Download citation
Download citation
link to html
The title complex, {[Pr4(C2H3O2)10(C2O4)(H2O)2]·2H2O}n, was synthesized under hydro­thermal conditions from praseodymium acetate and the ionic liquid 1-butyl-3-methyl­imidazolium chloride via an in situ oxalate-ligand synthesis. The compound is a two-dimensional polymer and in the structure presents tightly bound planes parallel to (100), which are in turn linked into a three-dimensional network by hydrogen bonds involving both coordinated and solvent water mol­ecules. The oxalate anion lies across an inversion centre and acts as a bridge between pairs of Pr atoms within a tetra­nuclear segment of the polymer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111005403/gd3378sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111005403/gd3378Isup2.hkl
Contains datablock I

CCDC reference: 819292

Comment top

Lanthanides are characterized by a high affinity for ligands with hard donor atoms such as O and/or N (Brunet et al.,2007). The compounds thus formed may possess unique photophysical and magnetic properties that make them suitable for applications in advanced materials (Steckl & Zavada, 1999; de Sa et al., 2000; Kido & Okamoto, 2002). The construction of extended structures containing praseodymium or other f-elements bridged by carboxylate groups is of interest because of the large variety of architectures that result from the high and variable coordination numbers of the lanthanides, as well as the versatility of carboxylate ligands.

Ionic liquids (ILs) are a group of ionic compounds having a broad temperature range at which they remain liquid combined with very low vapour pressures, and they have been proposed as potential replacements for conventional organic solvents. ILs are generally composed of one organic cation (such as imidazolium, pyridinium or pyrrolidinum) and an anion (such BF4-, PF6-, Cl- etc.); they have been shown to act both as solvents and as reactants which may be incorporated into the final reaction product (for instance, behaving as a charge neutralizer; Cocalia et al., 2006). The use of ILs in the in situ synthesis of ligands in coordination compounds has increased in the last few years, along with efforts to elucidate the mechanisms of the reactions involved (Reichert et al., 2006).

Reported herein is the title new polymeric compound, (I), obtained under hydrothermal conditions via praseodymium acetate and the IL 1-butyl-3-methylimidazolium chloride, [bmim][Cl]. Fig. 1 shows a molecular view of (I), where each ligand is identified by a unique trailing number: acetates 1-5; oxalate 6.

The tetranuclear complex lies acoss an inversion centre located at the centre of the bridging oxalate ligand, so that the asymmetric unit is composed of two PrIII cations, one water ligand, five acetate anions and half of an oxalate unit; a solvent water molecule completes the asymmetric unit. The two PrIII cations (Pr1 and Pr2) receive bonds from all five acetate anions, while the oxalate anion coordinates only to Pr1 and the water ligand coordinates only to Pr2. As a result, the metal cations present different PrO9 (Pr1) and PrO10 (Pr2) environments (Table 1), with Pr—O distances in the range 2.417 (3)–2.698 (3) Å for Pr1 and 2.388 (3)–2.786 (3) Å for Pr2, and bond valence sums of 3.33 and 3.22, respectively. The five acetate ligands, in turn, bind in three different bridging ways: as µ2-κ2O,O' (simple bridge, acetate 2), as µ2-κ2O:O',O' (simple bridge–simple chelate, acetates 3 and 5) and as µ3-κ2O,O:O',O') (double bridge–simple chelate, acetates 1 and 4). The oxalate anion, as usual, binds in a µ2-κ4O:O',O'':O'''(simple bridge–double chelate) mode.

This intricate bonding scheme results in a tight two-dimensional mesh of interlinked PrIII coordination polyhedra, with the metals joined by a variety of `short' (Pr—O—Pr) and `long' (Pr—O—C—O—Pr) bridges to give Pr···.Pr distances of 4.0618 (3) (Pr1···Pr2, three short bridges), 4.2224 (3) (Pr1···Pr2i, two short bridges), 6.4045 (3) (Pr1···Pr1ii, two long oxalate bridges) and 4.4995 (3) Å (Pr2···Pr2iii, two short bridges) [symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 1, -y + 2, -z + 2].

Fig. 2(a) shows a view of one such mesh, parallel to (100). It can be seen that the cations, water ligands and acetate anions generate an infinite layer (represented by light lines) with large centrosymmetric `holes' in it, where the oxalate anions (heavy lines) lie, linking symmetry-related Pr1 centres together. These strongly connected planar structures are further stabilized by a strong `intra-planar' hydrogen bond (Table 2, first entry), while being linked to each other via the other three `interplanar' hydrogen bonds (Table 2, entries 2–4). Figs. 2(a) and 2(b) depict these hydrogen bonds in full detail, while Fig. 2(c) sketches the way in which they operate in the interplanar linkage, through a rather simple chain made out of `conjugated' hydrogen-bonded rings (A and B) threading through a line of inversion centres across the planes. The rings, characterized by graph-set descriptors (Bernstein et al., 1995) R46(12) (ring A) and R22(8) (ring B), are formed by just four non-H atoms (O1W, O2W, Pr2 and O25; Fig. 2c).

Fig. 3 shows the IR and Raman spectra of (I), in the range 500–3000 cm-1, in which the oxalate and acetate bands can be observed. The peaks are assigned according to previously reported data (Frost, 2004; Ito & Bernstein, 1956). The range 1500–1400 cm-1 in the Raman spectrum shows the bands associated with double bonds, i.e. CO stretching of both acetate and oxalate. The antisymmetric CO stretching extends to 1700 cm-1 in the IR spectrum. The bands between 1100 and 500 cm-1 correspond to C—C stretching. The acetate can be distinguished from the oxalate group in the range 3100–2900 cm-1, in which only the CH stretching vibrations of the acetate are seen.

As a final remark, it should be stated that the reaction responsible for the presence of the oxalate bridge in the final product is not yet fully understood. This situation is by no means unique; in situ oxalate-anion formation under hydrothermal conditions has already been reported, and has been related to the rearrangement or cleavage of organic compounds (Knope & Cahill, 2007; Zhang et al., 2006). However, the mechanisms that lead to oxalate-bridge formation remain to be understood.

Related literature top

For related literature, see: Bernstein et al. (1995); Brunet et al. (2007); Cocalia et al. (2006); Frost (2004); Ito & Bernstein (1956); Kido & Okamoto (2002); Knope & Cahill (2007); Reichert et al. (2006); Sa et al. (2000); Steckl & Zavada (1999); Zhang et al. (2006).

Experimental top

Compound (I) was synthesized from an aqueous solution of praseodymium acetate (41 mg) and sodium acetate (13 mg) in a 1:1.5 ratio, in the presence of the ionic liquid 1-butyl-3-methylimidazolium chloride (3:1 water–IL ratio). Crystals of (I) were grown in a 45 ml Teflon-lined autoclave under hydrothermal conditions over a period of a few days at 400 K and after slow cooling.

Refinement top

Water H atoms were refined with restrained distances [O—H = 0.85 (1) Å and H···H = 1.36 (1) Å]. Methyl groups were idealized (C—H = 0.96 Å) and allowed to ride. In all cases, H-atom displacement parameters were taken as Uiso(H) = 1.2 or 1.5Ueq(host).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level, showing both Pr coordination polyhedra and the bridging mode of the oxalate ion, halved by the inversion centre. Dashed lines show the way in which water molecules are involved in hydrogen bonding. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 1, -y + 2, -z + 2.]
[Figure 2] Fig. 2. (a) The packing in (I), showing the two-dimensional structure parallel to (100). No solvent molecules or H atoms are shown, for clarity. (b) A projection, at right angles to the former view, of the layers shown in (a), as well as their interaction via hydrogen bonding (dashed lines). Note the hydrogen-bonding loops formed, viz. an R64(12) ring (denoted A) and an R22(*) ring (denoted B). (c) A detailed view of the chain of hydrogen-bonded rings described above, in the same orientation.
[Figure 3] Fig. 3. The Raman (lower line) and IR (upper line) spectra of (I).
Poly[[tetra-µ3-acetato-hexa-µ2-acetato-diaqua-µ2-oxalato- tetrapraseodymium(III)] dihydrate] top
Crystal data top
[Pr4(C2H3O2)10(C2O4)(H2O)2]·2H2OF(000) = 1260
Mr = 1314.16Dx = 2.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3988 reflections
a = 9.3772 (3) Åθ = 4.1–26.7°
b = 13.1249 (3) ŵ = 5.11 mm1
c = 15.9198 (5) ÅT = 291 K
β = 103.085 (3)°Prism, light green
V = 1908.45 (10) Å30.22 × 0.18 × 0.12 mm
Z = 2
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
4526 independent reflections
Radiation source: fine-focus sealed tube3935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scans, thick slicesθmax = 29.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.33, Tmax = 0.54k = 1716
14838 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0277P)2 + 1.936P]
where P = (Fo2 + 2Fc2)/3
4526 reflections(Δ/σ)max = 0.002
256 parametersΔρmax = 1.07 e Å3
6 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Pr4(C2H3O2)10(C2O4)(H2O)2]·2H2OV = 1908.45 (10) Å3
Mr = 1314.16Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.3772 (3) ŵ = 5.11 mm1
b = 13.1249 (3) ÅT = 291 K
c = 15.9198 (5) Å0.22 × 0.18 × 0.12 mm
β = 103.085 (3)°
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
4526 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3935 reflections with I > 2σ(I)
Tmin = 0.33, Tmax = 0.54Rint = 0.026
14838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.07 e Å3
4526 reflectionsΔρmin = 0.90 e Å3
256 parameters
Special details top

Experimental. The IR vibrational spectrum of a sample of (I) dispersed in KBr pellets was measured using a Fourier transform IR spectrometer NICOLET 8700. The IR spectrum was recorded in the range 400–4000 cm-1; the Raman spectrum of the crystalline compound was recorded in a Jobin Yvon Horiba labRAM HR.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.49231 (2)0.625935 (13)0.826748 (12)0.01932 (6)
Pr20.43842 (2)0.927263 (13)0.868801 (11)0.01747 (6)
O110.5409 (3)1.08817 (18)0.97154 (15)0.0252 (6)
O210.5322 (3)1.10496 (18)0.83542 (15)0.0266 (6)
C110.5809 (4)1.1341 (2)0.9112 (2)0.0190 (7)
C210.6898 (5)1.2188 (3)0.9302 (3)0.0374 (10)
H21A0.64111.28060.93990.056*
H21B0.73471.22780.88220.056*
H21C0.76361.20240.98080.056*
O120.2572 (3)1.1109 (2)0.68708 (19)0.0405 (7)
O220.2556 (3)0.9552 (3)0.73971 (19)0.0474 (8)
C120.1992 (4)1.0250 (3)0.6910 (2)0.0302 (8)
C220.0514 (5)1.0043 (4)0.6331 (3)0.0538 (14)
H22A0.04880.93580.61160.081*
H22B0.03421.05120.58560.081*
H22C0.02301.01260.66520.081*
O130.2999 (3)0.76939 (18)0.85145 (16)0.0275 (6)
O230.2250 (3)0.6465 (2)0.76030 (18)0.0343 (6)
C130.1970 (4)0.7248 (3)0.7987 (2)0.0251 (8)
C230.0459 (5)0.7641 (4)0.7828 (4)0.0531 (13)
H23A0.04770.83470.79880.080*
H23B0.00840.72610.81660.080*
H23C0.00000.75700.72280.080*
O140.5262 (3)0.79961 (17)0.76574 (15)0.0249 (5)
O240.5712 (3)0.95462 (18)0.73337 (17)0.0320 (6)
C140.5862 (4)0.8604 (2)0.7233 (2)0.0207 (7)
C240.6749 (5)0.8219 (3)0.6630 (3)0.0356 (9)
H24A0.62570.83750.60470.053*
H24B0.68670.74950.66950.053*
H24C0.76940.85400.67600.053*
O150.6016 (3)0.75676 (19)0.93631 (15)0.0275 (6)
O250.7128 (3)0.90252 (19)0.92930 (17)0.0288 (6)
C150.7172 (4)0.8091 (3)0.9507 (2)0.0241 (8)
C250.8593 (5)0.7625 (4)0.9937 (3)0.0437 (11)
H25A0.84230.70751.02990.066*
H25B0.91990.81301.02820.066*
H25C0.90750.73710.95080.066*
O160.3682 (4)0.4881 (3)1.05934 (19)0.0486 (8)
O260.3587 (4)0.5709 (2)0.93644 (19)0.0447 (8)
C160.4192 (5)0.5167 (3)0.9988 (3)0.0429 (11)
O1W0.2201 (3)1.0011 (3)0.9080 (2)0.0464 (8)
H1WA0.236 (4)1.025 (4)0.9586 (13)0.056*
H1WB0.1286 (14)1.001 (4)0.888 (2)0.056*
O2W0.0704 (3)1.0089 (3)0.8558 (3)0.0698 (12)
H2WA0.109 (5)1.054 (3)0.820 (3)0.084*
H2WB0.139 (4)0.982 (4)0.874 (3)0.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02443 (11)0.01405 (9)0.01902 (10)0.00058 (7)0.00398 (8)0.00123 (7)
Pr20.02265 (11)0.01367 (9)0.01531 (9)0.00032 (7)0.00266 (7)0.00124 (6)
O110.0338 (15)0.0226 (12)0.0202 (13)0.0018 (11)0.0079 (11)0.0003 (10)
O210.0402 (16)0.0199 (12)0.0185 (13)0.0058 (11)0.0044 (11)0.0016 (10)
C110.0241 (18)0.0143 (15)0.0181 (16)0.0045 (13)0.0040 (14)0.0015 (12)
C210.043 (3)0.035 (2)0.034 (2)0.0188 (19)0.0071 (19)0.0042 (17)
O120.0310 (16)0.0481 (18)0.0450 (18)0.0078 (14)0.0142 (14)0.0092 (14)
O220.047 (2)0.059 (2)0.0287 (16)0.0123 (16)0.0066 (14)0.0065 (15)
C120.024 (2)0.043 (2)0.0230 (19)0.0003 (18)0.0043 (16)0.0004 (17)
C220.037 (3)0.052 (3)0.062 (3)0.009 (2)0.011 (2)0.014 (2)
O130.0294 (15)0.0226 (13)0.0294 (14)0.0061 (11)0.0042 (11)0.0002 (10)
O230.0286 (15)0.0352 (15)0.0353 (16)0.0002 (12)0.0005 (12)0.0125 (12)
C130.024 (2)0.0233 (18)0.0280 (19)0.0028 (15)0.0066 (15)0.0039 (15)
C230.027 (2)0.047 (3)0.084 (4)0.000 (2)0.008 (2)0.004 (3)
O140.0396 (16)0.0160 (11)0.0219 (12)0.0010 (11)0.0129 (11)0.0015 (9)
O240.0516 (18)0.0142 (11)0.0333 (15)0.0014 (12)0.0165 (13)0.0018 (10)
C140.0259 (19)0.0159 (15)0.0191 (17)0.0019 (14)0.0028 (14)0.0004 (12)
C240.036 (2)0.033 (2)0.045 (2)0.0041 (18)0.023 (2)0.0001 (18)
O150.0314 (15)0.0273 (13)0.0230 (13)0.0053 (11)0.0041 (11)0.0047 (10)
O250.0302 (15)0.0251 (13)0.0313 (14)0.0025 (11)0.0073 (12)0.0024 (11)
C150.027 (2)0.0260 (18)0.0176 (17)0.0048 (15)0.0017 (15)0.0048 (14)
C250.028 (2)0.048 (3)0.050 (3)0.012 (2)0.002 (2)0.001 (2)
O160.053 (2)0.059 (2)0.0374 (17)0.0132 (17)0.0182 (15)0.0205 (15)
O260.059 (2)0.0427 (17)0.0356 (17)0.0098 (15)0.0166 (15)0.0181 (14)
C160.071 (3)0.029 (2)0.029 (2)0.009 (2)0.012 (2)0.0002 (17)
O1W0.0271 (16)0.069 (2)0.0395 (18)0.0102 (16)0.0007 (13)0.0256 (16)
O2W0.0287 (18)0.082 (3)0.095 (3)0.0073 (18)0.0066 (19)0.049 (2)
Geometric parameters (Å, º) top
Pr1—O12i2.417 (3)C22—H22A0.9600
Pr1—O24i2.463 (2)C22—H22B0.9600
Pr1—O262.476 (3)C22—H22C0.9600
Pr1—O16ii2.483 (3)O13—C131.270 (4)
Pr1—O232.504 (3)O23—C131.254 (4)
Pr1—O152.496 (2)C13—C231.475 (6)
Pr1—O142.526 (2)C23—H23A0.9600
Pr1—O21i2.554 (2)C23—H23B0.9600
Pr1—O132.698 (3)C23—H23C0.9600
Pr2—O222.388 (3)O14—C141.257 (4)
Pr2—O132.428 (2)O24—C141.258 (4)
Pr2—O1W2.469 (3)C14—C241.494 (5)
Pr2—O11iii2.513 (2)C24—H24A0.9600
Pr2—O252.555 (3)C24—H24B0.9600
Pr2—O212.590 (2)C24—H24C0.9600
Pr2—O142.606 (2)O15—C151.260 (4)
Pr2—O112.711 (2)O25—C151.271 (4)
Pr2—O242.747 (3)C15—C251.485 (5)
Pr2—O152.786 (3)C25—H25A0.9600
O11—C111.261 (4)C25—H25B0.9600
O21—C111.250 (4)C25—H25C0.9600
C11—C211.493 (5)O16—C161.227 (5)
C21—H21A0.9600O26—C161.249 (5)
C21—H21B0.9600C16—C16ii1.569 (10)
C21—H21C0.9600O1W—H1WA0.85 (3)
O12—C121.259 (5)O1W—H1WB0.84 (3)
O22—C121.239 (5)O2W—H2WA0.85 (3)
C12—C221.505 (6)O2W—H2WB0.85 (3)
O12i—Pr1—O24i92.57 (10)O11—Pr2—O15107.72 (7)
O12i—Pr1—O26134.27 (10)O24—Pr2—O1595.79 (7)
O24i—Pr1—O2683.76 (10)C11—O11—Pr2iii147.2 (2)
O12i—Pr1—O16ii69.83 (10)C11—O11—Pr292.25 (19)
O24i—Pr1—O16ii76.98 (10)Pr2iii—O11—Pr2118.89 (9)
O26—Pr1—O16ii64.92 (10)C11—O21—Pr1iv150.8 (2)
O12i—Pr1—O23150.54 (10)C11—O21—Pr298.3 (2)
O24i—Pr1—O2378.67 (9)Pr1iv—O21—Pr2110.33 (9)
O26—Pr1—O2373.23 (10)O21—C11—O11118.8 (3)
O16ii—Pr1—O23133.22 (10)O21—C11—C21120.5 (3)
O12i—Pr1—O1582.30 (10)O11—C11—C21120.6 (3)
O24i—Pr1—O15157.55 (9)C11—C21—H21A109.5
O26—Pr1—O1584.32 (10)C11—C21—H21B109.5
O16ii—Pr1—O1580.75 (10)H21A—C21—H21B109.5
O23—Pr1—O15115.73 (8)C11—C21—H21C109.5
O12i—Pr1—O1480.14 (9)H21A—C21—H21C109.5
O24i—Pr1—O14135.62 (8)H21B—C21—H21C109.5
O26—Pr1—O14131.47 (9)C12—O12—Pr1iv121.1 (3)
O16ii—Pr1—O14137.17 (10)C12—O22—Pr2140.7 (3)
O23—Pr1—O1486.64 (9)O22—C12—O12124.4 (4)
O15—Pr1—O1465.19 (8)O22—C12—C22116.9 (4)
O12i—Pr1—O21i76.47 (9)O12—C12—C22118.7 (4)
O24i—Pr1—O21i63.29 (8)C12—C22—H22A109.5
O26—Pr1—O21i137.49 (10)C12—C22—H22B109.5
O16ii—Pr1—O21i125.82 (9)H22A—C22—H22B109.5
O23—Pr1—O21i74.47 (9)C12—C22—H22C109.5
O15—Pr1—O21i135.17 (8)H22A—C22—H22C109.5
O14—Pr1—O21i72.48 (8)H22B—C22—H22C109.5
O12i—Pr1—O13140.02 (9)C13—O13—Pr2140.9 (2)
O24i—Pr1—O13125.65 (9)C13—O13—Pr190.9 (2)
O26—Pr1—O1368.82 (9)Pr2—O13—Pr1104.70 (9)
O16ii—Pr1—O13124.98 (9)C13—O23—Pr1100.5 (2)
O23—Pr1—O1349.30 (8)O23—C13—O13119.2 (3)
O15—Pr1—O1366.44 (8)O23—C13—C23120.2 (4)
O14—Pr1—O1364.71 (7)O13—C13—C23120.6 (4)
O21i—Pr1—O13108.21 (8)C13—C23—H23A109.5
O22—Pr2—O1376.81 (10)C13—C23—H23B109.5
O22—Pr2—O1W71.47 (11)H23A—C23—H23B109.5
O13—Pr2—O1W84.89 (10)C13—C23—H23C109.5
O22—Pr2—O11iii139.35 (10)H23A—C23—H23C109.5
O13—Pr2—O11iii87.88 (8)H23B—C23—H23C109.5
O1W—Pr2—O11iii69.81 (10)C14—O14—Pr1152.9 (2)
O22—Pr2—O25144.03 (10)C14—O14—Pr299.98 (19)
O13—Pr2—O25113.68 (8)Pr1—O14—Pr2104.65 (8)
O1W—Pr2—O25140.92 (9)C14—O24—Pr1iv150.6 (2)
O11iii—Pr2—O2576.59 (8)C14—O24—Pr293.1 (2)
O22—Pr2—O2184.03 (10)Pr1iv—O24—Pr2108.16 (9)
O13—Pr2—O21160.57 (8)O14—C14—O24118.6 (3)
O1W—Pr2—O2192.16 (11)O14—C14—C24120.8 (3)
O11iii—Pr2—O21109.16 (8)O24—C14—C24120.6 (3)
O25—Pr2—O2180.33 (8)C14—C24—H24A109.5
O22—Pr2—O1479.89 (10)C14—C24—H24B109.5
O13—Pr2—O1467.47 (8)H24A—C24—H24B109.5
O1W—Pr2—O14144.06 (9)C14—C24—H24C109.5
O11iii—Pr2—O14128.47 (8)H24A—C24—H24C109.5
O25—Pr2—O1473.79 (8)H24B—C24—H24C109.5
O21—Pr2—O14106.23 (8)C15—O15—Pr1134.6 (2)
O22—Pr2—O11119.14 (10)C15—O15—Pr290.4 (2)
O13—Pr2—O11147.25 (8)Pr1—O15—Pr2100.39 (9)
O1W—Pr2—O1175.10 (9)C15—O25—Pr2101.1 (2)
O11iii—Pr2—O1161.11 (9)O15—C15—O25120.2 (3)
O25—Pr2—O1171.48 (8)O15—C15—C25120.3 (3)
O21—Pr2—O1148.06 (7)O25—C15—C25119.5 (4)
O14—Pr2—O11139.59 (8)C15—C25—H25A109.5
O22—Pr2—O2470.67 (10)C15—C25—H25B109.5
O13—Pr2—O24110.38 (8)H25A—C25—H25B109.5
O1W—Pr2—O24134.10 (10)C15—C25—H25C109.5
O11iii—Pr2—O24149.28 (9)H25A—C25—H25C109.5
O25—Pr2—O2473.49 (9)H25B—C25—H25C109.5
O21—Pr2—O2459.06 (7)C16—O16—Pr1ii121.5 (3)
O14—Pr2—O2447.60 (7)C16—O26—Pr1121.0 (3)
O11—Pr2—O24102.12 (7)O16—C16—O26127.6 (5)
O22—Pr2—O15132.85 (9)O16—C16—C16ii116.2 (5)
O13—Pr2—O1565.87 (8)O26—C16—C16ii116.1 (5)
O1W—Pr2—O15129.22 (10)Pr2—O1W—H1WA114 (3)
O11iii—Pr2—O1568.60 (8)Pr2—O1W—H1WB138 (3)
O25—Pr2—O1548.27 (8)H1WA—O1W—H1WB107 (3)
O21—Pr2—O15128.34 (8)H2WA—O2W—H2WB107 (3)
O14—Pr2—O1560.14 (7)
O22—Pr2—O11—C1157.5 (2)O12i—Pr1—O14—Pr2129.42 (11)
O13—Pr2—O11—C11170.1 (2)O24i—Pr1—O14—Pr2147.04 (10)
O1W—Pr2—O11—C11115.8 (2)O26—Pr1—O14—Pr212.95 (16)
O11iii—Pr2—O11—C11169.3 (3)O16ii—Pr1—O14—Pr284.02 (15)
O25—Pr2—O11—C1184.7 (2)O23—Pr1—O14—Pr277.00 (10)
O21—Pr2—O11—C118.90 (19)O15—Pr1—O14—Pr243.41 (9)
O14—Pr2—O11—C1152.7 (2)O21i—Pr1—O14—Pr2151.77 (11)
O24—Pr2—O11—C1117.0 (2)O13—Pr1—O14—Pr231.01 (8)
O15—Pr2—O11—C11117.1 (2)O22—Pr2—O14—C1477.6 (2)
O22—Pr2—O11—Pr2iii133.20 (12)O13—Pr2—O14—C14157.4 (2)
O13—Pr2—O11—Pr2iii20.6 (2)O1W—Pr2—O14—C14114.9 (3)
O1W—Pr2—O11—Pr2iii74.86 (13)O11iii—Pr2—O14—C14135.0 (2)
O11iii—Pr2—O11—Pr2iii0.0O25—Pr2—O14—C1477.6 (2)
O25—Pr2—O11—Pr2iii84.58 (12)O21—Pr2—O14—C143.1 (2)
O21—Pr2—O11—Pr2iii178.19 (17)O11—Pr2—O14—C1446.0 (3)
O14—Pr2—O11—Pr2iii116.61 (12)O24—Pr2—O14—C144.6 (2)
O24—Pr2—O11—Pr2iii152.34 (11)O15—Pr2—O14—C14128.4 (2)
O15—Pr2—O11—Pr2iii52.15 (12)O22—Pr2—O14—Pr1113.88 (12)
O22—Pr2—O21—C11147.8 (2)O13—Pr2—O14—Pr134.07 (9)
O13—Pr2—O21—C11157.5 (2)O1W—Pr2—O14—Pr176.63 (19)
O1W—Pr2—O21—C1176.7 (2)O11iii—Pr2—O14—Pr133.55 (14)
O11iii—Pr2—O21—C117.4 (2)O25—Pr2—O14—Pr190.90 (10)
O25—Pr2—O21—C1164.7 (2)O21—Pr2—O14—Pr1165.43 (8)
O14—Pr2—O21—C11134.5 (2)O11—Pr2—O14—Pr1122.49 (10)
O11—Pr2—O21—C119.06 (19)O24—Pr2—O14—Pr1173.13 (15)
O24—Pr2—O21—C11141.1 (2)O15—Pr2—O14—Pr140.13 (8)
O15—Pr2—O21—C1170.1 (2)O22—Pr2—O24—C1498.5 (2)
O22—Pr2—O21—Pr1iv38.18 (12)O13—Pr2—O24—C1431.3 (2)
O13—Pr2—O21—Pr1iv28.6 (3)O1W—Pr2—O24—C14134.5 (2)
O1W—Pr2—O21—Pr1iv109.29 (11)O11iii—Pr2—O24—C1491.9 (2)
O11iii—Pr2—O21—Pr1iv178.65 (9)O25—Pr2—O24—C1478.3 (2)
O25—Pr2—O21—Pr1iv109.30 (11)O21—Pr2—O24—C14166.8 (2)
O14—Pr2—O21—Pr1iv39.45 (12)O14—Pr2—O24—C144.6 (2)
O11—Pr2—O21—Pr1iv176.97 (16)O11—Pr2—O24—C14144.6 (2)
O24—Pr2—O21—Pr1iv32.83 (9)O15—Pr2—O24—C1435.0 (2)
O15—Pr2—O21—Pr1iv103.92 (11)O22—Pr2—O24—Pr1iv60.99 (12)
Pr1iv—O21—C11—O11174.9 (3)O13—Pr2—O24—Pr1iv128.15 (10)
Pr2—O21—C11—O1116.7 (3)O1W—Pr2—O24—Pr1iv24.99 (17)
Pr1iv—O21—C11—C217.9 (7)O11iii—Pr2—O24—Pr1iv108.63 (15)
Pr2—O21—C11—C21160.5 (3)O25—Pr2—O24—Pr1iv122.18 (11)
Pr2iii—O11—C11—O21178.3 (3)O21—Pr2—O24—Pr1iv33.70 (9)
Pr2—O11—C11—O2115.8 (3)O14—Pr2—O24—Pr1iv154.92 (16)
Pr2iii—O11—C11—C211.1 (6)O11—Pr2—O24—Pr1iv55.91 (11)
Pr2—O11—C11—C21161.4 (3)O15—Pr2—O24—Pr1iv165.47 (10)
O13—Pr2—O22—C12164.8 (5)Pr1—O14—C14—O24163.5 (3)
O1W—Pr2—O22—C1275.8 (4)Pr2—O14—C14—O248.5 (4)
O11iii—Pr2—O22—C1294.2 (5)Pr1—O14—C14—C2415.8 (7)
O25—Pr2—O22—C1282.9 (5)Pr2—O14—C14—C24170.8 (3)
O21—Pr2—O22—C1218.5 (4)Pr1iv—O24—C14—O14129.3 (4)
O14—Pr2—O22—C12126.2 (5)Pr2—O24—C14—O148.0 (3)
O11—Pr2—O22—C1215.7 (5)Pr1iv—O24—C14—C2451.4 (7)
O24—Pr2—O22—C1277.7 (4)Pr2—O24—C14—C24171.4 (3)
O15—Pr2—O22—C12157.4 (4)O12i—Pr1—O15—C1520.9 (3)
Pr2—O22—C12—O1219.9 (7)O24i—Pr1—O15—C1598.8 (4)
Pr2—O22—C12—C22160.0 (4)O26—Pr1—O15—C15157.0 (3)
Pr1iv—O12—C12—O2249.3 (5)O16ii—Pr1—O15—C1591.6 (3)
Pr1iv—O12—C12—C22130.8 (4)O23—Pr1—O15—C15134.7 (3)
O22—Pr2—O13—C135.7 (4)O14—Pr1—O15—C1561.8 (3)
O1W—Pr2—O13—C1377.9 (4)O21i—Pr1—O15—C1541.0 (4)
O11iii—Pr2—O13—C13147.8 (4)O13—Pr1—O15—C15133.6 (3)
O25—Pr2—O13—C13137.9 (4)O12i—Pr1—O15—Pr2121.87 (10)
O21—Pr2—O13—C134.1 (5)O24i—Pr1—O15—Pr2160.18 (19)
O14—Pr2—O13—C1378.7 (4)O26—Pr1—O15—Pr2101.96 (9)
O11—Pr2—O13—C13129.8 (3)O16ii—Pr1—O15—Pr2167.42 (10)
O24—Pr2—O13—C1357.6 (4)O23—Pr1—O15—Pr233.66 (12)
O15—Pr2—O13—C13144.8 (4)O14—Pr1—O15—Pr239.22 (8)
O22—Pr2—O13—Pr1116.03 (11)O21i—Pr1—O15—Pr259.96 (14)
O1W—Pr2—O13—Pr1171.83 (11)O13—Pr1—O15—Pr232.61 (7)
O11iii—Pr2—O13—Pr1101.92 (9)O22—Pr2—O15—C15131.8 (2)
O25—Pr2—O13—Pr127.57 (11)O13—Pr2—O15—C15172.6 (2)
O21—Pr2—O13—Pr1106.2 (2)O1W—Pr2—O15—C15126.8 (2)
O14—Pr2—O13—Pr131.65 (8)O11iii—Pr2—O15—C1589.8 (2)
O11—Pr2—O13—Pr1119.88 (13)O25—Pr2—O15—C151.09 (18)
O24—Pr2—O13—Pr152.76 (11)O21—Pr2—O15—C158.2 (2)
O15—Pr2—O13—Pr134.47 (8)O14—Pr2—O15—C1595.7 (2)
O12i—Pr1—O13—C13141.0 (2)O11—Pr2—O15—C1541.9 (2)
O24i—Pr1—O13—C1319.2 (2)O24—Pr2—O15—C1562.9 (2)
O26—Pr1—O13—C1384.3 (2)O22—Pr2—O15—Pr13.88 (16)
O16ii—Pr1—O13—C13118.6 (2)O13—Pr2—O15—Pr136.97 (8)
O23—Pr1—O13—C131.41 (19)O1W—Pr2—O15—Pr197.53 (11)
O15—Pr1—O13—C13177.3 (2)O11iii—Pr2—O15—Pr1134.55 (10)
O14—Pr1—O13—C13110.1 (2)O25—Pr2—O15—Pr1134.55 (13)
O21i—Pr1—O13—C1350.5 (2)O21—Pr2—O15—Pr1127.43 (9)
O12i—Pr1—O13—Pr22.67 (18)O14—Pr2—O15—Pr139.91 (8)
O24i—Pr1—O13—Pr2162.91 (8)O11—Pr2—O15—Pr1177.50 (7)
O26—Pr1—O13—Pr2132.00 (12)O24—Pr2—O15—Pr172.79 (9)
O16ii—Pr1—O13—Pr297.68 (12)O22—Pr2—O25—C15109.9 (2)
O23—Pr1—O13—Pr2142.29 (14)O13—Pr2—O25—C159.6 (2)
O15—Pr1—O13—Pr238.96 (9)O1W—Pr2—O25—C15103.1 (2)
O14—Pr1—O13—Pr233.57 (8)O11iii—Pr2—O25—C1572.0 (2)
O21i—Pr1—O13—Pr293.18 (10)O21—Pr2—O25—C15175.4 (2)
O12i—Pr1—O23—C13123.6 (3)O14—Pr2—O25—C1565.3 (2)
O24i—Pr1—O23—C13161.6 (2)O11—Pr2—O25—C15135.7 (2)
O26—Pr1—O23—C1374.7 (2)O24—Pr2—O25—C15115.0 (2)
O16ii—Pr1—O23—C13101.8 (2)O15—Pr2—O25—C151.10 (19)
O15—Pr1—O23—C130.2 (3)Pr1—O15—C15—O25103.2 (4)
O14—Pr1—O23—C1360.5 (2)Pr2—O15—C15—O251.9 (3)
O21i—Pr1—O23—C13133.3 (2)Pr1—O15—C15—C2577.6 (4)
O13—Pr1—O23—C131.5 (2)Pr2—O15—C15—C25177.3 (3)
Pr1—O23—C13—O132.7 (4)Pr2—O25—C15—O152.1 (4)
Pr1—O23—C13—C23177.1 (3)Pr2—O25—C15—C25177.1 (3)
Pr2—O13—C13—O23112.4 (4)O12i—Pr1—O26—C166.2 (4)
Pr1—O13—C13—O232.4 (3)O24i—Pr1—O26—C1681.3 (3)
Pr2—O13—C13—C2367.8 (5)O16ii—Pr1—O26—C162.8 (3)
Pr1—O13—C13—C23177.3 (3)O23—Pr1—O26—C16161.3 (3)
O12i—Pr1—O14—C1425.1 (5)O15—Pr1—O26—C1679.6 (3)
O24i—Pr1—O14—C1458.5 (5)O14—Pr1—O26—C16129.0 (3)
O26—Pr1—O14—C14167.4 (5)O21i—Pr1—O26—C16119.3 (3)
O16ii—Pr1—O14—C1470.5 (5)O13—Pr1—O26—C16146.5 (3)
O23—Pr1—O14—C14128.5 (5)Pr1ii—O16—C16—O26177.5 (3)
O15—Pr1—O14—C14111.1 (5)Pr1ii—O16—C16—C16ii4.0 (6)
O21i—Pr1—O14—C1453.7 (5)Pr1—O26—C16—O16176.5 (4)
O13—Pr1—O14—C14174.5 (5)Pr1—O26—C16—C16ii2.0 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O25iii0.85 (3)1.98 (3)2.823 (4)172 (5)
O1W—H1WB···O2W0.84 (3)1.82 (2)2.664 (4)174 (4)
O2W—H2WA···O23v0.84 (3)1.91 (3)2.751 (4)171 (5)
O2W—H2WB···O25vi0.85 (3)2.08 (3)2.920 (4)173 (5)
Symmetry codes: (iii) x+1, y+2, z+2; (v) x, y+1/2, z+3/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pr4(C2H3O2)10(C2O4)(H2O)2]·2H2O
Mr1314.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.3772 (3), 13.1249 (3), 15.9198 (5)
β (°) 103.085 (3)
V3)1908.45 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.11
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.33, 0.54
No. of measured, independent and
observed [I > 2σ(I)] reflections
14838, 4526, 3935
Rint0.026
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.03
No. of reflections4526
No. of parameters256
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.90

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pr1—O12i2.417 (3)Pr2—O132.428 (2)
Pr1—O24i2.463 (2)Pr2—O1W2.469 (3)
Pr1—O262.476 (3)Pr2—O11iii2.513 (2)
Pr1—O16ii2.483 (3)Pr2—O252.555 (3)
Pr1—O232.504 (3)Pr2—O212.590 (2)
Pr1—O152.496 (2)Pr2—O142.606 (2)
Pr1—O142.526 (2)Pr2—O112.711 (2)
Pr1—O21i2.554 (2)Pr2—O242.747 (3)
Pr1—O132.698 (3)Pr2—O152.786 (3)
Pr2—O222.388 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O25iii0.85 (3)1.98 (3)2.823 (4)172 (5)
O1W—H1WB···O2W0.84 (3)1.82 (2)2.664 (4)174 (4)
O2W—H2WA···O23iv0.84 (3)1.91 (3)2.751 (4)171 (5)
O2W—H2WB···O25v0.85 (3)2.08 (3)2.920 (4)173 (5)
Symmetry codes: (iii) x+1, y+2, z+2; (iv) x, y+1/2, z+3/2; (v) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds