0.27365 (13)0.0950 (10)
H130.56390.52010.2840.114*
C140.4176 (3)0.5340 (4)0.22468 (13)0.0929 (10)
H140.47530.49490.20150.112*
C150.2810 (3)0.5752 (4)0.20956 (11)0.0870 (9)
H150.24470.56380.17610.104*
C160.1955 (3)0.6343 (3)0.24403 (10)0.0715 (7)
H160.10180.66150.23320.086*
C210.1380 (2)0.9497 (2)0.33790 (8)0.0469 (5)
C220.0700 (3)1.0407 (3)0.37106 (9)0.0611 (6)
H220.02170.99360.39550.073*
C230.0725 (3)1.1987 (3)0.36841 (10)0.0729 (8)
H230.02521.25720.39060.088*
C240.1452 (3)1.2698 (3)0.33287 (10)0.0709 (7)
H240.14711.37650.33110.085*
C250.2145 (3)1.1847 (3)0.30018 (9)0.0643 (7)
H250.26461.23320.27650.077*
C260.2102 (2)1.0255 (3)0.30234 (9)0.0543 (6)
H260.25650.96820.27960.065*
C310.2797 (2)0.8884 (3)0.45492 (8)0.0513 (5)
C320.2191 (3)1.0312 (3)0.46432 (9)0.0593 (6)
H320.12391.0390.47740.071*
C330.2990 (3)1.1619 (3)0.45440 (10)0.0645 (6)
H330.25691.25760.46090.077*
C340.4409 (3)1.1541 (3)0.43501 (10)0.0681 (7)
C350.5001 (3)1.0105 (4)0.42603 (12)0.0829 (9)
H350.59551.00280.41320.099*
C360.4216 (3)0.8778 (3)0.43563 (10)0.0715 (7)
H360.46360.78210.42920.086*
C370.5278 (4)1.2988 (4)0.42481 (15)0.1067 (12)
H37A0.51771.33450.39140.16*
H37B0.49441.37660.44870.16*
H37C0.62661.27740.42790.16*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0717 (4)0.0471 (3)0.0556 (3)0.0003 (3)0.0235 (3)0.0049 (3)
Si10.0510 (3)0.0376 (3)0.0455 (3)0.0046 (3)0.0090 (2)0.0010 (2)
O10.0925 (12)0.0744 (12)0.0455 (9)0.0185 (10)0.0086 (9)0.0072 (8)
O20.0988 (14)0.0527 (10)0.1037 (14)0.0153 (10)0.0519 (12)0.0024 (10)
N10.0559 (10)0.0404 (9)0.0463 (9)0.0026 (8)0.0142 (8)0.0021 (8)
C10.0590 (13)0.0486 (12)0.0535 (13)0.0138 (11)0.0058 (10)0.0042 (10)
C20.0691 (14)0.0369 (11)0.0523 (12)0.0093 (10)0.0132 (11)0.0084 (10)
C30.0633 (14)0.0417 (11)0.0555 (13)0.0076 (10)0.0160 (11)0.0057 (10)
C40.0602 (13)0.0507 (13)0.0480 (12)0.0011 (11)0.0053 (10)0.0040 (10)
C110.0540 (13)0.0415 (11)0.0562 (13)0.0011 (10)0.0143 (10)0.0014 (10)
C120.0609 (15)0.090 (2)0.0681 (16)0.0075 (15)0.0128 (13)0.0009 (15)
C130.0611 (17)0.133 (3)0.094 (2)0.0209 (19)0.0257 (17)0.007 (2)
C140.0704 (19)0.119 (3)0.095 (2)0.0027 (18)0.0343 (17)0.031 (2)
C150.0765 (19)0.121 (3)0.0662 (17)0.0082 (19)0.0192 (15)0.0298 (18)
C160.0575 (14)0.095 (2)0.0635 (16)0.0063 (14)0.0127 (12)0.0117 (15)
C210.0552 (12)0.0392 (10)0.0463 (11)0.0022 (10)0.0054 (10)0.0022 (9)
C220.0901 (18)0.0414 (12)0.0551 (14)0.0017 (12)0.0227 (13)0.0014 (10)
C230.115 (2)0.0435 (14)0.0621 (16)0.0046 (14)0.0202 (15)0.0063 (11)
C240.106 (2)0.0386 (12)0.0666 (16)0.0086 (14)0.0000 (15)0.0008 (12)
C250.0790 (17)0.0528 (14)0.0611 (15)0.0151 (13)0.0077 (13)0.0096 (12)
C260.0598 (13)0.0510 (13)0.0534 (13)0.0018 (11)0.0112 (11)0.0011 (10)
C310.0534 (13)0.0522 (13)0.0498 (12)0.0008 (10)0.0123 (10)0.0031 (10)
C320.0505 (13)0.0539 (14)0.0723 (16)0.0020 (11)0.0004 (12)0.0046 (12)
C330.0638 (15)0.0537 (14)0.0755 (17)0.0032 (12)0.0048 (13)0.0022 (13)
C340.0628 (16)0.0744 (18)0.0666 (16)0.0148 (14)0.0038 (13)0.0020 (14)
C350.0527 (15)0.098 (2)0.094 (2)0.0005 (16)0.0126 (15)0.0032 (18)
C360.0605 (16)0.0710 (18)0.0819 (19)0.0115 (14)0.0030 (14)0.0108 (15)
C370.090 (2)0.101 (3)0.126 (3)0.036 (2)0.003 (2)0.016 (2)
Geometric parameters (Å, º) top
S1—O21.4316 (18)C13—C141.359 (4)
S1—O11.4321 (18)C14—C151.355 (4)
S1—N11.6598 (17)C15—C161.385 (4)
S1—C311.756 (2)C21—C261.392 (3)
Si1—C211.869 (2)C21—C221.393 (3)
Si1—C111.871 (2)C22—C231.376 (3)
Si1—C41.893 (2)C23—C241.375 (4)
Si1—C11.893 (2)C24—C251.363 (4)
N1—C31.487 (3)C25—C261.387 (3)
N1—C21.492 (3)C31—C321.379 (3)
C1—C21.506 (3)C31—C361.383 (3)
C2—C31.486 (3)C32—C331.374 (3)
C3—C41.505 (3)C33—C341.383 (3)
C11—C161.383 (3)C34—C351.379 (4)
C11—C121.386 (3)C34—C371.511 (4)
C12—C131.390 (4)C35—C361.380 (4)
O2—S1—O1118.58 (12)C12—C11—Si1121.82 (18)
O2—S1—N1111.58 (10)C11—C12—C13121.5 (3)
O1—S1—N1105.72 (10)C14—C13—C12120.1 (3)
O2—S1—C31109.41 (12)C15—C14—C13120.1 (3)
O1—S1—C31109.03 (11)C14—C15—C16119.9 (3)
N1—S1—C31101.05 (10)C11—C16—C15122.0 (2)
C21—Si1—C11108.82 (10)C26—C21—C22117.1 (2)
C21—Si1—C4112.66 (10)C26—C21—Si1121.58 (17)
C11—Si1—C4112.74 (10)C22—C21—Si1121.31 (17)
C21—Si1—C1114.04 (10)C23—C22—C21121.5 (2)
C11—Si1—C1112.19 (10)C24—C23—C22119.8 (2)
C4—Si1—C196.05 (10)C25—C24—C23120.3 (2)
C3—N1—C259.83 (14)C24—C25—C26119.9 (2)
C3—N1—S1119.44 (14)C25—C26—C21121.3 (2)
C2—N1—S1115.48 (13)C32—C31—C36119.5 (2)
C2—C1—Si1104.82 (15)C32—C31—S1119.38 (17)
C3—C2—N159.92 (13)C36—C31—S1121.08 (19)
C3—C2—C1116.55 (18)C33—C32—C31120.2 (2)
N1—C2—C1112.20 (17)C32—C33—C34121.3 (2)
C2—C3—N160.24 (14)C35—C34—C33117.8 (2)
C2—C3—C4115.80 (19)C35—C34—C37121.5 (3)
N1—C3—C4112.93 (18)C33—C34—C37120.7 (3)
C3—C4—Si1105.16 (15)C34—C35—C36121.8 (2)
C16—C11—C12116.4 (2)C35—C36—C31119.4 (3)
C16—C11—Si1121.78 (18)
O2—S1—N1—C33.6 (2)C13—C14—C15—C160.4 (6)
O1—S1—N1—C3133.79 (16)C12—C11—C16—C150.6 (4)
C31—S1—N1—C3112.62 (17)Si1—C11—C16—C15179.6 (2)
O2—S1—N1—C264.71 (18)C14—C15—C16—C110.3 (5)
O1—S1—N1—C265.52 (17)C11—Si1—C21—C265.9 (2)
C31—S1—N1—C2179.11 (15)C4—Si1—C21—C26119.88 (19)
C21—Si1—C1—C2107.14 (16)C1—Si1—C21—C26131.99 (18)
C11—Si1—C1—C2128.57 (15)C11—Si1—C21—C22175.28 (19)
C4—Si1—C1—C210.99 (16)C4—Si1—C21—C2258.9 (2)
S1—N1—C2—C3110.66 (16)C1—Si1—C21—C2249.2 (2)
C3—N1—C2—C1108.8 (2)C26—C21—C22—C230.8 (4)
S1—N1—C2—C1140.58 (16)Si1—C21—C22—C23178.1 (2)
Si1—C1—C2—C37.4 (2)C21—C22—C23—C241.0 (4)
Si1—C1—C2—N158.9 (2)C22—C23—C24—C250.1 (4)
C1—C2—C3—N1101.5 (2)C23—C24—C25—C260.8 (4)
N1—C2—C3—C4102.8 (2)C24—C25—C26—C211.0 (4)
C1—C2—C3—C41.4 (3)C22—C21—C26—C250.2 (4)
S1—N1—C3—C2104.09 (17)Si1—C21—C26—C25179.03 (19)
C2—N1—C3—C4107.6 (2)O2—S1—C31—C32167.79 (19)
S1—N1—C3—C4148.31 (16)O1—S1—C31—C3236.6 (2)
C2—C3—C4—Si19.4 (2)N1—S1—C31—C3274.4 (2)
N1—C3—C4—Si157.4 (2)O2—S1—C31—C3611.8 (2)
C21—Si1—C4—C3107.49 (16)O1—S1—C31—C36142.9 (2)
C11—Si1—C4—C3128.86 (15)N1—S1—C31—C36106.0 (2)
C1—Si1—C4—C311.72 (16)C36—C31—C32—C330.3 (4)
C21—Si1—C11—C1685.1 (2)S1—C31—C32—C33179.8 (2)
C4—Si1—C11—C1640.7 (2)C31—C32—C33—C340.1 (4)
C1—Si1—C11—C16147.8 (2)C32—C33—C34—C350.2 (4)
C21—Si1—C11—C1295.1 (2)C32—C33—C34—C37179.4 (3)
C4—Si1—C11—C12139.2 (2)C33—C34—C35—C360.3 (5)
C1—Si1—C11—C1232.0 (2)C37—C34—C35—C36179.5 (3)
C16—C11—C12—C130.1 (4)C34—C35—C36—C310.2 (5)
Si1—C11—C12—C13180.0 (2)C32—C31—C36—C350.1 (4)
C11—C12—C13—C140.6 (5)S1—C31—C36—C35179.7 (2)
C12—C13—C14—C150.8 (6)

Experimental details

(I)(km1600)(km2099)
Crystal data
Chemical formulaC23H23NO2SSiC23H23NO2SSiC23H23NO2SSi
Mr405.57405.57405.57
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100293293
a, b, c (Å)9.2955 (1), 8.6076 (1), 26.5354 (3)9.4105 (2), 8.6979 (1), 26.7515 (5)9.4106 (6), 8.6993 (3), 26.7493 (16)
α, β, γ (°)90, 96.440 (1), 9090, 95.993 (1), 9090, 96.000 (5), 90
V3)2109.75 (4)2177.69 (7)2177.9 (2)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.230.220.22
Crystal size (mm)0.3 × 0.2 × 0.20.35 × 0.3 × 0.30.35 × 0.15 × 0.13
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Enraf Nonius TurboCAD4
diffractometer
Absorption correctionψ scan
WinGX (Farrugia, 1999)
Tmin, Tmax0.927, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
26689, 8784, 7613 8807, 4916, 3807 7898, 6318, 3267
Rint0.0390.0170.024
(sin θ/λ)max1)0.8060.6490.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.04 0.045, 0.131, 1.03 0.047, 0.135, 0.99
No. of reflections878449166318
No. of parameters334253253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.450.25, 0.380.24, 0.32

Computer programs: SCALEPACK and DENZO (Otwinowski & Minor, 1997), Collect (Nonius BV, 1997-2000), CAD-4 EXPRESS (Enraf Nonius, 1994), SCALEPACK and DENZO, HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 19, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), ORTEP-3 for Windows (Farrugia, 1997), ORTEP (Farrugia, 1997), WinGX (Farrugia, 1999), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
S1—O11.4399 (8)Si1—C41.8991 (10)
S1—O21.4413 (8)N1—C21.4958 (12)
S1—N11.6597 (8)N1—C31.4918 (12)
Si1—C111.8756 (9)C1—C21.5153 (13)
Si1—C211.8682 (10)C2—C31.4979 (14)
Si1—C11.9004 (10)C3—C41.5153 (13)
O1—S1—N1105.65 (5)C2—C1—Si1104.51 (6)
O2—S1—N1111.86 (4)C1—C2—C3116.44 (8)
C1—Si1—C496.65 (4)C2—C3—C4116.04 (8)
C2—N1—S1115.30 (6)C3—C4—Si1104.67 (6)
C3—N1—S1119.20 (6)
C4—Si1—C1—C211.25 (7)C2—C3—C4—Si19.49 (10)
Si1—C1—C2—C37.62 (9)C1—Si1—C4—C311.92 (7)
C1—C2—C3—C41.30 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N10.92 (2)2.59 (2)3.376 (1)143 (1)
C2—H2···O1i0.96 (2)2.59 (2)3.457 (1)151 (1)
C32—H32···O1ii0.97 (2)2.57 (2)3.348 (1)138 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds