Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A donor–acceptor compound, di­aqua-1κO,2κO-[μ-11,23-dimethyl-3,7,15,19-tetra­aza­tri­cyclo­[19.3.1.19,13]hexacosa-1(25),2,7,9,11,13(26),14,19,21,23-decaene-25,­26-diolato-1κ4N3,N7,O25,O26:­2κ4N15,N19,O25,O26]­dizinc(II) diperchlorate bis(8-methyl­quinoline) ethanol disolvate, [Zn2(C24H26N4O2)(H2O)2](ClO4)2·2C10H9N·2C2H6O, obtained by the reaction of a dinuclear zinc(II) complex of a Robson macrocycle (acceptor) and 8-methyl­quinoline (donor), lies about an inversion centre and the coordination about the unique Zn atom is a distorted square pyramid. The fifth coordination site is occupied by the water mol­ecule, Zn—O = 2.016 (2) Å, and the average macrocyclic Zn—O and Zn—N distances are 2.059 (6) and 2.059 (3) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012373/gg1016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012373/gg1016Isup2.hkl
Contains datablock I

CCDC reference: 156145

Comment top

Since the synthesis of crown ethers and the discovery of their complexing properties towards alkali metal cations in 1967 (Pedersen, 1967), host–guest chemistry has developed rapidly and now includes ancillary fields of study such as supermolecular chemistry, biomimetic chemistry and materials science (Lehn, 1995). The self-assembly process driven by noncovalent interactions such as hydrogen bonding, π-π stacking, electrostatic and van der Waals forces, hydrophobic and hydrophilic interactions is now universally recognized to be crucial in the proliferation of all biological organisms (Stang & Olenyuk, 1997). A variety of receptor molecules have been devised, and various anion binding strategies have been exploited which yield a plethora of novel structures of possible biological and chemical significance (Hawthorne & Zheng, 1997; Fyfe & Stoddart, 1997). Here we choose a dinuclear zinc(II) complex of a Robson macrocycle as a host and 8-methylquinoline as a guest to form a donor-acceptor compound, (I), in order to study the interactions between the two kinds of molecules. \sch

The asymmetric unit contains half a molecule with the Zn atom lying near the inversion centre. The coordination geometry around each metal may be considered to be a distorted square pyramid whose base plane is composed of O1, O1i, symmetry operator (i) 1 − x, −y, 1 − z, N1 and N2. These crystal data about the macrocyclic zinc complex are similar to that of a reported dinuclear zinc(II) complex of a Robson macrocycle diperchlorate (Adams et al., 1995). The water molecule (O1W) occupies the fifth coordinating site of Zn [Zn1—O1W = 2.015 (2) Å]. The crystal structure of the title complex contains two parallel planes: the macrocyclic plane and 8-methylquinoline plane. In the macrocyclic plane, there are two five-coordinate zinc(II) metals derived from four donors (two phenolic O atoms and two imine N atoms) on the macrocyclic framework with the water molecule out of the plane.

The six-membered ring, Zn1, N1, O1, C4, C5 and C10, adopts an envelope conformation. The 8-methylquinoline ring is planar and is essentially coplanar to the macrocyclic plane making an dihedral angle of 2.19 (5)°. The two Zn atoms are 3.228 (1) Å apart. The water molecule is involved in intermolecular O—H···N and O—H···O hydrogen bonds with the methylquinoline ring and solvent ethanol (Table 2). The perchlorate ion, highly disordered, connects the methylquinoline ring to the anion to form a two-dimensional network. An intra- and intermolecular C—H···π interaction is observed between the methylquinoline ring and centroid of the planar four-membered ring (Zn1, O1, Zn1i, O1i).

Experimental top

The dinuclear zinc(II) complex diperchlorate of a Robson macrocycle (0.732 g, 1 mmol), was prepared via a sodium template method as reported previously (Gou & Fenton, 1994), dissolved in 50 mL e thanol, then 8-methylquinoline (0.286 g, 2 mmol) was added. The mixture was refluxed for 1 h, then cooled to room temperature. The yellow precipitate was collected, washed with a small amount of ethanol and dried in vacuo. Yellow single crystals suitable for X-ray structure analysis were grown in an ethanol solution.

Refinement top

H atoms were introduced at calculated positions and refined using a riding model other than that of water molecule which was included in the refinement. The perchlorate ion and the ethanol solvent are disordered with major and minor components in ratio of 54:46 and 51:49, respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the D—A compound cation with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
[Zn2+]2[µ-{11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.19,13] hexacosa-1(25),2,7,9,11,13 (26),14,19,21,23-decaene-25,26-diolato-N3, N7,O25,O26:N15,N19,O25,O26}]2− 2[ClO4], bis(8-methylquinoline), 2(C2H5OH) top
Crystal data top
[Zn(C24H26N4O2)(OH2)2](ClO4)2·2C10H9N·2C2H6OF(000) = 1192
Mr = 1146.70Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8258 (2) ÅCell parameters from 8192 reflections
b = 15.1039 (1) Åθ = 2.7–28.4°
c = 14.7734 (2) ŵ = 1.09 mm1
β = 114.228 (1)°T = 293 K
V = 2609.82 (6) Å3Slab, light yellow
Z = 20.44 × 0.34 × 0.28 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
6445 independent reflections
Radiation source: fine-focus sealed tube4334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = 1017
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.645, Tmax = 0.750l = 1918
18483 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
6445 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 0.57 e Å3
124 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C24H26N4O2)(OH2)2](ClO4)2·2C10H9N·2C2H6OV = 2609.82 (6) Å3
Mr = 1146.70Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.8258 (2) ŵ = 1.09 mm1
b = 15.1039 (1) ÅT = 293 K
c = 14.7734 (2) Å0.44 × 0.34 × 0.28 mm
β = 114.228 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
6445 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4334 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.750Rint = 0.066
18483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044124 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.94Δρmax = 0.57 e Å3
6445 reflectionsΔρmin = 0.52 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.63271 (2)0.028475 (17)0.54039 (2)0.03520 (11)
O10.52767 (14)0.08100 (9)0.49760 (12)0.0380 (4)
N10.75237 (18)0.04122 (14)0.50914 (17)0.0431 (5)
N20.69007 (19)0.15173 (14)0.52408 (17)0.0459 (5)
C10.8041 (3)0.1624 (2)0.5229 (3)0.0752 (11)
H1A0.84000.21460.56140.090*
H1B0.79370.17340.45500.090*
C20.8828 (3)0.0870 (2)0.5616 (3)0.0771 (11)
H2A0.89080.07530.62870.092*
H2B0.95730.10530.56610.092*
C30.8532 (3)0.0036 (2)0.5065 (3)0.0653 (9)
H3A0.83900.01530.43780.078*
H3B0.91830.03610.53350.078*
C40.7534 (2)0.12564 (18)0.5041 (2)0.0449 (6)
H40.81860.15020.50150.054*
C50.6670 (2)0.18809 (16)0.50175 (18)0.0388 (6)
C60.6962 (2)0.27766 (17)0.5021 (2)0.0486 (7)
H60.76850.29140.50570.058*
C70.6232 (3)0.34623 (17)0.4973 (2)0.0511 (7)
C80.5158 (3)0.32255 (16)0.4897 (2)0.0492 (7)
H80.46450.36750.48570.059*
C90.4799 (2)0.23465 (14)0.48766 (17)0.0383 (6)
C100.5570 (2)0.16484 (14)0.49549 (16)0.0340 (5)
C110.6604 (3)0.44221 (19)0.5025 (3)0.0799 (11)
H11A0.59430.47920.47170.120*
H11B0.70960.44880.46840.120*
H11C0.70090.45930.57070.120*
C120.3655 (2)0.22325 (16)0.4818 (2)0.0453 (7)
H120.32690.27520.48240.054*
N30.7210 (2)0.34528 (14)0.25316 (16)0.0472 (6)
C130.8267 (3)0.3269 (2)0.2648 (2)0.0586 (8)
H130.87500.37390.26810.070*
C140.8702 (3)0.2410 (2)0.2723 (3)0.0673 (9)
H140.94560.23180.28170.081*
C150.8007 (3)0.1712 (2)0.2657 (2)0.0601 (8)
H150.82760.11360.26900.072*
C160.6877 (3)0.18699 (17)0.2539 (2)0.0484 (7)
C170.6112 (3)0.11731 (19)0.2470 (2)0.0596 (8)
H170.63470.05880.24920.072*
C180.5031 (3)0.1358 (2)0.2369 (3)0.0648 (9)
H180.45310.08970.23230.078*
C190.4661 (3)0.22402 (19)0.2334 (2)0.0564 (8)
H190.39230.23510.22770.068*
C200.5366 (3)0.29416 (17)0.23822 (19)0.0461 (6)
C210.6505 (2)0.27590 (16)0.24855 (18)0.0400 (6)
C220.4940 (3)0.38725 (18)0.2328 (2)0.0569 (8)
H22A0.41910.38660.23280.085*
H22B0.49030.41470.17290.085*
H22C0.54520.42010.28910.085*
O7A0.1841 (12)0.1379 (12)0.1848 (12)0.109 (5)0.520 (15)
H7A0.16900.18800.19690.163*0.520 (15)
C23A0.1121 (12)0.1156 (8)0.0865 (10)0.130 (5)0.520 (15)
H23A0.13740.06060.06810.156*0.520 (15)
H23B0.11470.16170.04170.156*0.520 (15)
C24A0.0064 (17)0.106 (2)0.078 (2)0.267 (15)0.520 (15)
H24A0.00610.07230.13390.400*0.520 (15)
H24B0.05090.07480.01800.400*0.520 (15)
H24C0.03910.16290.07750.400*0.520 (15)
O7B0.1421 (15)0.1294 (13)0.2055 (10)0.110 (5)0.480 (15)
H7B0.15910.18050.19830.164*0.480 (15)
C23B0.0458 (15)0.1073 (11)0.1297 (9)0.116 (6)0.480 (15)
H23C0.01640.12350.14770.139*0.480 (15)
H23D0.04500.04320.12480.139*0.480 (15)
C24B0.0173 (12)0.1421 (10)0.0299 (8)0.113 (5)0.480 (15)
H24D0.02010.20560.03220.170*0.480 (15)
H24E0.05830.12330.01360.170*0.480 (15)
H24F0.07130.12030.00560.170*0.480 (15)
Cl1A0.1389 (5)0.3783 (4)0.2583 (5)0.085 (2)0.541 (10)
O1A0.0392 (8)0.3641 (8)0.1694 (7)0.157 (5)0.541 (10)
O2A0.1170 (11)0.3899 (7)0.3388 (8)0.142 (5)0.541 (10)
O3A0.1932 (13)0.4478 (6)0.2393 (8)0.158 (6)0.541 (10)
O4A0.2097 (8)0.3030 (5)0.2650 (7)0.163 (5)0.541 (10)
Cl1B0.1383 (5)0.3785 (3)0.2555 (4)0.0503 (17)0.459 (10)
O1B0.0842 (13)0.3207 (9)0.1836 (13)0.203 (8)0.459 (10)
O2B0.2486 (7)0.4008 (9)0.2769 (11)0.158 (6)0.459 (10)
O3B0.0739 (10)0.4548 (6)0.2335 (11)0.186 (7)0.459 (10)
O4B0.1323 (13)0.3418 (13)0.3369 (11)0.241 (11)0.459 (10)
O1W0.68803 (18)0.01673 (13)0.68876 (15)0.0493 (5)
H1W0.699 (3)0.034 (2)0.714 (3)0.094 (14)*
H2W0.736 (3)0.056 (2)0.728 (3)0.090 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02962 (17)0.03155 (15)0.04366 (17)0.00338 (11)0.01426 (12)0.00015 (12)
O10.0340 (9)0.0271 (7)0.0516 (10)0.0014 (7)0.0164 (8)0.0019 (7)
N10.0372 (12)0.0428 (12)0.0536 (13)0.0031 (9)0.0231 (10)0.0038 (10)
N20.0370 (13)0.0395 (12)0.0624 (15)0.0070 (9)0.0217 (11)0.0011 (10)
C10.055 (2)0.0552 (19)0.126 (3)0.0112 (15)0.048 (2)0.009 (2)
C20.0426 (18)0.083 (2)0.111 (3)0.0205 (17)0.0372 (19)0.022 (2)
C30.052 (2)0.0611 (18)0.099 (3)0.0083 (14)0.0473 (19)0.0099 (18)
C40.0362 (15)0.0510 (15)0.0503 (16)0.0066 (11)0.0205 (12)0.0043 (12)
C50.0397 (14)0.0367 (12)0.0377 (13)0.0030 (10)0.0136 (11)0.0031 (10)
C60.0479 (17)0.0456 (15)0.0484 (15)0.0114 (12)0.0159 (13)0.0038 (12)
C70.062 (2)0.0340 (13)0.0513 (16)0.0085 (12)0.0171 (14)0.0006 (12)
C80.0622 (19)0.0293 (11)0.0511 (16)0.0064 (12)0.0182 (14)0.0010 (11)
C90.0453 (15)0.0316 (11)0.0363 (13)0.0038 (10)0.0150 (11)0.0007 (10)
C100.0382 (14)0.0301 (11)0.0295 (11)0.0001 (9)0.0096 (10)0.0007 (9)
C110.097 (3)0.0360 (15)0.102 (3)0.0155 (16)0.036 (2)0.0012 (17)
C120.0505 (17)0.0325 (13)0.0537 (16)0.0119 (11)0.0223 (13)0.0004 (11)
N30.0480 (15)0.0436 (12)0.0443 (12)0.0030 (10)0.0132 (11)0.0045 (10)
C130.0436 (18)0.0592 (18)0.0624 (19)0.0044 (14)0.0110 (14)0.0060 (15)
C140.0446 (18)0.076 (2)0.076 (2)0.0107 (16)0.0191 (16)0.0120 (18)
C150.059 (2)0.0530 (17)0.065 (2)0.0173 (15)0.0223 (16)0.0091 (15)
C160.0610 (19)0.0422 (14)0.0402 (14)0.0020 (13)0.0190 (13)0.0055 (11)
C170.080 (2)0.0378 (15)0.064 (2)0.0005 (14)0.0327 (17)0.0034 (13)
C180.081 (3)0.0478 (17)0.078 (2)0.0162 (16)0.0450 (19)0.0010 (16)
C190.0590 (19)0.0590 (18)0.0612 (19)0.0089 (14)0.0347 (15)0.0019 (15)
C200.0544 (18)0.0446 (14)0.0423 (14)0.0009 (12)0.0230 (13)0.0019 (11)
C210.0468 (16)0.0397 (13)0.0323 (12)0.0022 (11)0.0151 (11)0.0034 (10)
C220.059 (2)0.0501 (16)0.067 (2)0.0053 (13)0.0317 (16)0.0056 (14)
O7A0.093 (8)0.072 (5)0.112 (8)0.016 (5)0.009 (6)0.009 (5)
C23A0.123 (11)0.138 (9)0.102 (9)0.003 (7)0.017 (8)0.042 (7)
C24A0.24 (2)0.28 (3)0.27 (3)0.060 (19)0.087 (19)0.04 (2)
O7B0.110 (10)0.089 (8)0.083 (6)0.033 (7)0.008 (6)0.005 (5)
C23B0.117 (11)0.125 (9)0.077 (7)0.011 (8)0.012 (8)0.023 (7)
C24B0.095 (9)0.152 (10)0.078 (7)0.012 (7)0.019 (6)0.025 (7)
Cl1A0.063 (4)0.076 (4)0.098 (4)0.001 (3)0.013 (3)0.010 (3)
O1A0.094 (6)0.210 (14)0.115 (6)0.029 (7)0.011 (5)0.005 (7)
O2A0.207 (11)0.145 (8)0.143 (9)0.036 (7)0.141 (9)0.048 (7)
O3A0.251 (16)0.091 (6)0.173 (9)0.088 (8)0.130 (11)0.010 (5)
O4A0.151 (8)0.092 (5)0.197 (9)0.050 (5)0.022 (7)0.010 (5)
Cl1B0.059 (4)0.041 (3)0.070 (3)0.003 (2)0.046 (3)0.012 (2)
O1B0.181 (16)0.145 (10)0.284 (19)0.045 (9)0.096 (14)0.141 (12)
O2B0.049 (5)0.208 (15)0.226 (13)0.025 (6)0.067 (6)0.016 (10)
O3B0.141 (9)0.094 (7)0.267 (15)0.053 (6)0.027 (9)0.019 (8)
O4B0.138 (9)0.34 (2)0.208 (14)0.019 (12)0.037 (9)0.226 (15)
O1W0.0585 (13)0.0403 (11)0.0440 (11)0.0070 (9)0.0157 (9)0.0002 (9)
Geometric parameters (Å, º) top
Zn1—O12.0615 (15)C9—C121.445 (4)
Zn1—O1i2.0562 (16)C13—C141.398 (4)
Zn1—O1W2.016 (2)C14—C151.357 (5)
Zn1—N12.064 (2)C15—C161.407 (4)
Zn1—N22.052 (2)C16—C171.414 (4)
O1—C101.325 (3)C16—C211.417 (4)
N1—C31.475 (4)C17—C181.362 (4)
N1—C41.278 (3)C18—C191.408 (4)
N2—C11.479 (4)C19—C201.376 (4)
N2—C12i1.277 (3)C20—C211.432 (4)
C12—N2i1.277 (3)C20—C221.499 (4)
N3—C131.325 (4)O7A—C23A1.405 (16)
N3—C211.367 (3)C23A—C24A1.48 (2)
O1—Zn1i2.0562 (16)O7B—C23B1.325 (17)
C1—C21.473 (5)C23B—C24B1.464 (16)
C2—C31.463 (4)Cl1A—O2A1.340 (8)
C4—C51.445 (4)Cl1A—O3A1.351 (8)
C5—C61.403 (3)Cl1A—O1A1.424 (10)
C5—C101.419 (3)Cl1A—O4A1.434 (9)
C6—C71.378 (4)Cl1B—O1B1.329 (12)
C7—C81.382 (4)Cl1B—O4B1.355 (11)
C7—C111.518 (4)Cl1B—O2B1.360 (9)
C8—C91.402 (3)Cl1B—O3B1.377 (9)
C8—H80.9300O1W—H1W0.84 (3)
C9—C101.417 (3)O1W—H2W0.88 (3)
O1W—Zn1—O1i101.37 (8)C15—C16—C17122.2 (3)
O1W—Zn1—N1103.66 (9)C15—C16—C21118.3 (3)
O1W—Zn1—N2102.96 (9)C17—C16—C21119.5 (3)
N1—Zn1—N295.80 (9)C18—C17—C16120.1 (3)
N2—Zn1—O1155.84 (8)C18—C17—H17120.0
N2—Zn1—O1i89.12 (8)C16—C17—H17120.0
O1W—Zn1—O199.03 (8)C17—C18—C19120.7 (3)
O1i—Zn1—O176.77 (6)C17—C18—H18119.6
O1—Zn1—N188.55 (7)C19—C18—H18119.6
O1i—Zn1—N1152.66 (8)C20—C19—C18121.5 (3)
C10—O1—Zn1i128.62 (14)C20—C19—H19119.3
C10—O1—Zn1128.14 (14)C18—C19—H19119.3
Zn1i—O1—Zn1103.23 (6)C19—C20—C21118.5 (3)
C4—N1—C3115.3 (2)C19—C20—C22120.1 (3)
C4—N1—Zn1123.26 (19)C21—C20—C22121.3 (2)
C3—N1—Zn1120.84 (18)N3—C21—C16121.5 (3)
C12i—N2—C1115.7 (2)N3—C21—C20118.9 (2)
C12i—N2—Zn1123.94 (18)C16—C21—C20119.6 (2)
C1—N2—Zn1120.31 (18)C20—C22—H22A109.5
C2—C1—N2115.8 (3)C20—C22—H22B109.5
C2—C1—H1A108.3H22A—C22—H22B109.5
N2—C1—H1A108.3C20—C22—H22C109.5
C2—C1—H1B108.3H22A—C22—H22C109.5
N2—C1—H1B108.3H22B—C22—H22C109.5
H1A—C1—H1B107.4O7A—C23A—C24A108.9 (17)
C3—C2—C1118.0 (3)O7A—C23A—H23A109.9
C3—C2—H2A107.8C24A—C23A—H23A109.9
C1—C2—H2A107.8O7A—C23A—H23B109.9
C3—C2—H2B107.8C24A—C23A—H23B109.9
C1—C2—H2B107.8H23A—C23A—H23B108.3
H2A—C2—H2B107.1C23A—C24A—H24A110.0
C2—C3—N1114.2 (3)C23A—C24A—H24B108.8
C2—C3—H3A108.7H24A—C24A—H24B109.5
N1—C3—H3A108.7C23A—C24A—H24C109.7
C2—C3—H3B108.7H24A—C24A—H24C109.5
N1—C3—H3B108.7H24B—C24A—H24C109.5
H3A—C3—H3B107.6C23B—O7B—H7B109.5
N1—C4—C5128.8 (2)O7B—C23B—C24B121.4 (15)
N1—C4—H4115.6O7B—C23B—H24A124.6
C5—C4—H4115.6C24B—C23B—H24A114.0
C6—C5—C10119.7 (2)O7B—C23B—H24C125.8
C6—C5—C4115.3 (2)C24B—C23B—H24C52.2
C10—C5—C4124.9 (2)H24A—C23B—H24C87.5
C7—C6—C5123.3 (3)O7B—C23B—H23C107.0
C7—C6—H6118.3C24B—C23B—H23C107.0
C5—C6—H6118.3H24A—C23B—H23C52.8
C6—C7—C8116.3 (2)H24C—C23B—H23C55.6
C6—C7—C11121.5 (3)O7B—C23B—H23D107.0
C8—C7—C11122.2 (3)C24B—C23B—H23D107.0
C7—C8—C9123.7 (3)H24A—C23B—H23D54.3
C7—C8—H8118.2H24C—C23B—H23D126.9
C9—C8—H8118.2H23C—C23B—H23D106.7
C8—C9—C10119.4 (3)C23B—C24B—H24B74.5
C8—C9—C12115.5 (2)C23B—C24B—H24C58.8
C10—C9—C12125.0 (2)H24B—C24B—H24C76.0
O1—C10—C9121.2 (2)C23B—C24B—H24D109.5
O1—C10—C5121.3 (2)C23B—C24B—H24E109.5
C9—C10—C5117.6 (2)H24D—C24B—H24E109.5
C7—C11—H11A109.5C23B—C24B—H24F109.5
C7—C11—H11B109.5H24D—C24B—H24F109.5
H11A—C11—H11B109.5H24E—C24B—H24F109.5
C7—C11—H11C109.5O2A—Cl1A—O3A113.4 (8)
H11A—C11—H11C109.5O2A—Cl1A—O1A113.7 (8)
H11B—C11—H11C109.5O3A—Cl1A—O1A105.6 (8)
N2i—C12—C9129.0 (2)O2A—Cl1A—O4A113.6 (8)
N2i—C12—H12115.5O3A—Cl1A—O4A105.3 (8)
C9—C12—H12115.5O1A—Cl1A—O4A104.4 (7)
C13—N3—C21117.8 (2)O1B—Cl1B—O4B103.9 (11)
N3—C13—C14123.9 (3)O1B—Cl1B—O2B120.0 (9)
N3—C13—H13118.0O4B—Cl1B—O2B109.1 (9)
C14—C13—H13118.0O1B—Cl1B—O3B107.2 (9)
C15—C14—C13119.1 (3)O4B—Cl1B—O3B107.8 (10)
C15—C14—H14120.5O2B—Cl1B—O3B108.3 (7)
C13—C14—H14120.5Zn1—O1W—H1W119 (3)
C14—C15—C16119.3 (3)Zn1—O1W—H2W120 (3)
C14—C15—H15120.3H1W—O1W—H2W113 (4)
C16—C15—H15120.3
O1W—Zn1—O1—C1080.2 (2)C11—C7—C8—C9178.1 (3)
N2—Zn1—O1—C10124.4 (2)C7—C8—C9—C101.2 (4)
O1i—Zn1—O1—C10179.9 (2)C7—C8—C9—C12178.6 (3)
N1—Zn1—O1—C1023.4 (2)Zn1i—O1—C10—C915.4 (3)
O1W—Zn1—O1—Zn1i99.65 (9)Zn1—O1—C10—C9164.44 (16)
N2—Zn1—O1—Zn1i55.8 (2)Zn1i—O1—C10—C5165.11 (16)
O1i—Zn1—O1—Zn1i0.0Zn1—O1—C10—C515.1 (3)
N1—Zn1—O1—Zn1i156.75 (9)C8—C9—C10—O1177.4 (2)
O1W—Zn1—N1—C478.6 (2)C12—C9—C10—O10.3 (4)
N2—Zn1—N1—C4176.5 (2)C8—C9—C10—C52.1 (3)
O1i—Zn1—N1—C477.2 (3)C12—C9—C10—C5179.2 (2)
O1—Zn1—N1—C420.4 (2)C6—C5—C10—O1178.2 (2)
O1W—Zn1—N1—C391.9 (2)C4—C5—C10—O14.4 (4)
N2—Zn1—N1—C313.0 (2)C6—C5—C10—C91.3 (3)
O1i—Zn1—N1—C3112.4 (2)C4—C5—C10—C9176.1 (2)
O1—Zn1—N1—C3169.2 (2)C8—C9—C12—N2i177.7 (3)
O1W—Zn1—N2—C12i87.2 (2)C10—C9—C12—N2i5.0 (4)
O1i—Zn1—N2—C12i14.3 (2)C21—N3—C13—C140.2 (4)
O1—Zn1—N2—C12i67.8 (3)N3—C13—C14—C151.2 (5)
N1—Zn1—N2—C12i167.3 (2)C13—C14—C15—C161.5 (5)
O1W—Zn1—N2—C190.1 (3)C14—C15—C16—C17179.7 (3)
O1i—Zn1—N2—C1168.5 (2)C14—C15—C16—C210.5 (4)
O1—Zn1—N2—C1114.9 (3)C15—C16—C17—C18179.1 (3)
N1—Zn1—N2—C115.4 (3)C21—C16—C17—C181.1 (4)
C12i—N2—C1—C2160.8 (3)C16—C17—C18—C190.1 (5)
Zn1—N2—C1—C216.7 (4)C17—C18—C19—C201.1 (5)
N2—C1—C2—C366.0 (5)C18—C19—C20—C211.0 (4)
C1—C2—C3—N168.4 (5)C18—C19—C20—C22179.1 (3)
C4—N1—C3—C2149.5 (3)C13—N3—C21—C161.3 (4)
Zn1—N1—C3—C221.7 (4)C13—N3—C21—C20178.6 (2)
C3—N1—C4—C5177.9 (3)C15—C16—C21—N31.0 (4)
Zn1—N1—C4—C511.2 (4)C17—C16—C21—N3178.8 (3)
N1—C4—C5—C6176.3 (3)C15—C16—C21—C20178.9 (2)
N1—C4—C5—C106.2 (4)C17—C16—C21—C201.3 (4)
C10—C5—C6—C70.5 (4)C19—C20—C21—N3179.9 (2)
C4—C5—C6—C7178.1 (3)C22—C20—C21—N30.2 (4)
C5—C6—C7—C81.4 (4)C19—C20—C21—C160.2 (4)
C5—C6—C7—C11177.2 (3)C22—C20—C21—C16179.7 (2)
C6—C7—C8—C90.6 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N3ii0.84 (3)1.90 (3)2.731 (3)172 (4)
O1W—H2W···O7Ai0.88 (3)1.78 (4)2.648 (17)171 (4)
C3—H3A···O3Aiii0.972.543.508 (12)177
C3—H3B···O1Aiv0.972.483.348 (11)149
C15—H15···O3Aiii0.932.523.377 (10)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C24H26N4O2)(OH2)2](ClO4)2·2C10H9N·2C2H6O
Mr1146.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.8258 (2), 15.1039 (1), 14.7734 (2)
β (°) 114.228 (1)
V3)2609.82 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.44 × 0.34 × 0.28
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.645, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
18483, 6445, 4334
Rint0.066
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 0.94
No. of reflections6445
No. of parameters412
No. of restraints124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.52

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Zn1—O12.0615 (15)N1—C41.278 (3)
Zn1—O1i2.0562 (16)N2—C11.479 (4)
Zn1—O1W2.016 (2)N2—C12i1.277 (3)
Zn1—N12.064 (2)C12—N2i1.277 (3)
Zn1—N22.052 (2)N3—C131.325 (4)
O1—C101.325 (3)N3—C211.367 (3)
N1—C31.475 (4)
O1W—Zn1—O1i101.37 (8)O1W—Zn1—O199.03 (8)
O1W—Zn1—N1103.66 (9)O1i—Zn1—O176.77 (6)
O1W—Zn1—N2102.96 (9)O1—Zn1—N188.55 (7)
N1—Zn1—N295.80 (9)O1i—Zn1—N1152.66 (8)
N2—Zn1—O1155.84 (8)C10—O1—Zn1i128.62 (14)
N2—Zn1—O1i89.12 (8)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N3ii0.84 (3)1.90 (3)2.731 (3)172 (4)
O1W—H2W···O7Ai0.88 (3)1.78 (4)2.648 (17)171 (4)
C3—H3A···O3Aiii0.972.543.508 (12)177
C3—H3B···O1Aiv0.972.483.348 (11)149
C15—H15···O3Aiii0.932.523.377 (10)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds