Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound is a salt, 3,6,9,16,19,22-hexaaza­tri­cyclo­[22.2.2.211,14]­triaconta-1(26),11(29),12,14(30),24,27-hexa­ene–3,5-di­nitro­benzoic acid–methanol (1/4/2), C24H42N64+·4C7H3N2O6·2CH4O, in which the cation lies across a centre of inversion and one of the two independent anions is positionally disordered over two sets of atom sites having equal occupancy. The components are linked by four types of N—H...O hydrogen bond [N...O 2.674 (2)–2.815 (2) Å; N—H...O 149–163°] and one type of O—H...O hydrogen bond in which the acceptor is disordered over two closely adjacent sites [O...O 2.67 (4) and 2.75 (4) Å; O—H...O 172 and 173°], forming centrosymmetric seven-component aggregates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100013792/gg1023sup1.cif
Contains datablocks global, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013792/gg10231sup2.hkl
Contains datablock 1

CCDC reference: 158265

Comment top

The salt-type adducts formed between the hexa-aza macrocycle (I) (C24H38N6) and the bisphenols 4,4'-sulfonyldiphenol and 4,4'-biphenol are characterized by three salient features: proton transfer leads to formation of the dication (II), C24H40N62+, in which only the central N atoms of the aliphatic chain are protonated; the cation (II) is centrosymmetric, but can adopt a range of widely-different conformations having rather similar energies and, indeed, two different cation conformations co-exist in each of these adducts giving a total of four distinct conformers overall; and extensive hydrogen bonding links the components into continuous arrays, which are two-dimensional in the 4,4'-sulfonyldiphenol adduct and three-dimensional in the adduct with 4,4'-biphenol (Glidewell et al., 2000). \sch

Extending our study of the macrocycle (I) we have now characterized a methanol-solvated adduct (1) formed with 3,5-dinitrobenzoic acid, which differs from the bisphenol adducts in all material respects. The title compound is a salt C24H42N64+·4(O2N)2C6H3COO-·2CH3OH: the cation lies across a centre of inversion in C2/c, chosen for the sake of convenience as that at (1/4, 1/4, 0). The two independent anions lie in general positions, and one of them is positionally disordered over two sets of sites having equal occupancy (see experimental section): the unique methanol also lies in a general position. Because the coordinates of corresponding atoms in the two sets of sites defining the disordered anion are extremely similar, apart from one of the nitro groups (containing N35/N45), only one orientation of the anion need be considered in the structure description: in particular, the hydrogen-bonding characteristics of the alternative atom sites O31/O41 and O32/O42 are very similar (Table 2). The H atoms are all ordered such that the cation is protonated at the four N atoms adjacent to the p-xylenyl units (III): this pattern of protonation differs from that observed previously in bisphenol adducts, but it is entirely consistent with the behaviour of the macrocycle (I) in aqueous solution. In those conditions, the macrocycle exhibits four protonation constants in the range 7.9 < log K < 8.7, with two others in the range 2.9 < log K < 3.9: the two weakly basic N atoms were assigned as the central pair in the aliphatic chains, and this assignment was supported by studies of the 13C chemical shifts as a function of pH (Clifford, 1997).

In the aliphatic portion of the centrosymmetric cation [C24H42N6]4+ there is almost perfect staggering about all of the C—C and C—N bonds, with the antiperiplanar (ap) torsional angles all within 18° of 180°, and the synclinal (sc) torsional angles both within 6° of ±60° (Table 1, Fig. 1). However, this conformation differs markedly from the four conformers previously observed for the cation C24H40N62+: in particular, the eight torsional angles in the aliphatic chain from C7 to C15 exhibit the pattern ap, ap, sc, ap, ap, sc, ap, ap so that the overall conformation is close to C2 h (2/m) symmetry. Most of the observed conformers of (II) have only Ci symmetry: the one conformer which is close to C2 h symmetry exhibits a pattern of torsional angles in the aliphatic chain different from that observed here, namely ap, sc, sc, ap, ap, sc, sc, ap. A necessary condition for near C2 h symmetry is that the pattern of torsional angles from C7 to N11 is repeated from C15 to N11 but with opposite signs for the corresponding angles in the two domains.

Within the cation there is a clear difference between the C—N bond lengths involving protonated and unprotonated N atoms (Table 1): the observed ranges here are very similar to those for the corresponding types of bond in the cation (II). For comparison, the mean values for C—N bonds of the general types (C*)2-NH and (C*)2-NH2+ are 1.469 Å and 1.494 Å, respectively (Allen et al., 1987). The trigonally trisubstituted anion carries three formally similar substituents: however, there is no orientation disorder resulting from this, and the two types of –XO2 substituent (X = C, N) are readily distinguished in terms of the X—O and exocyclic C—X distances (Table 1). It is noteworthy that for the anion without positional disorder, the interior C—C—C angles ipso to the substituents provide clear evidence for the strong electron withdrawing behaviour of the –NO2 substituent, while –CO2- appears to be neither an electron donor nor an electron acceptor (Domenicano & Murray-Rust, 1979). Also noteworthy is the fact that only the carboxylate O atoms are effective acceptors in N—H···O hydrogen bonds. The degree of twist of the substituents out of the plane of the adjacent aryl ring varies between near planarity for the N43 nitro group to 35 (4)° for the C37 carboxylate group: no clear pattern is evident.

The tetra-protonated cation (III) contains ten N—H bonds, and its skeletal conformation means that there are no intramolecular N—H···N hydrogen bonds. Rather, there are five N—H bonds on each face potentially available for intermolecular hydrogen-bond formation (Table 2), but the unprotonated N11 acts neither as hydrogen-bond donor nor as hydrogen-bond acceptor. On one face of the macrocycle N8 and N14 act as donors (via H8B and H14A) to O21 and O22, respectively, forming paired N—H···O hydrogen bonds reminiscent of those formed between the dication of the tetra-aza macrocycle meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (tet-a) and aromatic carboxylate anions (Lough et al., 2000). On the opposite face, N8 (via H8A) again acts as a donor to a carboxylate O, in this case O32 in the second independent anion, but N14 is a donor (via H14B) to the methanol O51, which in turn acts as a donor (via H51) to O31, the other carboxylate O in the same anion. Thus, on one face an R22(12) motif is formed, while on the other an R33(14) ring is present. By means of these two cyclic motifs, four molecular components are linked together: since the cation lies across a centre of inversion, the entire molecular aggregate contains no fewer than seven components: one cation, four anions, and two neutral methanol molecules. The composition of one aggregate thus provides a precise microcosm of the overall stoichiometry of the adduct (1). The only significant C—H···O hydrogen bond in the structure (Table 2) lies within this aggregate: C36 in one of the anions acts as donor to nitro-group O24 in the other anion on the same face of the macrocycle.

The isomeric cation (IV) in the salt C24H42N64+·H2P2O72-·2Br-·5.2H2O has neither crystallographic nor even approximate symmetry, but all ten of the N—H bonds participate in the hydrogen bonding: seven N—H···O hydrogen bonds are formed to three different diphosphate cations, two N—H···O hydrogen bonds are formed to water molecules, and there is an N—H···Br hydrogen bond (Nation et al., 1996).

There are four of the seven-component aggregates in each unit cell, but there are no significant hydrogen bonds between them. There are, however, weak π···π stacking interactions leading to linking of the aggregates along the [010] direction. Anions containing O21 at (x, y, z) and (0.5 - x, 1.5 - y, -z) are components of the supramolecular aggregate centred at (1/4, 1.25, 0) and these anions exhibit aromatic π···π stacking interactions: the perpendicular distance between the ring planes is 3.291 (4) Å and the centroid offset is 1.257 (4) Å. Four of these [010] stacks run through each unit cell.

Experimental top

The macrocycle (I) was prepared using published procedures (Chen & Martell, 1991; Comba et al., 1996). The macrocycle, and 3,5-dinitrobenzoic acid, were separately dissolved in methanol, and then these solutions were mixed to give a molar ratio of macrocycle to acid of 1:2; the mixture was then set aside to crystallize, producing analytically pure (1). Analysis: found C 49.0, H 4.7, N 15.0%; C54H62N14O26 requires C 49.0, H 4.7, N 14.8%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Refinement top

Compound (1) crystallized in the monoclinic system; space group C2/c or Cc from the systematic absences; C2/c was assumed. It soon became apparent from peaks in difference maps and ellipsoid shapes that one of the dinitrobenzoic acid molecules was either slightly disordered in its volume element, or that the space group should be Cc and not C2/c. As subsequent refinement in Cc led to unsatisfactory ellipsoid shapes and geometry details for many of the atoms, this approach was abandoned and refinement continued in C2/c. The disorder was carefully modelled using planar hexagons for the benzene rings and using the SAME command in the SHELXL97 refinement to ensure that both components of the disorder had similar geometries; the atoms of the disordered molecule are O31—C37 and O41—C47. Refining the disordered model with tied occupancy factors led to values of 0.54 (3) and 0.46 (3), not significantly different from equal occupancy; in the final cycles the occcupancies of the disordered atoms were fixed at 0.5. A l l H atoms involved in hydrogen bonding were clearly revealed in difference maps; all H atoms were treated as riding atoms with C—H 0.95 to 0.99 Å, N—H 0.92 Å, O—H 0.84 Å. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX96, ORTEP (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: NRCVAX96, SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components of (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The seven-component hydrogen-bonded aggregate in (1). For the sake of clarity, H atoms bonded to C are omitted.
3,6,9,16,19,22-Hexa-azatricyclo[22.2.2.211,14]triconta- 1(26),11 (29),12,14 (30),24,27-hexaene–3,5-dinitrobenzoic acid–methanol (1/4/2) top
Crystal data top
C24H42N64+·4C7H3N2O6·2CH4OF(000) = 2768
Mr = 1323.18Dx = 1.446 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.6342 (7) ÅCell parameters from 19757 reflections
b = 11.7501 (2) Åθ = 2.6–30.0°
c = 21.4967 (7) ŵ = 0.12 mm1
β = 102.397 (1)°T = 150 K
V = 6077.2 (3) Å3Block, colourless
Z = 40.27 × 0.25 × 0.16 mm
Data collection top
Kappa-CCD
diffractometer
8760 independent reflections
Radiation source: fine-focus sealed X-ray tube5934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ scans and ω scans with κ offsetsθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 034
Tmin = 0.969, Tmax = 0.982k = 016
19757 measured reflectionsl = 3029
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0486P)2 + 5.3065P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8760 reflectionsΔρmax = 0.53 e Å3
448 parametersΔρmin = 0.43 e Å3
54 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00067 (17)
Crystal data top
C24H42N64+·4C7H3N2O6·2CH4OV = 6077.2 (3) Å3
Mr = 1323.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.6342 (7) ŵ = 0.12 mm1
b = 11.7501 (2) ÅT = 150 K
c = 21.4967 (7) Å0.27 × 0.25 × 0.16 mm
β = 102.397 (1)°
Data collection top
Kappa-CCD
diffractometer
8760 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
5934 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.982Rint = 0.026
19757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05854 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
8760 reflectionsΔρmin = 0.43 e Å3
448 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891]which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N80.17482 (5)0.36466 (11)0.19969 (6)0.0214 (3)
N110.08358 (6)0.44525 (12)0.15244 (6)0.0250 (3)
N140.09545 (5)0.37158 (11)0.01941 (6)0.0203 (3)
C10.35895 (7)0.18968 (15)0.09224 (7)0.0261 (3)
C20.35723 (7)0.30757 (15)0.09678 (9)0.0331 (4)
C30.31457 (7)0.36108 (15)0.13908 (9)0.0319 (4)
C40.27285 (7)0.29795 (14)0.17799 (8)0.0257 (3)
C50.27454 (7)0.18024 (15)0.17328 (8)0.0298 (4)
C60.31725 (7)0.12662 (15)0.13065 (8)0.0292 (4)
C70.22699 (7)0.35751 (16)0.22419 (8)0.0295 (4)
C90.13213 (7)0.43888 (14)0.24003 (8)0.0252 (3)
C100.07729 (7)0.42458 (15)0.22036 (8)0.0266 (3)
C120.03673 (6)0.40401 (14)0.12788 (8)0.0245 (3)
C130.04456 (6)0.42690 (13)0.05763 (7)0.0230 (3)
C150.09231 (7)0.36750 (16)0.04927 (8)0.0290 (4)
O210.21455 (5)0.50836 (11)0.10152 (6)0.0369 (3)
O220.18626 (5)0.50095 (10)0.00891 (6)0.0324 (3)
O230.30218 (7)0.67360 (18)0.17860 (7)0.0656 (5)
O240.37433 (6)0.77274 (12)0.17179 (7)0.0466 (4)
O250.41779 (6)0.83679 (13)0.03275 (8)0.0520 (4)
O260.35892 (8)0.78649 (18)0.11686 (8)0.0741 (6)
N230.33431 (7)0.71275 (14)0.14849 (8)0.0368 (4)
N250.37604 (7)0.78653 (13)0.05973 (9)0.0382 (4)
C210.26814 (6)0.60204 (13)0.01244 (8)0.0221 (3)
C220.27982 (7)0.61929 (13)0.05279 (8)0.0243 (3)
C230.32428 (7)0.68868 (14)0.08004 (8)0.0259 (3)
C240.35743 (7)0.74178 (14)0.04491 (9)0.0273 (4)
C250.34411 (7)0.72352 (14)0.02010 (8)0.0263 (3)
C260.30075 (7)0.65473 (13)0.04950 (8)0.0245 (3)
C270.21849 (7)0.52967 (13)0.04411 (8)0.0250 (3)
O510.13197 (6)0.17955 (13)0.07721 (8)0.0501 (4)
C520.18950 (8)0.18341 (17)0.05248 (10)0.0382 (4)
O310.109 (3)0.026 (5)0.1756 (11)0.046 (3)0.50
O320.125 (3)0.164 (4)0.242 (2)0.044 (3)0.50
O330.013 (2)0.176 (2)0.448 (2)0.042 (4)0.50
O340.0591 (16)0.024 (3)0.4835 (15)0.041 (4)0.50
O350.0132 (15)0.331 (2)0.3740 (12)0.0327 (9)0.50
O360.06511 (12)0.3411 (2)0.30487 (13)0.0400 (4)0.50
N330.0261 (8)0.0766 (17)0.4429 (7)0.0287 (19)0.50
N350.02760 (14)0.2873 (3)0.33845 (17)0.0262 (6)0.50
C310.0680 (3)0.0100 (5)0.2860 (4)0.0299 (4)0.50
C320.0360 (3)0.0721 (4)0.3357 (5)0.0201 (8)0.50
C330.0014 (3)0.0161 (7)0.3859 (4)0.0187 (9)0.50
C340.0012 (2)0.1021 (7)0.3865 (3)0.0295 (4)0.50
C350.0308 (2)0.1642 (4)0.3369 (3)0.0216 (8)0.50
C360.0654 (2)0.1082 (5)0.2866 (3)0.0245 (9)0.50
C370.1040 (12)0.072 (2)0.2289 (10)0.0325 (13)0.50
O410.106 (3)0.032 (5)0.1736 (11)0.046 (3)0.50
O420.121 (3)0.170 (4)0.240 (2)0.044 (3)0.50
O430.007 (2)0.176 (2)0.453 (2)0.042 (4)0.50
O440.0521 (16)0.023 (3)0.4874 (15)0.041 (4)0.50
O450.0109 (15)0.327 (2)0.3744 (12)0.0327 (9)0.50
O460.01862 (12)0.3199 (2)0.27186 (13)0.0400 (4)0.50
N430.0176 (8)0.0746 (17)0.4481 (7)0.0287 (19)0.50
N450.00775 (14)0.2750 (3)0.32428 (17)0.0262 (6)0.50
C410.0655 (3)0.0152 (6)0.2840 (4)0.0299 (4)0.50
C420.0458 (3)0.0714 (5)0.3414 (5)0.0201 (8)0.50
C430.0119 (3)0.0145 (7)0.3918 (4)0.0187 (9)0.50
C440.0024 (2)0.0985 (7)0.3849 (3)0.0295 (4)0.50
C450.0172 (2)0.1547 (4)0.3276 (3)0.0216 (8)0.50
C460.0512 (2)0.0978 (5)0.2771 (3)0.0245 (9)0.50
C470.1010 (12)0.078 (2)0.2269 (10)0.0325 (13)0.50
H8A0.16040.29270.19830.026*
H8B0.18300.39290.15880.026*
H110.08750.52220.14490.030*
H14A0.12640.41200.02380.024*
H14B0.09850.29890.03420.024*
H20.38550.35180.07070.040*
H30.31380.44180.14160.038*
H50.24630.13600.19940.036*
H60.31790.04590.12780.035*
H7A0.23930.43530.23220.035*
H7B0.21940.31590.26520.035*
H9A0.12790.41790.28540.030*
H9B0.14410.51940.23490.030*
H10A0.04980.47860.24460.032*
H10B0.06320.34640.23060.032*
H12A0.03240.32110.13570.029*
H12B0.00230.44190.15080.029*
H13A0.04710.51010.05030.028*
H13B0.01160.39870.04280.028*
H15A0.05790.32680.05290.035*
H15B0.08940.44630.06450.035*
H220.25770.58420.07860.029*
H240.38790.78850.06430.033*
H260.29330.64350.09430.029*
H510.12530.13710.10940.075*
H52A0.20170.26290.04770.057*
H52B0.20890.14430.08160.057*
H52C0.19810.14570.01080.057*
H320.03780.15290.33530.024*0.50
H340.02490.14040.42090.035*0.50
H360.08730.15070.25270.029*0.50
H420.05560.14860.34610.024*0.50
H440.02570.13740.41930.035*0.50
H460.06460.13620.23800.029*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N80.0219 (6)0.0219 (7)0.0190 (6)0.0018 (5)0.0014 (5)0.0007 (5)
N110.0248 (7)0.0266 (7)0.0230 (7)0.0052 (5)0.0037 (5)0.0028 (5)
N140.0182 (6)0.0211 (6)0.0215 (6)0.0012 (5)0.0036 (5)0.0003 (5)
C10.0245 (8)0.0354 (9)0.0182 (8)0.0038 (7)0.0039 (6)0.0011 (6)
C20.0276 (9)0.0343 (10)0.0326 (10)0.0016 (7)0.0040 (7)0.0040 (7)
C30.0302 (9)0.0294 (9)0.0339 (10)0.0004 (7)0.0020 (7)0.0006 (7)
C40.0224 (8)0.0339 (9)0.0215 (8)0.0035 (6)0.0065 (6)0.0027 (6)
C50.0264 (8)0.0352 (10)0.0255 (9)0.0035 (7)0.0003 (7)0.0033 (7)
C60.0311 (9)0.0286 (9)0.0270 (9)0.0004 (7)0.0043 (7)0.0005 (7)
C70.0250 (8)0.0402 (10)0.0231 (8)0.0031 (7)0.0045 (7)0.0046 (7)
C90.0262 (8)0.0270 (8)0.0206 (8)0.0037 (6)0.0011 (6)0.0038 (6)
C100.0241 (8)0.0311 (9)0.0222 (8)0.0015 (6)0.0007 (6)0.0006 (6)
C120.0207 (7)0.0253 (8)0.0252 (8)0.0016 (6)0.0002 (6)0.0017 (6)
C130.0189 (7)0.0240 (8)0.0250 (8)0.0016 (6)0.0022 (6)0.0034 (6)
C150.0245 (8)0.0405 (10)0.0220 (8)0.0061 (7)0.0054 (7)0.0021 (7)
O210.0329 (7)0.0451 (8)0.0320 (7)0.0130 (6)0.0058 (6)0.0147 (6)
O220.0266 (6)0.0358 (7)0.0342 (7)0.0118 (5)0.0053 (5)0.0014 (5)
O230.0502 (10)0.1188 (15)0.0305 (8)0.0182 (10)0.0147 (7)0.0186 (9)
O240.0514 (9)0.0411 (8)0.0365 (8)0.0043 (7)0.0145 (7)0.0078 (6)
O250.0381 (8)0.0525 (9)0.0723 (11)0.0243 (7)0.0270 (8)0.0210 (8)
O260.0772 (13)0.1034 (15)0.0424 (10)0.0467 (11)0.0142 (9)0.0126 (9)
N230.0318 (8)0.0458 (9)0.0294 (8)0.0033 (7)0.0009 (7)0.0091 (7)
N250.0337 (8)0.0343 (9)0.0507 (11)0.0116 (7)0.0178 (8)0.0046 (7)
C210.0200 (7)0.0191 (7)0.0265 (8)0.0005 (6)0.0035 (6)0.0016 (6)
C220.0227 (8)0.0238 (8)0.0262 (8)0.0002 (6)0.0047 (6)0.0005 (6)
C230.0233 (8)0.0286 (9)0.0238 (8)0.0030 (6)0.0003 (6)0.0056 (6)
C240.0191 (7)0.0249 (8)0.0361 (9)0.0008 (6)0.0019 (7)0.0080 (7)
C250.0221 (8)0.0235 (8)0.0344 (9)0.0023 (6)0.0087 (7)0.0032 (7)
C260.0244 (8)0.0226 (8)0.0265 (8)0.0002 (6)0.0056 (6)0.0033 (6)
C270.0210 (7)0.0205 (8)0.0315 (9)0.0022 (6)0.0010 (7)0.0031 (6)
O510.0355 (8)0.0545 (9)0.0554 (10)0.0090 (6)0.0009 (7)0.0278 (7)
C520.0343 (10)0.0400 (11)0.0400 (11)0.0060 (8)0.0075 (8)0.0016 (8)
O310.062 (6)0.037 (4)0.0313 (12)0.015 (4)0.004 (2)0.0024 (18)
O320.056 (6)0.029 (3)0.043 (2)0.017 (4)0.001 (3)0.005 (2)
O330.061 (8)0.0232 (7)0.040 (4)0.007 (2)0.007 (5)0.0064 (15)
O340.043 (7)0.0387 (12)0.033 (3)0.009 (4)0.008 (4)0.0009 (19)
O350.038 (2)0.0250 (14)0.0333 (7)0.0084 (11)0.0036 (10)0.0072 (9)
O360.0535 (12)0.0242 (9)0.0373 (11)0.0017 (8)0.0015 (8)0.0064 (8)
N330.033 (5)0.0257 (10)0.027 (2)0.011 (2)0.007 (2)0.0012 (15)
N350.0334 (19)0.0210 (10)0.0239 (14)0.0011 (12)0.0055 (10)0.0010 (9)
C310.0340 (10)0.0238 (10)0.0291 (10)0.0061 (8)0.0006 (8)0.0025 (7)
C320.018 (3)0.0192 (8)0.0272 (17)0.0001 (9)0.0146 (15)0.0023 (7)
C330.013 (3)0.0241 (9)0.0227 (15)0.0056 (13)0.0122 (13)0.0004 (9)
C340.0322 (9)0.0265 (9)0.0265 (9)0.0043 (7)0.0008 (7)0.0006 (7)
C350.022 (2)0.0189 (11)0.0248 (19)0.0018 (14)0.0079 (14)0.0034 (10)
C360.024 (2)0.0257 (14)0.0233 (18)0.0016 (16)0.0050 (14)0.0006 (12)
C370.036 (2)0.025 (2)0.0337 (13)0.0042 (18)0.0004 (14)0.0061 (10)
O410.062 (6)0.037 (4)0.0313 (12)0.015 (4)0.004 (2)0.0024 (18)
O420.056 (6)0.029 (3)0.043 (2)0.017 (4)0.001 (3)0.005 (2)
O430.061 (8)0.0232 (7)0.040 (4)0.007 (2)0.007 (5)0.0064 (15)
O440.043 (7)0.0387 (12)0.033 (3)0.009 (4)0.008 (4)0.0009 (19)
O450.038 (2)0.0250 (14)0.0333 (7)0.0084 (11)0.0036 (10)0.0072 (9)
O460.0535 (12)0.0242 (9)0.0373 (11)0.0017 (8)0.0015 (8)0.0064 (8)
N430.033 (5)0.0257 (10)0.027 (2)0.011 (2)0.007 (2)0.0012 (15)
N450.0334 (19)0.0210 (10)0.0239 (14)0.0011 (12)0.0055 (10)0.0010 (9)
C410.0340 (10)0.0238 (10)0.0291 (10)0.0061 (8)0.0006 (8)0.0025 (7)
C420.018 (3)0.0192 (8)0.0272 (17)0.0001 (9)0.0146 (15)0.0023 (7)
C430.013 (3)0.0241 (9)0.0227 (15)0.0056 (13)0.0122 (13)0.0004 (9)
C440.0322 (9)0.0265 (9)0.0265 (9)0.0043 (7)0.0008 (7)0.0006 (7)
C450.022 (2)0.0189 (11)0.0248 (19)0.0018 (14)0.0079 (14)0.0034 (10)
C460.024 (2)0.0257 (14)0.0233 (18)0.0016 (16)0.0050 (14)0.0006 (12)
C470.036 (2)0.025 (2)0.0337 (13)0.0042 (18)0.0004 (14)0.0061 (10)
Geometric parameters (Å, º) top
N8—C71.492 (2)C22—C231.390 (2)
N8—C91.492 (2)C22—H220.95
N8—H8A0.92C23—C241.375 (2)
N8—H8B0.92C24—C251.382 (2)
N11—C101.455 (2)C24—H240.95
N11—C121.452 (2)C25—C261.380 (2)
N11—H110.92C26—H260.95
N14—C131.492 (2)O51—C521.404 (2)
N14—C151.496 (2)O51—H510.84
N14—H14A0.92C52—H52A0.98
N14—H14B0.92C52—H52B0.98
C1—C61.386 (2)C52—H52C0.98
C1—C21.389 (3)O31—C371.248 (10)
C1—C15i1.507 (2)O32—C371.248 (10)
C2—C31.384 (2)O33—N331.229 (10)
C2—H20.95O34—N331.223 (10)
C3—C41.392 (2)O35—N351.235 (15)
C3—H30.95O36—N351.220 (4)
C4—C51.387 (2)N33—C331.451 (8)
C4—C71.507 (2)N35—C351.448 (6)
C5—C61.389 (2)C31—C321.39
C5—H50.95C31—C361.39
C6—H60.95C31—C371.537 (9)
C7—H7A0.99C32—C331.39
C7—H7B0.99C32—H320.95
C9—C101.509 (2)C33—C341.39
C9—H9A0.99C34—C351.39
C9—H9B0.99C34—H340.95
C10—H10A0.99C35—C361.39
C10—H10B0.99C36—H360.95
C12—C131.505 (2)O41—C471.248 (10)
C12—H12A0.99O42—C471.248 (10)
C12—H12B0.99O43—N431.227 (10)
C13—H13A0.99O44—N431.225 (10)
C13—H13B0.99O45—N451.235 (15)
C15—C1i1.507 (2)O46—N451.221 (4)
C15—H15A0.99N43—C431.453 (8)
C15—H15B0.99N45—C451.438 (6)
O21—C271.242 (2)C41—C421.39
O22—C271.255 (2)C41—C461.39
O23—N231.215 (2)C41—C471.537 (9)
O24—N231.228 (2)C42—C431.39
O25—N251.219 (2)C42—H420.95
O26—N251.210 (2)C43—C441.39
N23—C231.466 (2)C44—C451.39
N25—C251.476 (2)C44—H440.95
C21—C221.384 (2)C45—C461.39
C21—C261.392 (2)C46—H460.95
C21—C271.525 (2)
C9—N8—C7112.37 (12)C21—C22—C23119.10 (15)
C9—N8—H8A109.1C21—C22—H22120.5
C7—N8—H8A109.1C23—C22—H22120.5
C9—N8—H8B109.1C22—C23—C24122.81 (15)
C7—N8—H8B109.1C24—C23—N23118.13 (15)
H8A—N8—H8B107.9C22—C23—N23118.94 (15)
C12—N11—C10112.80 (13)C23—C24—C25116.41 (15)
C12—N11—H11109.0C23—C24—H24121.8
C10—N11—H11109.0C25—C24—H24121.8
C13—N14—C15110.01 (12)C24—C25—C26123.13 (16)
C13—N14—H14A109.7C26—C25—N25119.04 (16)
C15—N14—H14A109.7C24—C25—N25117.73 (15)
C13—N14—H14B109.7C25—C26—C21118.91 (15)
C15—N14—H14B109.7C25—C26—H26120.5
H14A—N14—H14B108.2C21—C26—H26120.5
C6—C1—C2118.93 (15)O21—C27—C21116.11 (14)
C6—C1—C15i121.18 (16)O22—C27—C21115.55 (15)
C2—C1—C15i119.76 (15)C52—O51—H51109.5
C3—C2—C1120.45 (16)O51—C52—H52A109.5
C3—C2—H2119.8O51—C52—H52B109.5
C1—C2—H2119.8H52A—C52—H52B109.5
C2—C3—C4120.75 (16)O51—C52—H52C109.5
C2—C3—H3119.6H52A—C52—H52C109.5
C4—C3—H3119.6H52B—C52—H52C109.5
C5—C4—C3118.74 (15)O34—N33—O33124.0 (16)
C5—C4—C7121.19 (15)O34—N33—C33118.4 (15)
C3—C4—C7120.07 (15)O33—N33—C33117.5 (15)
C4—C5—C6120.47 (16)O36—N35—O35124.3 (14)
C4—C5—H5119.8O36—N35—C35118.3 (4)
C6—C5—H5119.8O35—N35—C35117.4 (14)
C1—C6—C5120.66 (16)C32—C31—C36120
C1—C6—H6119.7C32—C31—C37119.9 (10)
C5—C6—H6119.7C36—C31—C37120.0 (10)
N8—C7—C4111.96 (13)C33—C32—C31120
N8—C7—H7A109.2C33—C32—H32120
C4—C7—H7A109.2C31—C32—H32120
N8—C7—H7B109.2C32—C33—C34120
C4—C7—H7B109.2C32—C33—N33121.4 (9)
H7A—C7—H7B107.9C34—C33—N33118.0 (9)
N8—C9—C10109.49 (13)C33—C34—C35120
N8—C9—H9A109.8C33—C34—H34120
C10—C9—H9A109.8C35—C34—H34120
N8—C9—H9B109.8C36—C35—C34120
C10—C9—H9B109.8C36—C35—N35120.8 (4)
H9A—C9—H9B108.2C34—C35—N35119.2 (4)
N11—C10—C9110.71 (13)C35—C36—C31120
N11—C10—H10A109.5C35—C36—H36120
C9—C10—H10A109.5C31—C36—H36120
N11—C10—H10B109.5O32—C37—O31127.6 (17)
C9—C10—H10B109.5O32—C37—C31115.4 (14)
H10A—C10—H10B108.1O31—C37—C31117.0 (14)
N11—C12—C13111.38 (13)O44—N43—O43123.7 (16)
N11—C12—H12A109.4O44—N43—C43118.7 (15)
C13—C12—H12A109.4O43—N43—C43117.6 (15)
N11—C12—H12B109.4O46—N45—O45124.1 (14)
C13—C12—H12B109.4O46—N45—C45117.7 (4)
H12A—C12—H12B108.0O45—N45—C45118.2 (14)
N14—C13—C12112.72 (13)C42—C41—C46120
N14—C13—H13A109.0C42—C41—C47120.6 (10)
C12—C13—H13A109.0C46—C41—C47119.3 (10)
N14—C13—H13B109.0C43—C42—C41120
C12—C13—H13B109.0C43—C42—H42120
H13A—C13—H13B107.8C41—C42—H42120
N14—C15—C1i114.59 (13)C42—C43—C44120
N14—C15—H15A108.6C42—C43—N43121.7 (9)
C1i—C15—H15A108.6C44—C43—N43117.4 (9)
N14—C15—H15B108.6C45—C44—C43120
C1i—C15—H15B108.6C45—C44—H44120
H15A—C15—H15B107.6C43—C44—H44120
O21—C27—O22128.32 (15)C46—C45—C44120
O23—N23—O24123.89 (17)C46—C45—N45120.8 (5)
O23—N23—C23118.22 (15)C44—C45—N45118.8 (4)
O24—N23—C23117.89 (16)C45—C46—C41120
O25—N25—O26123.88 (17)C45—C46—H46120
O26—N25—C25118.21 (15)C41—C46—H46120
O25—N25—C25117.90 (17)O42—C47—O41127.6 (17)
C22—C21—C26119.64 (14)O42—C47—C41115.5 (14)
C22—C21—C27120.41 (14)O41—C47—C41116.8 (14)
C26—C21—C27119.90 (14)
C6—C1—C2—C30.1 (3)C31—C32—C33—C340.0
C15i—C1—C2—C3175.82 (16)C31—C32—C33—N33170.6 (9)
C1—C2—C3—C40.3 (3)O34—N33—C33—C32175 (3)
C2—C3—C4—C50.5 (3)O33—N33—C33—C328 (3)
C2—C3—C4—C7179.46 (17)O33—N33—C33—C34162 (3)
C3—C4—C5—C60.2 (3)O34—N33—C33—C3414 (3)
C7—C4—C5—C6179.69 (16)C32—C33—C34—C350.0
C2—C1—C6—C50.3 (3)N33—C33—C34—C35170.9 (9)
C15i—C1—C6—C5175.52 (16)C33—C34—C35—C360.0
C4—C5—C6—C10.2 (3)C33—C34—C35—N35179.8 (4)
C3—C4—C7—N8100.88 (18)O36—N35—C35—C3618.5 (5)
C4—C7—N8—C9171.03 (14)O35—N35—C35—C36161 (2)
C5—C4—C7—N879.2 (2)O35—N35—C35—C3419 (2)
C7—N8—C9—C10169.19 (13)O36—N35—C35—C34161.3 (3)
N8—C9—C10—N1154.38 (17)C34—C35—C36—C310.0
C9—C10—N11—C12164.64 (13)N35—C35—C36—C31179.8 (4)
C10—N11—C12—C13179.92 (13)C32—C31—C36—C350.0
N11—C12—C13—N1459.59 (17)C37—C31—C36—C35176.9 (15)
C12—C13—N14—C15163.25 (13)C32—C31—C37—O31145 (4)
C13—N14—C15—C1i178.45 (14)C32—C31—C37—O3235 (4)
N14—C15—C1i—C2i81.8 (2)C36—C31—C37—O32149 (4)
C26—C21—C22—C230.4 (2)C36—C31—C37—O3132 (4)
C27—C21—C22—C23177.91 (14)C46—C41—C42—C430.0
C21—C22—C23—C240.2 (2)C47—C41—C42—C43177.3 (15)
C21—C22—C23—N23176.06 (14)C41—C42—C43—C440.0
O23—N23—C23—C24173.9 (2)C41—C42—C43—N43168.8 (9)
O24—N23—C23—C245.1 (2)O44—N43—C43—C42171 (3)
O23—N23—C23—C222.2 (3)O43—N43—C43—C428 (3)
O24—N23—C23—C22178.84 (16)O43—N43—C43—C44177 (3)
C22—C23—C24—C250.5 (2)O44—N43—C43—C442 (3)
N23—C23—C24—C25175.39 (14)C42—C43—C44—C450.0
C23—C24—C25—C261.1 (2)N43—C43—C44—C45169.2 (9)
C23—C24—C25—N25175.21 (15)C43—C44—C45—C460.0
O26—N25—C25—C268.8 (3)C43—C44—C45—N45172.1 (3)
O25—N25—C25—C26172.14 (16)O46—N45—C45—C4617.5 (5)
O25—N25—C25—C2411.4 (2)O45—N45—C45—C46163 (2)
O26—N25—C25—C24167.7 (2)O45—N45—C45—C449 (2)
C24—C25—C26—C210.9 (2)O46—N45—C45—C44170.4 (3)
N25—C25—C26—C21175.32 (14)C44—C45—C46—C410.0
C22—C21—C26—C250.2 (2)N45—C45—C46—C41172.0 (3)
C27—C21—C26—C25177.40 (14)C42—C41—C46—C450.0
C22—C21—C27—O21172.4 (2)C47—C41—C46—C45177.4 (15)
C26—C21—C27—O2110.0 (2)C42—C41—C47—O41163 (4)
C22—C21—C27—O228.8 (2)C42—C41—C47—O4217 (4)
C26—C21—C27—O22168.78 (15)C46—C41—C47—O42166 (4)
C36—C31—C32—C330.0C46—C41—C47—O4114 (4)
C37—C31—C32—C33176.9 (15)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O320.921.892.72 (5)149
N8—H8A···O420.921.862.69 (5)150
N8—H8B···O210.921.882.716 (2)149
N14—H14A···O220.921.782.674 (2)163
N14—H14B···O510.921.962.815 (2)155
O51—H51···O310.841.912.75 (4)173
O51—H51···O410.841.842.67 (4)172
C36—H36···O24i0.952.303.234 (6)169
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC24H42N64+·4C7H3N2O6·2CH4O
Mr1323.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)24.6342 (7), 11.7501 (2), 21.4967 (7)
β (°) 102.397 (1)
V3)6077.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.27 × 0.25 × 0.16
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.969, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19757, 8760, 5934
Rint0.026
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.137, 1.04
No. of reflections8760
No. of parameters448
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.43

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997), NRCVAX96, ORTEP (Johnson, 1976) and PLATON (Spek, 2000), NRCVAX96, SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N8—C71.492 (2)O23—N231.215 (2)
N8—C91.492 (2)O24—N231.228 (2)
N11—C101.455 (2)O25—N251.219 (2)
N11—C121.452 (2)O26—N251.210 (2)
N14—C131.492 (2)N23—C231.466 (2)
N14—C151.496 (2)N25—C251.476 (2)
O21—C271.242 (2)O51—C521.404 (2)
O22—C271.255 (2)
O21—C27—O22128.32 (15)C22—C21—C26119.64 (14)
O23—N23—O24123.89 (17)C22—C23—C24122.81 (15)
O25—N25—O26123.88 (17)C24—C25—C26123.13 (16)
C3—C4—C7—N8100.88 (18)C22—C21—C27—O21172.4 (2)
C4—C7—N8—C9171.03 (14)C22—C21—C27—O228.8 (2)
C7—N8—C9—C10169.19 (13)O33—N33—C33—C34162 (3)
N8—C9—C10—N1154.38 (17)O34—N33—C33—C3414 (3)
C9—C10—N11—C12164.64 (13)O35—N35—C35—C3419 (2)
C10—N11—C12—C13179.92 (13)O36—N35—C35—C34161.3 (3)
N11—C12—C13—N1459.59 (17)C32—C31—C37—O31145 (4)
C12—C13—N14—C15163.25 (13)C32—C31—C37—O3235 (4)
C13—N14—C15—C1i178.45 (14)O43—N43—C43—C44177 (3)
N14—C15—C1i—C2i81.8 (2)O44—N43—C43—C442 (3)
O23—N23—C23—C24173.9 (2)O45—N45—C45—C449 (2)
O24—N23—C23—C245.1 (2)O46—N45—C45—C44170.4 (3)
O25—N25—C25—C2411.4 (2)C42—C41—C47—O41163 (4)
O26—N25—C25—C24167.7 (2)C42—C41—C47—O4217 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O320.921.892.72 (5)149
N8—H8A···O420.921.862.69 (5)150
N8—H8B···O210.921.882.716 (2)149
N14—H14A···O220.921.782.674 (2)163
N14—H14B···O510.921.962.815 (2)155
O51—H51···O310.841.912.75 (4)173
O51—H51···O410.841.842.67 (4)172
C36—H36···O24i0.952.303.234 (6)169
Symmetry code: (i) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds