Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two isomorphous title compounds, [M(C5H7N6)2(C9H6O4)2(H2O)2]·4H2O or M2+(Hdap+)2(hpt2−)2(H2O)2·4H2O {where dap is 2,6-diamino­purine, H2hpt is homophthalic acid [2-(2-carboxy­phenyl)­acetic acid] and M is NiII or CoII}, consist of neutral M2+(Hdap+)2(hpt2−)2(H2O)2 monomers, where the MII cation lies on an inversion centre and its MN2O4 octa­hedral environment is defined by one N atom (from Hdap+), two O atoms (from one hpt2− dianion and one water molecule) and their inversion images. The structures are unusual in that the Hdap+ cation occurs in an uncommon protonated state (as 2,6-diamino-7H-purin-1-ium) and both ligands bind in an unprecedented monodentate fashion. The existence of a large number of donors and acceptors for hydrogen bonding, together with π–π inter­actions, leads to a rather complex three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111014521/gd3385sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111014521/gd3385Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111014521/gd3385IIsup3.hkl
Contains datablock II

CCDC references: 829700; 829701

Comment top

2,6-Diaminopurine (dap) is a highly versatile entity for hydrogen bonding due to its many active sites which allow it to take part in extremely complex hydrogen-bonding networks, either as a donor or as an acceptor. We have recently reported (Atria et al., 2010, 2011) some structures in which the molecule can occur either as a free base or as a cation. In all these cases, the (unbound) molecules or ions give rise to complex hydrogen-bonding schemes resulting from their intermolecular interactions. Moreover, in addition to its hydrogen-bonding capabilities, the molecule can also act as a monocoordinated ligand binding to metal sites through an imidazole N atom. The coordinating capabilities of dap, however, seem to be rather poor: only one compound with the molecule binding to a metal centre appears in the Cambridge Structural Database (CSD, Version 5.31; Allen, 2002), in a Zn complex reported by Badura & Vahrenkamp (2002). In this Zn complex, the dap molecule is present with the imidazole ring completely deprotonated, behaving as a dap- anion. We report here two isomorphous transition metal complexes displaying a coordinated Hdap+ cation, where the ligand binds to the metal centres in a similar mode but behaving as a singly protonated Hdap+ cation. The complexes are completed by a homophthalate dianion (hpt2-), giving the overall constitution M2+(Hdap+)2(hpt2-)2(H2O)2.4H2O, where M is Ni for (I) and Co for (II). These compounds are unusual in that they represent the first occurrence of the Hdap+ cation acting in a monodentate N-coordinating role. Due to the fact that the NiII and CoII structures are isomorphous, all the figures shown are restricted to compound (I) as representative of both.

The structures consist of neutral monomers where the MII cations lie on inversion centres and the MO4N2 octahedral environment is defined by two O atoms (from one coordinated water molecule and one monodentate hpt2- dianion), one N atom (from one Hdap+ cation) and their inversion images (Fig. 1). The resulting polyhedron is quite regular, with coordination distances in the ranges 2.0707 (14)–2.1116 (14) Å for Ni1 in (I) and 2.103 (2)–2.147 (2) Å for Co1 in (II). The intramolecular cis angles, in turn, differ from the ideal 90° by less than ±2.79 (5)° in (I) and ±2.14 (8)° in (II), while the trans angles are forced to be exactly 180° due to the symmetry constraints (Tables 1 and 3).

The hpt2- dianion binds in an unprecedented monodentate manner: all remaining examples in the literature of this ligand in metal complexes show it in a variety of chelating and/or bridging modes (Fig. 2), but never singly coordinated as in the present structure (structure 1b in Fig. 2). Regarding its internal geometry, the carboxylate groups do not deviate significantly from their expected geometries; the COO- group is almost coplanar with the central benzyl core, while the CCOO- group is almost perpendicular, the out-of-plane angles being 5.5 (1)/81.7 (1) and 5.7 (1)/83.2 (1)° for (I)/(II), respectively. C—O distances are very sensitive to their involvement in hydrogen bonding, and the longest C—O distances correspond to O atoms triply involved in such interactions, viz. C92—O22. In this case, the softening is even more important than that introduced in C92—O12 by the coordination of atom O12 to the metal [C—O relative lengthening ~1.5% in (I) and ~2% in (II)].

As already noted, the Hdap+ group has not been frequently reported in the literature, and in the few known examples it occurs as an uncoordinated unit, so that the present binding mode can be regarded as novel. However, this is not the only point to make it unique. The only two structures so far reported containing such a cation are those of bis(2,6-diamino-9H-purin-1-ium) 2-(2-carboxylatophenyl)acetate heptahydrate, (III) (Atria et al., 2010), and bis(2,6-diamino-1H-purin-3-ium di-croconato-κ3O,O':O'';κ3O:O',O''-bis[tetraaqua(croconato-κ2O,O')neodymium(III)], (IV) (Atria et al., 2011), so that all three Hdap+ groups [appearing in (I)/(II), (III) and (IV)] are different in that protonation takes place at different N-atom sites, viz. at N2/N3 in (I)/(II) as 2,6-diamino-1H-purin-1-ium, at N2/N4 in (III) as 2,6-diamino-9H-purin-1-ium, and at N1/N3 in (IV) as 2,6-diamino-1H-purin-3-ium. This form of tautomerism involving a proton relocation is known as prototropy and has the effect of forcing a rearrangement in the charge distribution, shown in Scheme 2 as different positioning of the single and double bonds around the rings. On the other hand, the metrics of the formal single and double bonds and the planarity of the ligand in (I) and (II) are comparable with those previously reported for (III) and (IV).

The intermolecular interactions are consequently the most distinctive features of both structures. The complex hydrogen-bonding scheme links the monomers together in an intricate fashion. Tables 2 and 4 present the main interactions of this sort, of various types and strengths. The first entry in each table corresponds to a hydrogen bond within the selected asymmetric unit, which helps to provide a tightly bound core around the MII cation (Fig. 3). Three N—H···O hydrogen bonds, having (N—H)Hdap groups as donors and Ohpt atoms as acceptors, link the monomers together, defining chains parallel to [001] (Fig. 3), and these chains are in turn connected along [010] by two different ππ contacts between aromatic rings, described in detail in Table 5 and shown in Fig. 3 as A and B, respectively. These contacts complete the formation of two-dimensional structures parallel to (100). Finally, the hydrogen bonds involving the uncoordinated water molecules link the planar arrays along [100] to form a three-dimensional structure. In this `gluing' role, molecule O2W stands out as a double donor as well as a double acceptor (Fig. 4; Tables 2 and 4, entries 6–9); the disordered water molecule O3W does not seem to be involved in any important interaction of this sort, the only detectable contact observed (Tables 2 and 4, entry 10) being quite long and thus very weak.

Related literature top

For related literature, see: Allen (2002); Atria et al. (2010, 2011); Badura & Vahrenkamp (2002).

Experimental top

Complexes (I) and (II) were synthesized by adding an aqueous solution (80 ml) of M(acetate)2.4H2O (1 mmol) [M = Ni for (I) and Co for (II)] to an aqueous solution containing homophthalic acid (0.5 mmol) and NaOH (1 mmol). The resulting mixture was stirred for 5 min followed by the addition of a methanol solution (20 ml) of 2,6-diaminepurine (0.5 mmol). X-ray quality single crystals of (I) and (II) were obtained by slow evaporation of the filtered reaction mixture.

Refinement top

In both structures, uncoordinated water atom O3W appeared to be disordered over two sites; when the site-occupancy factors (SOFs) were refined independently, they converged to nearly complementary values, viz. 1.01 for (I) and 1.06 for (II). Thus, the condition SOF(O3WA) + SOF(O3WB) = 1.0 was imposed. The restrained refinements of the SOFs converged to 0.808 (15):0.192 (15) for (I) and 0.776 (15):0.224 (14) for (II). In both cases, the minor component was refined isotropically. All the H atoms (except for those of the disordered O3W, which were not included in the model) were clearly located in difference maps but they were given different treatments. H atoms bonded to C atoms were repositioned at their expected locations, and then treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = kUeq(parent), where k = 1.2 or 1.5. H atoms bonded to O and N atoms were refined with restrained O/N—H distances of 0.85 (1) Å and free Uiso(H) values.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The binding modes shown by the homophthalate ligand. Explanation of the [µκ(n)] symbol: µ is the number of metal atoms bridged by the ligand, κ is the sequential label within the µ group and n is the number of entries found in the CSD for the µκ mode. Note: (*) this work.
[Figure 3] Fig. 3. A packing view of (I), parallel to the (100) plane, showing a clear view of the hydrogen-bonded chains running along [001] (one is highlighted for clarity). The chains are in turn interconnected by two types of ππ contacts (A and B) to form two-dimensional structures parallel to (100). C-bound H atoms have been omitted?
[Figure 4] Fig. 4. A packing view of (I) in an [001] projection, at right angles to the planes shown in Fig. 3, showing the way in which the four hydrogen bonds involving water atom O2W link the planes together into a three-dimensional structure. H atoms involved in hydrogen bonding are drawn as small circles (green in the electronic version of the paper).
(I) diaquabis(2,6-diamino-7H-purin-1-ium-κN9)bis[2-(2- carboxylatophenyl)acetato-κO]nickel(II) tetrahydrate top
Crystal data top
[Ni(C9H6O4)2(C5H7N6)2(H2O)2]·4H2OZ = 1
Mr = 825.41F(000) = 430
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.655 (4) ÅCell parameters from 6856 reflections
b = 10.017 (4) Åθ = 2.4–27.7°
c = 10.680 (4) ŵ = 0.66 mm1
α = 107.082 (5)°T = 150 K
β = 90.384 (6)°Block, light green
γ = 118.537 (5)°0.36 × 0.32 × 0.20 mm
V = 854.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3607 independent reflections
Radiation source: fine-focus sealed tube3299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
CCD rotation images, thin slices scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1212
Tmin = 0.81, Tmax = 0.88k = 1312
6856 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1283P]
where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.52 e Å3
12 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Ni(C9H6O4)2(C5H7N6)2(H2O)2]·4H2Oγ = 118.537 (5)°
Mr = 825.41V = 854.0 (6) Å3
Triclinic, P1Z = 1
a = 9.655 (4) ÅMo Kα radiation
b = 10.017 (4) ŵ = 0.66 mm1
c = 10.680 (4) ÅT = 150 K
α = 107.082 (5)°0.36 × 0.32 × 0.20 mm
β = 90.384 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
3299 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.88Rint = 0.021
6856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03512 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.52 e Å3
3607 reflectionsΔρmin = 0.23 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.02513 (11)
C110.2449 (2)0.3793 (2)0.67569 (19)0.0344 (4)
H110.17280.38770.62490.028 (5)*
C210.3450 (2)0.3282 (2)0.82690 (17)0.0310 (4)
C310.3837 (2)0.2822 (2)0.92768 (17)0.0306 (4)
C410.6459 (2)0.3861 (2)0.87106 (18)0.0312 (4)
C510.4595 (2)0.3931 (2)0.75188 (17)0.0283 (3)
N110.39475 (17)0.42373 (18)0.65585 (15)0.0303 (3)
N210.20917 (18)0.3213 (2)0.77642 (16)0.0340 (3)
H210.1200 (18)0.288 (3)0.805 (2)0.055 (7)*
N310.53768 (19)0.31592 (19)0.94715 (15)0.0325 (3)
H310.570 (3)0.288 (4)1.006 (2)0.081 (10)*
N410.61132 (18)0.42354 (18)0.77049 (15)0.0321 (3)
N510.2832 (2)0.2116 (2)1.00229 (17)0.0398 (4)
H51A0.315 (3)0.196 (3)1.0686 (16)0.048 (7)*
H51B0.1865 (14)0.187 (2)0.983 (2)0.033 (5)*
N610.7956 (2)0.4196 (2)0.90521 (19)0.0448 (4)
H61A0.862 (2)0.451 (3)0.8531 (19)0.048 (7)*
H61B0.809 (3)0.383 (3)0.9642 (18)0.050 (7)*
C120.7358 (2)0.1435 (2)0.24692 (17)0.0313 (4)
C220.6051 (2)0.0536 (2)0.30261 (17)0.0291 (4)
C320.6319 (2)0.0143 (2)0.39061 (19)0.0341 (4)
H320.54710.07520.42740.035 (5)*
C420.7815 (2)0.0065 (2)0.4246 (2)0.0393 (4)
H420.79640.03830.48470.049 (6)*
C520.9081 (2)0.0937 (2)0.3691 (2)0.0409 (4)
H521.00870.10780.39140.057 (7)*
C620.8844 (2)0.1601 (2)0.2801 (2)0.0389 (4)
H620.96940.21710.24150.046 (6)*
C720.7232 (2)0.2223 (2)0.14985 (18)0.0353 (4)
C820.4371 (2)0.0195 (2)0.26766 (18)0.0313 (4)
H82A0.36570.06450.30140.045 (6)*
H82B0.40740.02350.17150.028 (5)*
C920.4073 (2)0.1612 (2)0.31881 (17)0.0285 (4)
O120.50069 (14)0.28125 (14)0.41715 (12)0.0303 (3)
O220.28188 (15)0.14332 (16)0.25923 (14)0.0389 (3)
O320.59350 (18)0.2183 (2)0.12656 (16)0.0538 (4)
O420.84166 (18)0.2891 (2)0.09734 (16)0.0530 (4)
O1W0.27208 (15)0.40427 (16)0.39792 (13)0.0326 (3)
H1WA0.255 (3)0.3132 (15)0.3463 (17)0.043 (6)*
H1WB0.281 (4)0.457 (2)0.346 (2)0.081 (10)*
O2W0.03256 (17)0.14963 (19)0.90211 (16)0.0476 (4)
H2WA0.107 (2)0.062 (2)0.847 (2)0.080 (10)*
H2WB0.078 (3)0.181 (3)0.963 (2)0.087 (11)*
O3WA0.9138 (4)0.4070 (5)0.6171 (7)0.110 (2)0.774 (14)
O3WB0.905 (2)0.437 (2)0.537 (3)0.141 (7)*0.226 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02256 (17)0.02707 (18)0.02802 (18)0.01256 (13)0.00383 (11)0.01211 (13)
C110.0341 (9)0.0401 (10)0.0352 (10)0.0209 (8)0.0082 (7)0.0170 (8)
C210.0323 (9)0.0307 (9)0.0300 (9)0.0157 (8)0.0059 (7)0.0104 (7)
C310.0365 (9)0.0275 (8)0.0254 (8)0.0151 (8)0.0060 (7)0.0073 (7)
C410.0328 (9)0.0285 (9)0.0326 (9)0.0152 (7)0.0039 (7)0.0109 (7)
C510.0319 (9)0.0267 (8)0.0268 (8)0.0152 (7)0.0040 (7)0.0089 (7)
N110.0300 (7)0.0326 (8)0.0326 (8)0.0168 (6)0.0070 (6)0.0148 (6)
N210.0296 (8)0.0412 (9)0.0355 (8)0.0189 (7)0.0105 (6)0.0165 (7)
N310.0372 (8)0.0333 (8)0.0292 (8)0.0178 (7)0.0038 (6)0.0135 (6)
N410.0319 (8)0.0336 (8)0.0348 (8)0.0166 (7)0.0067 (6)0.0165 (7)
N510.0393 (9)0.0503 (10)0.0341 (9)0.0208 (8)0.0104 (7)0.0226 (8)
N610.0349 (9)0.0574 (11)0.0522 (11)0.0225 (8)0.0077 (8)0.0330 (9)
C120.0330 (9)0.0349 (9)0.0288 (9)0.0186 (8)0.0060 (7)0.0117 (7)
C220.0316 (9)0.0263 (8)0.0288 (9)0.0159 (7)0.0045 (7)0.0062 (7)
C320.0394 (10)0.0292 (9)0.0371 (10)0.0188 (8)0.0112 (8)0.0131 (8)
C420.0465 (11)0.0398 (10)0.0402 (11)0.0258 (9)0.0043 (9)0.0177 (9)
C520.0347 (10)0.0447 (11)0.0475 (11)0.0212 (9)0.0019 (8)0.0187 (9)
C620.0333 (10)0.0435 (11)0.0438 (11)0.0188 (9)0.0088 (8)0.0204 (9)
C720.0392 (10)0.0445 (11)0.0301 (9)0.0248 (9)0.0091 (8)0.0161 (8)
C820.0283 (8)0.0274 (9)0.0344 (9)0.0129 (7)0.0035 (7)0.0072 (7)
C920.0263 (8)0.0314 (9)0.0311 (9)0.0145 (7)0.0083 (7)0.0149 (7)
O120.0316 (6)0.0294 (6)0.0312 (6)0.0171 (5)0.0016 (5)0.0088 (5)
O220.0328 (7)0.0385 (7)0.0431 (8)0.0200 (6)0.0021 (6)0.0070 (6)
O320.0470 (8)0.0917 (12)0.0570 (9)0.0452 (9)0.0229 (7)0.0519 (9)
O420.0484 (9)0.0772 (11)0.0607 (10)0.0380 (8)0.0253 (7)0.0477 (9)
O1W0.0265 (6)0.0331 (7)0.0382 (7)0.0136 (6)0.0026 (5)0.0145 (6)
O2W0.0318 (7)0.0488 (9)0.0494 (9)0.0133 (7)0.0106 (7)0.0118 (7)
O3WA0.102 (3)0.098 (3)0.133 (5)0.065 (2)0.031 (2)0.018 (2)
Geometric parameters (Å, º) top
Ni1—O1Wi2.0707 (14)C12—C621.393 (3)
Ni1—O1W2.0707 (14)C12—C221.412 (3)
Ni1—N112.1011 (15)C12—C721.511 (2)
Ni1—N11i2.1011 (15)C22—C321.398 (3)
Ni1—O122.1116 (14)C22—C821.508 (2)
Ni1—O12i2.1116 (14)C32—C421.386 (3)
C11—N111.334 (2)C32—H320.9300
C11—N211.340 (2)C42—C521.379 (3)
C11—H110.9300C42—H420.9300
C21—N211.377 (2)C52—C621.383 (3)
C21—C511.385 (2)C52—H520.9300
C21—C311.401 (3)C62—H620.9300
C31—N511.328 (2)C72—O421.252 (2)
C31—N311.357 (2)C72—O321.255 (2)
C41—N411.326 (2)C82—C921.527 (2)
C41—N611.339 (2)C82—H82A0.9700
C41—N311.375 (2)C82—H82B0.9700
C51—N411.347 (2)C92—O121.254 (2)
C51—N111.377 (2)C92—O221.272 (2)
N21—H210.855 (10)O1W—H1WA0.851 (9)
N31—H310.866 (10)O1W—H1WB0.850 (10)
N51—H51A0.853 (10)O2W—H2WA0.849 (10)
N51—H51B0.851 (10)O2W—H2WB0.852 (10)
N61—H61A0.858 (10)O3WA—O3WB1.00 (2)
N61—H61B0.852 (10)
O1Wi—Ni1—O1W180.0C31—N51—H51B116.8 (14)
O1Wi—Ni1—N1191.67 (6)H51A—N51—H51B122 (2)
O1W—Ni1—N1188.33 (6)C41—N61—H61A117.6 (16)
O1Wi—Ni1—N11i88.33 (6)C41—N61—H61B115.5 (17)
O1W—Ni1—N11i91.67 (6)H61A—N61—H61B125 (2)
N11—Ni1—N11i180.0C62—C12—C22119.53 (16)
O1Wi—Ni1—O1287.21 (5)C62—C12—C72117.20 (16)
O1W—Ni1—O1292.79 (5)C22—C12—C72123.26 (16)
N11—Ni1—O1290.00 (6)C32—C22—C12117.78 (16)
N11i—Ni1—O1290.00 (5)C32—C22—C82118.09 (16)
O1Wi—Ni1—O12i92.79 (5)C12—C22—C82124.05 (16)
O1W—Ni1—O12i87.21 (5)C42—C32—C22121.83 (17)
N11—Ni1—O12i90.00 (5)C42—C32—H32119.1
N11i—Ni1—O12i90.00 (6)C22—C32—H32119.1
O12—Ni1—O12i180.000 (1)C52—C42—C32119.96 (17)
N11—C11—N21113.00 (16)C52—C42—H42120.0
N11—C11—H11123.5C32—C42—H42120.0
N21—C11—H11123.5C42—C52—C62119.42 (18)
N21—C21—C51106.31 (15)C42—C52—H52120.3
N21—C21—C31134.66 (17)C62—C52—H52120.3
C51—C21—C31119.01 (16)C52—C62—C12121.46 (18)
N51—C31—N31119.93 (16)C52—C62—H62119.3
N51—C31—C21125.12 (17)C12—C62—H62119.3
N31—C31—C21114.95 (15)O42—C72—O32123.08 (17)
N41—C41—N61119.60 (17)O42—C72—C12119.09 (17)
N41—C41—N31124.39 (16)O32—C72—C12117.83 (16)
N61—C41—N31116.00 (16)C22—C82—C92117.04 (14)
N41—C51—N11125.07 (16)C22—C82—H82A108.0
N41—C51—C21125.50 (16)C92—C82—H82A108.0
N11—C51—C21109.43 (15)C22—C82—H82B108.0
C11—N11—C51104.74 (15)C92—C82—H82B108.0
C11—N11—Ni1127.37 (12)H82A—C82—H82B107.3
C51—N11—Ni1127.61 (12)O12—C92—O22124.80 (16)
C11—N21—C21106.52 (15)O12—C92—C82119.49 (15)
C11—N21—H21126.7 (17)O22—C92—C82115.64 (15)
C21—N21—H21126.7 (17)C92—O12—Ni1127.85 (11)
C31—N31—C41122.32 (15)Ni1—O1W—H1WA101.2 (15)
C31—N31—H31120 (2)Ni1—O1W—H1WB107 (2)
C41—N31—H31117 (2)H1WA—O1W—H1WB104.2 (14)
C41—N41—C51113.69 (15)H2WA—O2W—H2WB105.8 (15)
C31—N51—H51A121.5 (16)
N21—C21—C31—N511.3 (3)N61—C41—N41—C51175.93 (17)
C51—C21—C31—N51176.56 (17)N31—C41—N41—C512.8 (3)
N21—C21—C31—N31178.35 (19)N11—C51—N41—C41178.85 (16)
C51—C21—C31—N313.8 (2)C21—C51—N41—C410.4 (3)
N21—C21—C51—N41178.58 (17)C62—C12—C22—C320.5 (3)
C31—C21—C51—N413.0 (3)C72—C12—C22—C32179.57 (17)
N21—C21—C51—N110.7 (2)C62—C12—C22—C82176.23 (17)
C31—C21—C51—N11177.65 (15)C72—C12—C22—C822.8 (3)
N21—C11—N11—C510.6 (2)C12—C22—C32—C420.9 (3)
N21—C11—N11—Ni1173.58 (12)C82—C22—C32—C42177.84 (17)
N41—C51—N11—C11178.51 (17)C22—C32—C42—C521.3 (3)
C21—C51—N11—C110.81 (19)C32—C42—C52—C620.2 (3)
N41—C51—N11—Ni17.3 (3)C42—C52—C62—C121.3 (3)
C21—C51—N11—Ni1173.35 (12)C22—C12—C62—C521.6 (3)
O1Wi—Ni1—N11—C11163.96 (16)C72—C12—C62—C52179.29 (18)
O1W—Ni1—N11—C1116.04 (16)C62—C12—C72—O424.6 (3)
O12—Ni1—N11—C11108.83 (16)C22—C12—C72—O42174.51 (18)
O12i—Ni1—N11—C1171.17 (16)C62—C12—C72—O32174.93 (19)
O1Wi—Ni1—N11—C5123.14 (15)C22—C12—C72—O326.0 (3)
O1W—Ni1—N11—C51156.86 (15)C32—C22—C82—C92111.72 (18)
O12—Ni1—N11—C5164.06 (15)C12—C22—C82—C9271.5 (2)
O12i—Ni1—N11—C51115.94 (15)C22—C82—C92—O1222.0 (2)
N11—C11—N21—C210.2 (2)C22—C82—C92—O22160.84 (16)
C51—C21—N21—C110.4 (2)O22—C92—O12—Ni18.3 (2)
C31—C21—N21—C11177.7 (2)C82—C92—O12—Ni1174.91 (11)
N51—C31—N31—C41178.73 (17)O1Wi—Ni1—O12—C92165.25 (14)
C21—C31—N31—C411.6 (2)O1W—Ni1—O12—C9214.75 (14)
N41—C41—N31—C311.9 (3)N11—Ni1—O12—C92103.08 (14)
N61—C41—N31—C31176.92 (17)N11i—Ni1—O12—C9276.92 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O220.85 (3)1.82 (3)2.645 (2)163 (2)
O1W—H1WB···N41i0.85 (3)1.94 (3)2.733 (2)155 (3)
N31—H31···O32ii0.86 (3)1.69 (3)2.551 (2)168 (3)
N51—H51A···O22ii0.85 (3)2.23 (3)3.015 (2)151 (2)
N61—H61B···O42ii0.85 (3)2.01 (3)2.870 (2)177 (2)
O2W—H2WA···O22iii0.84 (3)1.91 (3)2.757 (2)173 (3)
O2W—H2WB···O42iv0.85 (3)1.93 (3)2.778 (2)170 (3)
N21—H21···O2W0.86 (3)2.02 (3)2.787 (2)148 (2)
N51—H51B···O2W0.85 (3)2.09 (3)2.930 (3)167 (2)
N61—H61A···O3WA0.85 (3)2.52 (3)3.277 (7)147 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1, y, z+1.
(II) diaquabis(2,6-diamino-7H-purin-1-ium-κN9)bis[2-(2- carboxylatophenyl)acetato-κO]cobalt(II) tetrahydrate top
Crystal data top
[Co(C9H6O4)2(C5H7N6)2(H2O)2]·4H2OZ = 1
Mr = 825.41F(000) = 429
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.651 (2) ÅCell parameters from 5666 reflections
b = 10.045 (2) Åθ = 2.8–26.1°
c = 10.661 (2) ŵ = 0.59 mm1
α = 107.400 (4)°T = 150 K
β = 90.371 (4)°Block, colourless
γ = 118.019 (3)°0.28 × 0.20 × 0.16 mm
V = 857.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
CCD rotation images, thin slices scansθmax = 27.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1212
Tmin = 0.81, Tmax = 0.88k = 1212
7200 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0645P)2]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.64 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Co(C9H6O4)2(C5H7N6)2(H2O)2]·4H2Oγ = 118.019 (3)°
Mr = 825.41V = 857.3 (3) Å3
Triclinic, P1Z = 1
a = 9.651 (2) ÅMo Kα radiation
b = 10.045 (2) ŵ = 0.59 mm1
c = 10.661 (2) ÅT = 150 K
α = 107.400 (4)°0.28 × 0.20 × 0.16 mm
β = 90.371 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3659 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
2634 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.88Rint = 0.034
7200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.64 e Å3
3659 reflectionsΔρmin = 0.24 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.50000.02851 (18)
C110.2415 (4)0.3767 (3)0.6779 (3)0.0377 (7)
H110.16890.38470.62700.036 (8)*
C210.3411 (3)0.3259 (3)0.8288 (3)0.0310 (6)
C310.3804 (3)0.2803 (3)0.9292 (3)0.0324 (7)
C410.6416 (3)0.3849 (3)0.8734 (3)0.0334 (7)
C510.4551 (3)0.3918 (3)0.7550 (3)0.0305 (6)
N110.3905 (3)0.4220 (3)0.6582 (2)0.0325 (6)
N210.2061 (3)0.3187 (3)0.7779 (2)0.0347 (6)
H210.1142 (18)0.274 (3)0.799 (3)0.032 (8)*
N310.5334 (3)0.3141 (3)0.9488 (2)0.0346 (6)
H310.561 (5)0.290 (5)1.012 (3)0.089 (15)*
N410.6074 (3)0.4223 (3)0.7736 (2)0.0335 (6)
N510.2807 (4)0.2093 (3)1.0033 (3)0.0424 (6)
H51A0.313 (4)0.189 (4)1.067 (2)0.061 (12)*
H51B0.1834 (17)0.186 (4)0.984 (3)0.048 (10)*
N610.7911 (3)0.4182 (4)0.9077 (3)0.0468 (7)
H61A0.859 (3)0.450 (4)0.857 (3)0.070 (13)*
H61B0.808 (4)0.391 (4)0.972 (2)0.055 (11)*
C120.7342 (3)0.1419 (3)0.2477 (3)0.0334 (7)
C220.6037 (3)0.0519 (3)0.3028 (3)0.0311 (6)
C320.6317 (4)0.0152 (3)0.3906 (3)0.0351 (7)
H320.54760.07650.42680.034 (8)*
C420.7816 (4)0.0073 (4)0.4251 (3)0.0417 (8)
H420.79740.03650.48560.055 (10)*
C520.9075 (4)0.0943 (4)0.3702 (3)0.0434 (8)
H521.00810.10890.39280.046 (9)*
C620.8821 (4)0.1591 (4)0.2814 (3)0.0414 (8)
H620.96650.21600.24300.052 (10)*
C720.7203 (4)0.2193 (4)0.1504 (3)0.0393 (7)
C820.4361 (3)0.0176 (3)0.2678 (3)0.0340 (7)
H82A0.36570.06510.30230.054 (10)*
H82B0.40620.02630.17130.040 (8)*
C920.4058 (3)0.1587 (3)0.3186 (3)0.0300 (6)
O120.4985 (2)0.2782 (2)0.41653 (19)0.0328 (5)
O220.2798 (2)0.1409 (2)0.2598 (2)0.0404 (5)
O320.5900 (3)0.2142 (3)0.1262 (2)0.0562 (7)
O420.8384 (3)0.2867 (3)0.0990 (2)0.0563 (7)
O1W0.2711 (2)0.4047 (3)0.3931 (2)0.0365 (5)
H1WA0.250 (4)0.3123 (18)0.342 (3)0.068 (13)*
H1WB0.290 (4)0.462 (3)0.344 (3)0.079 (14)*
O2W0.0338 (3)0.1487 (3)0.9033 (3)0.0502 (6)
H2WA0.108 (3)0.060 (3)0.850 (3)0.084 (15)*
H2WB0.078 (4)0.179 (4)0.966 (3)0.075 (14)*
O3WA0.9126 (6)0.4074 (6)0.6224 (9)0.131 (4)0.805 (15)
O3WB0.899 (3)0.447 (3)0.525 (3)0.141 (11)*0.195 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0276 (3)0.0301 (3)0.0322 (3)0.0155 (2)0.0040 (2)0.0143 (2)
C110.0392 (18)0.0446 (18)0.0385 (18)0.0243 (15)0.0076 (14)0.0201 (15)
C210.0366 (16)0.0309 (15)0.0289 (15)0.0185 (13)0.0066 (12)0.0118 (12)
C310.0419 (18)0.0274 (14)0.0251 (15)0.0168 (13)0.0047 (12)0.0058 (12)
C410.0373 (17)0.0315 (15)0.0329 (16)0.0178 (13)0.0018 (13)0.0117 (13)
C510.0395 (17)0.0288 (14)0.0271 (15)0.0194 (13)0.0041 (12)0.0102 (12)
N110.0334 (14)0.0354 (13)0.0340 (13)0.0187 (11)0.0054 (11)0.0161 (11)
N210.0321 (14)0.0416 (14)0.0369 (14)0.0194 (12)0.0111 (11)0.0198 (12)
N310.0401 (15)0.0368 (14)0.0294 (14)0.0189 (12)0.0034 (11)0.0147 (11)
N410.0340 (14)0.0352 (13)0.0366 (14)0.0180 (11)0.0057 (11)0.0173 (11)
N510.0437 (17)0.0514 (17)0.0366 (16)0.0212 (14)0.0097 (13)0.0249 (13)
N610.0415 (17)0.0627 (19)0.0509 (19)0.0291 (15)0.0088 (14)0.0329 (16)
C120.0367 (16)0.0373 (16)0.0302 (15)0.0207 (14)0.0040 (12)0.0125 (13)
C220.0366 (16)0.0273 (14)0.0303 (15)0.0187 (13)0.0030 (12)0.0061 (12)
C320.0424 (18)0.0323 (15)0.0363 (17)0.0207 (14)0.0099 (14)0.0152 (13)
C420.054 (2)0.0404 (17)0.0434 (19)0.0303 (16)0.0048 (15)0.0189 (15)
C520.0353 (18)0.0509 (19)0.053 (2)0.0246 (15)0.0032 (15)0.0239 (16)
C620.0361 (18)0.0457 (18)0.0459 (19)0.0193 (15)0.0080 (14)0.0218 (16)
C720.048 (2)0.0491 (19)0.0319 (16)0.0302 (16)0.0097 (14)0.0173 (14)
C820.0321 (16)0.0313 (15)0.0389 (17)0.0175 (13)0.0037 (13)0.0092 (13)
C920.0327 (16)0.0317 (15)0.0301 (15)0.0165 (13)0.0093 (12)0.0154 (12)
O120.0357 (11)0.0307 (10)0.0342 (11)0.0184 (9)0.0013 (9)0.0107 (9)
O220.0351 (12)0.0408 (12)0.0457 (13)0.0219 (10)0.0022 (10)0.0101 (10)
O320.0505 (15)0.0968 (19)0.0605 (16)0.0497 (14)0.0228 (12)0.0549 (15)
O420.0519 (15)0.0821 (18)0.0655 (16)0.0405 (13)0.0253 (12)0.0521 (15)
O1W0.0331 (12)0.0355 (12)0.0447 (13)0.0166 (10)0.0037 (10)0.0193 (11)
O2W0.0348 (13)0.0500 (15)0.0545 (15)0.0151 (12)0.0113 (12)0.0128 (12)
O3WA0.107 (4)0.108 (4)0.181 (8)0.071 (3)0.044 (4)0.023 (4)
Geometric parameters (Å, º) top
Co1—O1Wi2.103 (2)C12—C621.385 (4)
Co1—O1W2.103 (2)C12—C221.416 (4)
Co1—O12i2.1308 (19)C12—C721.510 (4)
Co1—O122.1308 (19)C22—C321.395 (4)
Co1—N112.147 (2)C22—C821.506 (4)
Co1—N11i2.147 (2)C32—C421.384 (4)
C11—N111.329 (3)C32—H320.9300
C11—N211.335 (4)C42—C521.378 (4)
C11—H110.9300C42—H420.9300
C21—N211.370 (4)C52—C621.377 (4)
C21—C511.380 (4)C52—H520.9300
C21—C311.397 (4)C62—H620.9300
C31—N511.328 (4)C72—O421.250 (3)
C31—N311.349 (4)C72—O321.256 (4)
C41—N411.318 (3)C82—C921.524 (4)
C41—N611.339 (4)C82—H82A0.9700
C41—N311.378 (4)C82—H82B0.9700
C51—N411.353 (3)C92—O121.249 (3)
C51—N111.380 (3)C92—O221.274 (3)
N21—H210.853 (10)O1W—H1WA0.849 (10)
N31—H310.860 (10)O1W—H1WB0.846 (10)
N51—H51A0.859 (10)O2W—H2WA0.851 (10)
N51—H51B0.861 (10)O2W—H2WB0.850 (10)
N61—H61A0.856 (10)O3WA—O3WB1.24 (3)
N61—H61B0.845 (10)
O1Wi—Co1—O1W180.0C31—N51—H51B116 (2)
O1Wi—Co1—O12i92.14 (8)H51A—N51—H51B123 (3)
O1W—Co1—O12i87.86 (8)C41—N61—H61A119 (3)
O1Wi—Co1—O1287.86 (8)C41—N61—H61B117 (2)
O1W—Co1—O1292.14 (8)H61A—N61—H61B123 (4)
O12i—Co1—O12180.0C62—C12—C22119.7 (3)
O1Wi—Co1—N1191.36 (8)C62—C12—C72117.3 (3)
O1W—Co1—N1188.64 (8)C22—C12—C72123.0 (3)
O12i—Co1—N1190.73 (8)C32—C22—C12117.5 (3)
O12—Co1—N1189.27 (8)C32—C22—C82118.1 (3)
O1Wi—Co1—N11i88.64 (8)C12—C22—C82124.3 (3)
O1W—Co1—N11i91.36 (8)C42—C32—C22121.7 (3)
O12i—Co1—N11i89.27 (8)C42—C32—H32119.2
O12—Co1—N11i90.73 (8)C22—C32—H32119.2
N11—Co1—N11i180.0C52—C42—C32120.3 (3)
N11—C11—N21113.4 (3)C52—C42—H42119.8
N11—C11—H11123.3C32—C42—H42119.8
N21—C11—H11123.3C62—C52—C42119.1 (3)
N21—C21—C51106.1 (2)C62—C52—H52120.5
N21—C21—C31134.9 (3)C42—C52—H52120.5
C51—C21—C31119.0 (3)C52—C62—C12121.8 (3)
N51—C31—N31119.8 (3)C52—C62—H62119.1
N51—C31—C21125.2 (3)C12—C62—H62119.1
N31—C31—C21115.0 (3)O42—C72—O32123.2 (3)
N41—C41—N61119.4 (3)O42—C72—C12118.9 (3)
N41—C41—N31124.4 (3)O32—C72—C12117.9 (3)
N61—C41—N31116.2 (3)C22—C82—C92116.7 (2)
N41—C51—N11124.6 (2)C22—C82—H82A108.1
N41—C51—C21125.6 (3)C92—C82—H82A108.1
N11—C51—C21109.8 (3)C22—C82—H82B108.1
C11—N11—C51104.1 (2)C92—C82—H82B108.1
C11—N11—Co1128.38 (19)H82A—C82—H82B107.3
C51—N11—Co1127.26 (19)O12—C92—O22124.6 (3)
C11—N21—C21106.6 (2)O12—C92—C82119.5 (2)
C11—N21—H21126 (2)O22—C92—C82115.8 (2)
C21—N21—H21126 (2)C92—O12—Co1128.34 (18)
C31—N31—C41122.5 (3)Co1—O1W—H1WA104 (2)
C31—N31—H31116 (3)Co1—O1W—H1WB101 (3)
C41—N31—H31121 (3)H1WA—O1W—H1WB106.0 (15)
C41—N41—C51113.4 (2)H2WA—O2W—H2WB105.5 (16)
C31—N51—H51A121 (2)
N21—C21—C31—N511.2 (5)N61—C41—N41—C51176.0 (3)
C51—C21—C31—N51176.9 (3)N31—C41—N41—C513.1 (4)
N21—C21—C31—N31178.5 (3)N11—C51—N41—C41179.3 (3)
C51—C21—C31—N313.4 (4)C21—C51—N41—C410.9 (4)
N21—C21—C51—N41179.0 (3)C62—C12—C22—C320.4 (4)
C31—C21—C51—N412.3 (4)C72—C12—C22—C32179.3 (3)
N21—C21—C51—N111.1 (3)C62—C12—C22—C82176.5 (3)
C31—C21—C51—N11177.5 (2)C72—C12—C22—C822.4 (4)
N21—C11—N11—C510.8 (3)C12—C22—C32—C421.2 (4)
N21—C11—N11—Co1173.23 (19)C82—C22—C32—C42178.3 (3)
N41—C51—N11—C11179.0 (3)C22—C32—C42—C521.7 (5)
C21—C51—N11—C111.2 (3)C32—C42—C52—C620.4 (5)
N41—C51—N11—Co16.9 (4)C42—C52—C62—C121.2 (5)
C21—C51—N11—Co1172.94 (18)C22—C12—C62—C521.7 (5)
O1Wi—Co1—N11—C11164.5 (2)C72—C12—C62—C52179.4 (3)
O1W—Co1—N11—C1115.5 (2)C62—C12—C72—O424.1 (4)
O12i—Co1—N11—C1172.3 (2)C22—C12—C72—O42174.8 (3)
O12—Co1—N11—C11107.7 (2)C62—C12—C72—O32175.1 (3)
O1Wi—Co1—N11—C5122.8 (2)C22—C12—C72—O326.0 (4)
O1W—Co1—N11—C51157.2 (2)C32—C22—C82—C92112.3 (3)
O12i—Co1—N11—C51114.9 (2)C12—C22—C82—C9270.8 (4)
O12—Co1—N11—C5165.1 (2)C22—C82—C92—O1222.1 (4)
N11—C11—N21—C210.1 (3)C22—C82—C92—O22161.3 (3)
C51—C21—N21—C110.6 (3)O22—C92—O12—Co19.4 (4)
C31—C21—N21—C11177.7 (3)C82—C92—O12—Co1174.32 (17)
N51—C31—N31—C41178.8 (3)O1Wi—Co1—O12—C92166.1 (2)
C21—C31—N31—C411.4 (4)O1W—Co1—O12—C9213.9 (2)
N41—C41—N31—C312.0 (4)N11—Co1—O12—C92102.6 (2)
N61—C41—N31—C31177.1 (3)N11i—Co1—O12—C9277.4 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O220.85 (3)1.83 (3)2.647 (3)159 (4)
O1W—H1WB···N41i0.84 (3)1.92 (3)2.741 (3)161 (4)
N31—H31···O32ii0.86 (3)1.69 (3)2.552 (3)171 (4)
N51—H51A···O22ii0.86 (3)2.24 (3)3.011 (3)149 (3)
N61—H61B···O42ii0.84 (3)2.04 (3)2.877 (4)170 (3)
O2W—H2WA···O22iii0.85 (3)1.89 (3)2.748 (3)178 (3)
O2W—H2WB···O42iv0.85 (3)1.93 (3)2.775 (3)170 (4)
N21—H21···O2W0.85 (3)2.00 (3)2.785 (3)151 (3)
N51—H51B···O2W0.86 (3)2.08 (3)2.926 (4)166 (3)
N61—H61A···O3WA0.85 (3)2.51 (3)3.257 (9)147 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C9H6O4)2(C5H7N6)2(H2O)2]·4H2O[Co(C9H6O4)2(C5H7N6)2(H2O)2]·4H2O
Mr825.41825.41
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)150150
a, b, c (Å)9.655 (4), 10.017 (4), 10.680 (4)9.651 (2), 10.045 (2), 10.661 (2)
α, β, γ (°)107.082 (5), 90.384 (6), 118.537 (5)107.400 (4), 90.371 (4), 118.019 (3)
V3)854.0 (6)857.3 (3)
Z11
Radiation typeMo KαMo Kα
µ (mm1)0.660.59
Crystal size (mm)0.36 × 0.32 × 0.200.28 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Tmin, Tmax0.81, 0.880.81, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
6856, 3607, 3299 7200, 3659, 2634
Rint0.0210.034
(sin θ/λ)max1)0.6540.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.09 0.051, 0.126, 1.00
No. of reflections36073659
No. of parameters302302
No. of restraints1212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.230.64, 0.24

Computer programs: SMART (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
Ni1—O1W2.0707 (14)Ni1—O122.1116 (14)
Ni1—N112.1011 (15)
O1W—Ni1—N1188.33 (6)N11—Ni1—O1290.00 (6)
O1W—Ni1—O1292.79 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O220.85 (3)1.82 (3)2.645 (2)163 (2)
O1W—H1WB···N41i0.85 (3)1.94 (3)2.733 (2)155 (3)
N31—H31···O32ii0.86 (3)1.69 (3)2.551 (2)168 (3)
N51—H51A···O22ii0.85 (3)2.23 (3)3.015 (2)151 (2)
N61—H61B···O42ii0.85 (3)2.01 (3)2.870 (2)177 (2)
O2W—H2WA···O22iii0.84 (3)1.91 (3)2.757 (2)173 (3)
O2W—H2WB···O42iv0.85 (3)1.93 (3)2.778 (2)170 (3)
N21—H21···O2W0.86 (3)2.02 (3)2.787 (2)148 (2)
N51—H51B···O2W0.85 (3)2.09 (3)2.930 (3)167 (2)
N61—H61A···O3WA0.85 (3)2.52 (3)3.277 (7)147 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Co1—O1W2.103 (2)Co1—N112.147 (2)
Co1—O122.1308 (19)
O1W—Co1—O1292.14 (8)O12—Co1—N1189.27 (8)
O1W—Co1—N1188.64 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O220.85 (3)1.83 (3)2.647 (3)159 (4)
O1W—H1WB···N41i0.84 (3)1.92 (3)2.741 (3)161 (4)
N31—H31···O32ii0.86 (3)1.69 (3)2.552 (3)171 (4)
N51—H51A···O22ii0.86 (3)2.24 (3)3.011 (3)149 (3)
N61—H61B···O42ii0.84 (3)2.04 (3)2.877 (4)170 (3)
O2W—H2WA···O22iii0.85 (3)1.89 (3)2.748 (3)178 (3)
O2W—H2WB···O42iv0.85 (3)1.93 (3)2.775 (3)170 (4)
N21—H21···O2W0.85 (3)2.00 (3)2.785 (3)151 (3)
N51—H51B···O2W0.86 (3)2.08 (3)2.926 (4)166 (3)
N61—H61A···O3WA0.85 (3)2.51 (3)3.257 (9)147 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1, y, z+1.
ππ contacts (Å, °) for (I)/(II) top
Group 1/Group 2ccd I/II (Å)da I/II (°)sa I/II (°)ipd I/II
Cg1···Cg1i3.630 (2)/3.576 (2)0.0/0.024.26 (1)/22.18 (1)3.311 (1)/3.311 (1)
Cg1···Cg2ii3.640 (2)/3.643 (2)9.94 (9)/9.57 (14)24.x(3)/24.x(3)3.32 (8)/3.32 (9)
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 1 - z. Cg1 is the centroid of the N31/C31/C21/C51/N41/C41 ring and Cg2 is the centroid of the C12/C22/C32/C42/C52/C62 ring. ccd is the centre-to-centre distance, ipd is the mean interplanar distance, sa is the mean slippage angle and da is the dihedral angle between rings (for details, see Janiak, 2000).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds