Download citation
Download citation
link to html
The title compound, [(Z)-4-allyl-2-(2-hy­droxybenzyl­idene)thio­semicarbazide-κS][(E)-4-allyl-1-(2-oxidobenzyl­idene)thio­semicarbazidato-κ3O,N1,S]copper(II) monohydrate, [Cu(C11H11N3OS)(C11H13N3OS)]·H2O, crystallized as a rotational twin in the monoclinic crystal system (space group Cc) with two formula unit (Z′ = 2) in the asymmetric unit, one of which contains an allyl substituent disordered over two positions. The CuII atom exhibits a distorted square-planar geometry involving two differently coordinated thio­semicarbazone ligands. One ligand is bonded to the CuII atom in a tridentate manner via the phenolate O, azomethine N and thio­amide S atoms, while the other coordinates in a monodentate manner via the S atom only. The complex is stabilized by an intra­molecular hydrogen bond, which creates a six-membered pseudo-chelate metalla-ring. The structure analysis indicates the presence of the E isomer for the tridentate ligand and the Z isomer for the monodentate ligand. The crystal structure contains a three-dimensional network built from inter­molecular O—H...O, N—H...O, O—H...N and N—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110035754/gd3359sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110035754/gd3359Isup2.hkl
Contains datablock I

CCDC reference: 798586

Comment top

Thiosemicarbazones and their metal complexes attract constant scientific interest due to their antimicrobial, antifungal and antitumour activities (Garoufilis et al., 2009; Stanojkovic et al., 2010). Some thiosemicarbazones are also used as reagents for the determination of CoII, NiII, CuII and PdII by solid-phase microextraction in high-performance liquid chromatography (Kaur et al., 2007).

The potentially tridentate salicylaldehyde thiosemicarbazone derivatives can give mono-, bi- or polynuclear complexes with transition metals, in each of which the multiple ligands usually all coordinate to the metal centre in the same manner (Soriano-García et al., 1985; Labisbal et al., 2003). However, the Cambridge Structural Database (Version?; Allen, 2002) records two structures of 1:2 square-planar PdII and PtII complexes, each containing two differently coordinated thiosemicarbazone ligands (Papathanasis et al., 2004). The present paper reports the structure of the title square-planar copper(II) complex, (I), containing two salicylaldehyde 4-N-allylthiosemicarbazone ligands which exhibit different coordination behaviours.

Compound (I) crystallizes in the noncentrosymmetric space group Cc as a inversion twin, with two molecules of the metal complex and two solvent water molecules in the asymmetric unit. The geometric parameters of the two independent complexes are very similar (Fig. 1); the only difference between them is the presence of a disordered allyl fragment (atoms C9 and C10) in one of them. The CuII centres exhibit a distorted square-planar coordination geometry, with mean deviations from the planes Cu1/O1/N2/S1/S2 and Cu2/O3/N8/S3/S4 of 0.1635 and 0.1498 Å, respectively.

The main interest in the structure lies in the different coordination modes of the two ligands around each CuII ion: one ligand is bonded in a tridentate manner via phenyl O, azomethine N and thioamide S atoms, while the other is coordinated in monodentate fashion via the thioamide S atom only (Fig. 1). The resulting six-membered Cu1/N2/C2/C3/C4/O1 (A) and Cu2/N8/C24/C25/C26/O3 (B) rings and five-membered Cu1/S1/C1/N1/N2 (C) and Cu2/S3/C23/N7/N8 (D) rings are nearly planar, with mean deviations from the planes of 0.0111, 0.0538, 0.0191 and 0.0658 Å, respectively. The dihedral angles between planes A/C and B/D are 9.78 (14) and 9.87 (14)°, respectively, which confirms the slight tetrahedral distortion of the coordination geometry at the CuII ion. The values of Cu—O and Cu—N bond lengths (Table 1) are in good agreement with those in related structures (Bon et al., 2010). The Cu1—S1 and Cu2—S3 bonds are shorter than Cu1—S2 and Cu2—S4 (Table 1), which can be explained by the strong influence of the chelate effect in the former case.

The C—S bond lengths (Table 1) do not permit a clear assignment of the dominant tautomeric form of the coordinated ligands, although the C—S bond lengths in the tridentate ligands are closer to the value expected for the thiolic tautomeric form, while the monodentate ligands have slightly shorter C—S bonds (Table 1). The values of adjacent angles around the CuII ions are in the range 84.48 (4)–98.83 (9)° (Table 1), which confirms the distorted square-planar geometry. The valence angles O1—Cu1—S2 and O3—Cu2—S4 deviate significantly from the ideal square-planar values (Table 1), which can be explained in terms of the six-membered pseudo-chelate metalla-rings Cu1/S2/C12/N4/H4N/O1 and Cu2/S4/C34/N10/H10N/O3, formed via intramolecular hydrogen bonds (Fig. 1, Table 2). The torsion angles N2—N1—C1—N3, N5—N4—C12—N6, N8—N7—C23—N9 and N11—N10—C34—N12 (Table 1) confirm the presence of the E isomer in the tridentate ligands and the Z isomer in the monodentate ligands. The intramolecular O2—H2O···N5 and O4—H4O···N11 hydrogen bonds (Table 2) are characteristic for structures containing noncoordinated azomethine fragments (Rubčić et al., 2008). The crystal structure of (I) contains an extended three-dimensional network of intermolecular O—H···O, N—H···O, O—H···N and N—H···S hydrogen bonds (Fig. 2, Table 2).

Experimental top

An aqueous solution of copper(II) acetate (20 ml, 5 mM) was stirred for 2 h with an ethanolic solution of salicylaldehyde 4-N-allylthiosemicarbazone (20 ml, 10 mM). The resulting solution was then set aside for 3 d in the dark, giving violet needle-like crystals of (I) suitable for single-crystal X-ray diffraction.

Refinement top

The structure refinement indicated disorder of one allyl group, atoms C10 and C11, over two sets of positions with occupancies of 0.669 (8) and 0.331 (8). C10 and C11 from both positions were refined with equal isotropic and anisotropic parameters. Due to disorder, the C9—C10 and C10—C11 distances were refined with restraints of 1.52 (2) and 1.33 (2) Å, respectively. The coordinates of H atoms bonded to N or O atoms were found from Fourier difference map and refined, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), using distance restraints 0.82 (4) Å for O5—H51O, O6—H61O, O6—H62O and O4—H4O, and 0.87 (4) Å for N6—H6N, N3—H3N, N4—H4N, N9—H9N and N10—H10N. All other H atoms were treated as riding, with C—H = 0.95 or 0.99 Å, and with Uiso(H) = 1.2Ueq(C). The structure was handled as an inversion twin, with twin fractions 0.535 (13) and 0.465 (13).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds.
[(E)-4-Allyl-1-(2-oxidobenzylidene)thiosemicarbazidato- κ3O,N1,S][(Z)-4-allyl-2-(2- hydroxybenzylidene)thiosemicarbazide-κS]copper(II) monohydrate top
Crystal data top
[Cu(C11H11N3OS)(C11H13N3OS)]·H2OF(000) = 2280
Mr = 550.15Dx = 1.513 Mg m3
Monoclinic, CcMelting point: 231 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 25.763 (3) ÅCell parameters from 5321 reflections
b = 8.5526 (9) Åθ = 2.5–25.2°
c = 24.496 (3) ŵ = 1.11 mm1
β = 116.458 (3)°T = 173 K
V = 4832.1 (10) Å3Needle, violet
Z = 80.50 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
8043 independent reflections
Radiation source: fine-focus sealed tube6716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2932
Tmin = 0.606, Tmax = 0.946k = 1010
25072 measured reflectionsl = 3028
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0294P)2 + 1.6385P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
8043 reflectionsΔρmax = 0.48 e Å3
656 parametersΔρmin = 0.36 e Å3
16 restraintsAbsolute structure: Flack (1983), 3047 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.464 (13)
Crystal data top
[Cu(C11H11N3OS)(C11H13N3OS)]·H2OV = 4832.1 (10) Å3
Mr = 550.15Z = 8
Monoclinic, CcMo Kα radiation
a = 25.763 (3) ŵ = 1.11 mm1
b = 8.5526 (9) ÅT = 173 K
c = 24.496 (3) Å0.50 × 0.05 × 0.05 mm
β = 116.458 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
8043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6716 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.946Rint = 0.048
25072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.48 e Å3
S = 1.03Δρmin = 0.36 e Å3
8043 reflectionsAbsolute structure: Flack (1983), 3047 Friedel pairs
656 parametersAbsolute structure parameter: 0.464 (13)
16 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.40946 (2)0.23917 (5)0.11016 (2)0.01915 (11)
S10.47493 (6)0.36162 (13)0.19397 (5)0.0226 (3)
S20.34069 (5)0.35102 (12)0.13596 (5)0.0242 (2)
O10.35948 (12)0.1031 (3)0.04694 (14)0.0253 (7)
O20.09263 (13)0.0620 (4)0.02904 (15)0.0274 (8)
H2O0.121 (2)0.099 (6)0.009 (2)0.041*
N10.52671 (19)0.2851 (5)0.1227 (2)0.0223 (10)
N20.47390 (15)0.2075 (4)0.09008 (15)0.0203 (8)
N30.5797 (2)0.4281 (6)0.2074 (2)0.0355 (12)
H3N0.581 (2)0.475 (6)0.2354 (19)0.043*
N40.25815 (19)0.2184 (5)0.0390 (2)0.0197 (10)
H4N0.2821 (17)0.170 (5)0.032 (2)0.024*
N50.20338 (15)0.1575 (4)0.00493 (15)0.0196 (8)
N60.22710 (17)0.3505 (4)0.10128 (17)0.0225 (9)
H6N0.1949 (16)0.325 (6)0.079 (2)0.027*
C10.52978 (19)0.3554 (5)0.17135 (18)0.0224 (10)
C20.47400 (19)0.1148 (4)0.04825 (19)0.0199 (9)
H2A0.50890.10770.04420.024*
C30.42584 (19)0.0218 (4)0.00742 (18)0.0207 (9)
C40.3718 (3)0.0167 (5)0.0087 (3)0.0196 (12)
C50.3299 (2)0.0849 (5)0.0319 (2)0.0248 (10)
H5A0.29350.09310.03100.030*
C60.3399 (2)0.1725 (5)0.07291 (19)0.0258 (10)
H6A0.31030.24000.09990.031*
C70.3919 (2)0.1649 (5)0.0758 (2)0.0283 (12)
H7A0.39810.22440.10510.034*
C80.4347 (2)0.0693 (5)0.0353 (2)0.0258 (10)
H8A0.47110.06490.03630.031*
C90.6313 (2)0.4200 (8)0.1973 (2)0.0569 (17)
H9A0.63980.30870.19350.068*0.67
H9B0.62280.47180.15810.068*0.67
H9C0.62280.35160.16170.068*0.33
H9D0.63950.52590.18690.068*0.33
C10A0.6819 (3)0.4904 (10)0.2442 (3)0.0441 (17)0.67
H10A0.67910.59860.25120.053*0.67
C11A0.7319 (8)0.423 (3)0.2788 (19)0.064 (2)0.67
H11A0.73740.31530.27390.077*0.67
H11B0.76260.48290.30860.077*0.67
C10B0.6810 (6)0.364 (2)0.2467 (6)0.0441 (17)0.33
H10B0.67890.26070.25980.053*0.33
C11B0.7307 (15)0.439 (6)0.277 (4)0.064 (2)0.33
H11C0.73510.54280.26610.077*0.33
H11D0.76180.38910.31030.077*0.33
Cu20.71165 (2)0.00134 (5)0.43649 (2)0.01832 (11)
S30.64769 (5)0.12090 (13)0.35181 (5)0.0222 (3)
S40.78095 (5)0.11502 (13)0.41212 (5)0.0239 (2)
O30.76156 (12)0.1299 (3)0.50184 (13)0.0226 (7)
O41.02785 (14)0.1829 (4)0.57227 (14)0.0286 (7)
H4O0.9978 (17)0.142 (6)0.553 (2)0.043*
N70.59260 (18)0.0427 (5)0.4206 (2)0.0215 (10)
N80.64498 (15)0.0347 (4)0.45353 (16)0.0180 (8)
N90.54375 (18)0.1984 (5)0.3380 (2)0.0230 (9)
H9N0.5393 (19)0.240 (5)0.3066 (16)0.028*
N100.8642 (2)0.0147 (4)0.5090 (2)0.0191 (10)
H10N0.8382 (16)0.053 (5)0.516 (2)0.023*
N110.91835 (15)0.0831 (4)0.54169 (15)0.0196 (8)
N120.89361 (18)0.1033 (4)0.44378 (18)0.0209 (9)
H12N0.929 (2)0.085 (5)0.467 (2)0.025*
C120.26968 (19)0.3038 (5)0.08882 (19)0.0197 (10)
C130.19869 (18)0.0857 (4)0.04314 (18)0.0199 (9)
H13A0.23030.09180.05310.024*
C140.14868 (18)0.0034 (4)0.08293 (19)0.0185 (9)
C150.0981 (3)0.0129 (5)0.0749 (3)0.0230 (13)
C160.0518 (2)0.1037 (5)0.1141 (2)0.0295 (11)
H16A0.01780.11140.10820.035*
C170.0552 (2)0.1827 (6)0.1614 (3)0.0327 (13)
H17A0.02290.24200.18880.039*
C180.1052 (2)0.1768 (5)0.1697 (2)0.0323 (11)
H18A0.10760.23380.20180.039*
C190.1508 (2)0.0881 (5)0.1310 (2)0.0263 (12)
H19A0.18490.08340.13680.032*
C200.23493 (19)0.4489 (5)0.15240 (19)0.0244 (10)
H20A0.19960.51280.14110.029*
H20B0.26760.52130.16090.029*
C210.2467 (2)0.3597 (6)0.2091 (2)0.0343 (11)
H21A0.27070.26970.21790.041*
C220.2264 (2)0.3972 (7)0.2471 (2)0.0495 (15)
H22A0.20220.48650.23960.059*
H22B0.23550.33530.28240.059*
C230.59128 (19)0.1173 (5)0.37296 (19)0.0207 (9)
C240.64412 (18)0.1295 (5)0.49362 (19)0.0207 (9)
H24A0.60830.14130.49550.025*
C250.69211 (18)0.2196 (4)0.53584 (19)0.0187 (9)
C260.7479 (2)0.2177 (6)0.5380 (2)0.0194 (12)
C270.7900 (2)0.3162 (5)0.5804 (2)0.0233 (10)
H27A0.82730.32060.58150.028*
C280.7791 (2)0.4067 (5)0.6205 (2)0.0268 (10)
H28A0.80900.47040.64920.032*
C290.7249 (2)0.4060 (5)0.6194 (2)0.0258 (11)
H29A0.71730.46790.64730.031*
C300.6825 (2)0.3140 (5)0.5773 (2)0.0245 (10)
H30A0.64510.31420.57600.029*
C310.49110 (18)0.2020 (5)0.34599 (19)0.0272 (10)
H31A0.46690.29120.32260.033*
H31B0.50170.21980.38960.033*
C320.45642 (18)0.0564 (5)0.32585 (19)0.0284 (10)
H32A0.47320.03800.34670.034*
C330.4036 (2)0.0507 (7)0.2808 (2)0.0497 (14)
H33A0.38580.14330.25920.060*
H33B0.38340.04600.26980.060*
C340.85155 (18)0.0637 (5)0.45776 (19)0.0168 (9)
C350.92363 (18)0.1547 (4)0.59007 (18)0.0197 (9)
H35A0.89340.14410.60200.024*
C360.97292 (19)0.2500 (5)0.6271 (2)0.0193 (9)
C371.0220 (3)0.2640 (5)0.6178 (3)0.0199 (12)
C381.0670 (2)0.3603 (5)0.65349 (19)0.0275 (10)
H38A1.10040.36820.64650.033*
C391.0635 (2)0.4452 (6)0.6995 (2)0.0280 (12)
H39A1.09450.51250.72410.034*
C401.0158 (2)0.4336 (5)0.71008 (19)0.0273 (10)
H40A1.01370.49290.74180.033*
C410.9711 (2)0.3366 (5)0.6750 (2)0.0235 (11)
H41A0.93840.32770.68310.028*
C420.88606 (19)0.1936 (5)0.39004 (19)0.0237 (10)
H42A0.92310.24530.39810.028*
H42B0.85680.27630.38260.028*
C430.8672 (2)0.0940 (6)0.3343 (2)0.0339 (11)
H43A0.83600.02380.32590.041*
C440.8898 (2)0.0953 (6)0.2964 (2)0.0431 (13)
H44A0.92110.16370.30310.052*
H44B0.87510.02780.26200.052*
O51.01768 (14)0.1061 (4)0.50618 (15)0.0272 (7)
H51O1.0408 (19)0.052 (5)0.506 (2)0.041*
H52O1.031 (2)0.132 (5)0.540 (2)0.041*
O60.10257 (14)0.3495 (4)0.03666 (14)0.0284 (7)
H61O0.089 (2)0.362 (5)0.0033 (14)0.043*
H62O0.0763 (18)0.293 (5)0.041 (2)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0159 (3)0.0212 (2)0.0198 (2)0.0028 (2)0.0075 (2)0.0014 (2)
S10.0187 (7)0.0281 (6)0.0194 (7)0.0037 (5)0.0072 (5)0.0011 (5)
S20.0171 (6)0.0299 (6)0.0243 (6)0.0032 (5)0.0080 (5)0.0077 (5)
O10.0177 (17)0.0280 (17)0.0321 (18)0.0031 (13)0.0129 (15)0.0078 (14)
O20.0191 (18)0.0341 (18)0.0299 (19)0.0121 (14)0.0117 (15)0.0102 (14)
N10.016 (3)0.028 (2)0.022 (3)0.0051 (19)0.008 (2)0.0017 (19)
N20.017 (2)0.0248 (18)0.0174 (19)0.0039 (16)0.0059 (17)0.0006 (15)
N30.023 (3)0.060 (3)0.023 (3)0.016 (2)0.010 (2)0.009 (2)
N40.013 (2)0.0208 (19)0.025 (3)0.0004 (17)0.008 (2)0.0037 (17)
N50.0156 (19)0.0229 (18)0.0179 (18)0.0030 (15)0.0052 (16)0.0011 (14)
N60.014 (2)0.030 (2)0.023 (2)0.0038 (17)0.0077 (19)0.0020 (17)
C10.020 (3)0.028 (2)0.016 (2)0.0040 (19)0.004 (2)0.0031 (18)
C20.023 (2)0.018 (2)0.022 (2)0.0028 (18)0.013 (2)0.0042 (17)
C30.025 (3)0.018 (2)0.015 (2)0.0022 (18)0.006 (2)0.0007 (16)
C40.023 (3)0.020 (2)0.018 (3)0.004 (2)0.011 (2)0.0010 (19)
C50.019 (3)0.025 (2)0.025 (3)0.001 (2)0.005 (2)0.0006 (19)
C60.026 (3)0.023 (2)0.021 (2)0.001 (2)0.005 (2)0.0003 (18)
C70.042 (3)0.022 (2)0.023 (3)0.002 (2)0.016 (3)0.005 (2)
C80.031 (3)0.024 (2)0.030 (3)0.001 (2)0.020 (2)0.0001 (19)
C90.025 (3)0.109 (5)0.040 (3)0.032 (3)0.018 (3)0.021 (3)
C10A0.036 (4)0.052 (4)0.053 (4)0.012 (4)0.029 (3)0.008 (4)
C11A0.032 (3)0.105 (6)0.051 (4)0.007 (4)0.014 (3)0.004 (6)
C10B0.036 (4)0.052 (4)0.053 (4)0.012 (4)0.029 (3)0.008 (4)
C11B0.032 (3)0.105 (6)0.051 (4)0.007 (4)0.014 (3)0.004 (6)
Cu20.0151 (2)0.0204 (2)0.0190 (2)0.0023 (2)0.0072 (2)0.0017 (2)
S30.0172 (7)0.0296 (6)0.0195 (7)0.0016 (5)0.0079 (5)0.0025 (5)
S40.0154 (6)0.0302 (6)0.0255 (6)0.0036 (5)0.0086 (5)0.0088 (5)
O30.0162 (16)0.0249 (15)0.0280 (17)0.0040 (13)0.0110 (14)0.0089 (13)
O40.0229 (18)0.0383 (19)0.0286 (18)0.0076 (15)0.0151 (16)0.0112 (14)
N70.014 (2)0.026 (2)0.024 (2)0.0082 (19)0.007 (2)0.0065 (19)
N80.020 (2)0.0167 (17)0.0195 (19)0.0029 (15)0.0104 (17)0.0003 (15)
N90.018 (2)0.030 (2)0.021 (2)0.0081 (18)0.0080 (19)0.0063 (18)
N100.013 (2)0.026 (2)0.023 (2)0.0018 (16)0.012 (2)0.0023 (17)
N110.0151 (19)0.0182 (17)0.0223 (19)0.0020 (15)0.0054 (16)0.0026 (15)
N120.014 (2)0.025 (2)0.021 (2)0.0017 (17)0.0052 (18)0.0037 (16)
C120.017 (3)0.021 (2)0.019 (2)0.0015 (19)0.007 (2)0.0025 (18)
C130.020 (2)0.022 (2)0.019 (2)0.0005 (18)0.010 (2)0.0007 (17)
C140.016 (2)0.019 (2)0.018 (2)0.0014 (17)0.0051 (19)0.0037 (16)
C150.028 (3)0.020 (3)0.022 (3)0.002 (2)0.012 (3)0.002 (2)
C160.021 (3)0.034 (3)0.029 (3)0.005 (2)0.008 (2)0.004 (2)
C170.027 (3)0.037 (3)0.025 (3)0.014 (2)0.004 (2)0.008 (2)
C180.041 (3)0.031 (2)0.022 (2)0.007 (2)0.012 (2)0.0069 (19)
C190.019 (3)0.032 (3)0.027 (3)0.002 (2)0.010 (2)0.000 (2)
C200.023 (3)0.027 (2)0.028 (3)0.0015 (19)0.016 (2)0.008 (2)
C210.027 (3)0.047 (3)0.028 (3)0.005 (2)0.012 (2)0.002 (2)
C220.044 (3)0.068 (4)0.038 (3)0.012 (3)0.020 (3)0.007 (3)
C230.019 (2)0.020 (2)0.020 (2)0.0000 (18)0.006 (2)0.0060 (18)
C240.018 (2)0.024 (2)0.021 (2)0.0023 (18)0.0091 (19)0.0018 (18)
C250.014 (2)0.019 (2)0.023 (2)0.0003 (17)0.0081 (19)0.0007 (17)
C260.021 (3)0.016 (2)0.019 (3)0.001 (2)0.007 (2)0.0004 (19)
C270.018 (3)0.024 (2)0.025 (3)0.001 (2)0.007 (2)0.0016 (19)
C280.028 (3)0.025 (2)0.021 (2)0.004 (2)0.006 (2)0.0027 (19)
C290.026 (3)0.026 (2)0.026 (3)0.001 (2)0.012 (2)0.000 (2)
C300.026 (3)0.024 (2)0.027 (2)0.0007 (19)0.015 (2)0.0012 (19)
C310.017 (2)0.040 (3)0.021 (2)0.008 (2)0.005 (2)0.0021 (19)
C320.023 (2)0.039 (3)0.026 (2)0.004 (2)0.013 (2)0.0028 (19)
C330.036 (3)0.057 (3)0.047 (3)0.003 (3)0.010 (3)0.005 (3)
C340.016 (2)0.016 (2)0.017 (2)0.0012 (18)0.006 (2)0.0020 (17)
C350.017 (2)0.021 (2)0.022 (2)0.0040 (18)0.0086 (19)0.0041 (17)
C360.018 (2)0.020 (2)0.016 (2)0.0010 (17)0.0044 (19)0.0031 (16)
C370.019 (3)0.021 (2)0.018 (3)0.0021 (19)0.006 (2)0.0021 (18)
C380.025 (3)0.035 (3)0.020 (2)0.007 (2)0.007 (2)0.0028 (19)
C390.032 (3)0.022 (2)0.021 (3)0.005 (2)0.004 (2)0.0005 (19)
C400.038 (3)0.025 (2)0.016 (2)0.001 (2)0.009 (2)0.0001 (18)
C410.028 (3)0.023 (2)0.018 (3)0.005 (2)0.010 (2)0.0029 (19)
C420.018 (2)0.028 (2)0.025 (2)0.0015 (18)0.009 (2)0.0040 (19)
C430.035 (3)0.038 (3)0.023 (2)0.007 (2)0.008 (2)0.003 (2)
C440.042 (3)0.058 (3)0.028 (3)0.002 (3)0.015 (3)0.000 (2)
O50.0170 (18)0.0378 (19)0.0267 (17)0.0071 (14)0.0097 (15)0.0018 (15)
O60.0219 (18)0.0416 (19)0.0244 (17)0.0075 (14)0.0126 (15)0.0011 (14)
Geometric parameters (Å, º) top
Cu1—O11.906 (3)N11—C351.286 (5)
Cu1—N21.949 (4)N12—C341.318 (6)
Cu1—S12.2519 (13)N12—C421.463 (5)
Cu1—S22.3347 (12)N12—H12N0.84 (5)
S1—C11.733 (5)C13—C141.439 (5)
S2—C121.721 (4)C13—H13A0.9500
O1—C41.337 (6)C14—C191.404 (6)
O2—C151.354 (6)C14—C151.405 (7)
O2—H2O0.75 (5)C15—C161.387 (7)
N1—C11.305 (6)C16—C171.378 (7)
N1—N21.401 (5)C16—H16A0.9500
N2—C21.296 (5)C17—C181.394 (7)
N3—C11.345 (6)C17—H17A0.9500
N3—C91.457 (6)C18—C191.364 (6)
N3—H3N0.78 (3)C18—H18A0.9500
N4—C121.338 (6)C19—H19A0.9500
N4—N51.382 (5)C20—C211.493 (6)
N4—H4N0.83 (3)C20—H20A0.9900
N5—C131.285 (5)C20—H20B0.9900
N6—C121.324 (6)C21—C221.296 (7)
N6—C201.447 (5)C21—H21A0.9500
N6—H6N0.79 (3)C22—H22A0.9500
C2—C31.437 (6)C22—H22B0.9500
C2—H2A0.9500C24—C251.432 (6)
C3—C81.403 (6)C24—H24A0.9500
C3—C41.407 (7)C25—C301.404 (6)
C4—C51.398 (7)C25—C261.414 (6)
C5—C61.366 (6)C26—C271.401 (7)
C5—H5A0.9500C27—C281.374 (6)
C6—C71.375 (7)C27—H27A0.9500
C6—H6A0.9500C28—C291.386 (7)
C7—C81.376 (6)C28—H28A0.9500
C7—H7A0.9500C29—C301.368 (7)
C8—H8A0.9500C29—H29A0.9500
C9—C10B1.396 (14)C30—H30A0.9500
C9—C10A1.431 (8)C31—C321.483 (6)
C9—H9A0.9900C31—H31A0.9900
C9—H9B0.9900C31—H31B0.9900
C9—H9C0.9900C32—C331.316 (6)
C9—H9D0.9900C32—H32A0.9500
C10A—C11A1.317 (18)C33—H33A0.9500
C10A—H10A0.9500C33—H33B0.9500
C11A—H11A0.9500C35—C361.440 (6)
C11A—H11B0.9500C35—H35A0.9500
C10B—C11B1.33 (2)C36—C371.386 (7)
C10B—H10B0.9500C36—C411.405 (6)
C11B—H11C0.9500C37—C381.373 (6)
C11B—H11D0.9500C38—C391.378 (7)
Cu2—O31.908 (3)C38—H38A0.9500
Cu2—N81.964 (4)C39—C401.368 (7)
Cu2—S32.2401 (13)C39—H39A0.9500
Cu2—S42.3320 (12)C40—C411.367 (6)
S3—C231.747 (4)C40—H40A0.9500
S4—C341.714 (4)C41—H41A0.9500
O3—C261.323 (6)C42—C431.495 (6)
O4—C371.377 (6)C42—H42A0.9900
O4—H4O0.79 (3)C42—H42B0.9900
N7—C231.317 (6)C43—C441.297 (7)
N7—N81.393 (5)C43—H43A0.9500
N8—C241.282 (5)C44—H44A0.9500
N9—C231.334 (6)C44—H44B0.9500
N9—C311.454 (6)O5—H51O0.75 (3)
N9—H9N0.81 (3)O5—H52O0.78 (4)
N10—C341.330 (6)O6—H61O0.89 (3)
N10—N111.391 (5)O6—H62O0.87 (3)
N10—H10N0.82 (3)
O1—Cu1—N293.03 (13)N5—C13—C14124.3 (4)
O1—Cu1—S1170.07 (10)N5—C13—H13A117.8
N2—Cu1—S185.32 (11)C14—C13—H13A117.8
O1—Cu1—S298.68 (9)C19—C14—C15118.1 (4)
N2—Cu1—S2163.67 (10)C19—C14—C13118.9 (4)
S1—Cu1—S285.02 (5)C15—C14—C13122.9 (4)
C1—S1—Cu194.62 (15)O2—C15—C16117.6 (5)
C12—S2—Cu1115.49 (15)O2—C15—C14122.3 (5)
C4—O1—Cu1128.4 (3)C16—C15—C14120.1 (5)
C15—O2—H2O109 (4)C17—C16—C15119.9 (5)
C1—N1—N2112.8 (4)C17—C16—H16A120.0
C2—N2—N1113.4 (4)C15—C16—H16A120.0
C2—N2—Cu1125.9 (3)C16—C17—C18121.0 (5)
N1—N2—Cu1120.7 (3)C16—C17—H17A119.5
C1—N3—C9122.9 (4)C18—C17—H17A119.5
C1—N3—H3N118 (4)C19—C18—C17118.9 (5)
C9—N3—H3N119 (4)C19—C18—H18A120.5
C12—N4—N5120.6 (4)C17—C18—H18A120.5
C12—N4—H4N126 (3)C18—C19—C14121.9 (5)
N5—N4—H4N110 (3)C18—C19—H19A119.1
C13—N5—N4112.8 (4)C14—C19—H19A119.1
C12—N6—C20124.4 (4)N6—C20—C21113.6 (4)
C12—N6—H6N118 (4)N6—C20—H20A108.8
C20—N6—H6N117 (4)C21—C20—H20A108.8
N1—C1—N3117.7 (4)N6—C20—H20B108.8
N1—C1—S1125.4 (4)C21—C20—H20B108.8
N3—C1—S1116.9 (3)H20A—C20—H20B107.7
N2—C2—C3125.7 (4)C22—C21—C20124.2 (5)
N2—C2—H2A117.2C22—C21—H21A117.9
C3—C2—H2A117.2C20—C21—H21A117.9
C8—C3—C4119.4 (4)C21—C22—H22A120.0
C8—C3—C2116.7 (4)C21—C22—H22B120.0
C4—C3—C2123.8 (4)H22A—C22—H22B120.0
O1—C4—C5119.5 (5)N7—C23—N9118.3 (4)
O1—C4—C3123.1 (5)N7—C23—S3125.1 (3)
C5—C4—C3117.5 (4)N9—C23—S3116.6 (3)
C6—C5—C4121.7 (5)N8—C24—C25126.1 (4)
C6—C5—H5A119.1N8—C24—H24A116.9
C4—C5—H5A119.1C25—C24—H24A116.9
C5—C6—C7121.2 (4)C30—C25—C26118.9 (4)
C5—C6—H6A119.4C30—C25—C24117.2 (4)
C7—C6—H6A119.4C26—C25—C24123.8 (4)
C8—C7—C6118.5 (5)O3—C26—C27119.2 (5)
C8—C7—H7A120.7O3—C26—C25123.4 (4)
C6—C7—H7A120.7C27—C26—C25117.4 (4)
C7—C8—C3121.6 (5)C28—C27—C26122.1 (5)
C7—C8—H8A119.2C28—C27—H27A119.0
C3—C8—H8A119.2C26—C27—H27A119.0
C10B—C9—C10A45.0 (7)C27—C28—C29120.6 (4)
C10B—C9—N3115.1 (7)C27—C28—H28A119.7
C10A—C9—N3114.7 (5)C29—C28—H28A119.7
C10B—C9—H9A66.2C30—C29—C28118.4 (5)
C10A—C9—H9A108.6C30—C29—H29A120.8
N3—C9—H9A108.6C28—C29—H29A120.8
C10B—C9—H9B135.6C29—C30—C25122.5 (4)
C10A—C9—H9B108.6C29—C30—H30A118.7
N3—C9—H9B108.6C25—C30—H30A118.7
H9A—C9—H9B107.6N9—C31—C32113.4 (4)
C10B—C9—H9C108.5N9—C31—H31A108.9
C10A—C9—H9C136.0C32—C31—H31A108.9
N3—C9—H9C108.5N9—C31—H31B108.9
H9A—C9—H9C47.2C32—C31—H31B108.9
H9B—C9—H9C62.8H31A—C31—H31B107.7
C10B—C9—H9D108.5C33—C32—C31123.7 (5)
C10A—C9—H9D66.3C33—C32—H32A118.2
N3—C9—H9D108.5C31—C32—H32A118.2
H9A—C9—H9D140.6C32—C33—H33A120.0
H9B—C9—H9D47.1C32—C33—H33B120.0
H9C—C9—H9D107.5H33A—C33—H33B120.0
C11A—C10A—C9127.9 (14)N12—C34—N10119.4 (4)
C11A—C10A—H10A116.1N12—C34—S4121.4 (3)
C9—C10A—H10A116.1N10—C34—S4119.2 (3)
C10A—C11A—H11A120.0N11—C35—C36123.5 (4)
C10A—C11A—H11B120.0N11—C35—H35A118.3
H11A—C11A—H11B120.0C36—C35—H35A118.3
C11B—C10B—C9127 (3)C37—C36—C41117.6 (4)
C11B—C10B—H10B116.4C37—C36—C35123.9 (4)
C9—C10B—H10B116.4C41—C36—C35118.5 (4)
C10B—C11B—H11C120.0C38—C37—O4116.8 (5)
C10B—C11B—H11D120.0C38—C37—C36121.3 (5)
H11C—C11B—H11D120.0O4—C37—C36121.8 (4)
O3—Cu2—N893.19 (13)C37—C38—C39119.5 (5)
O3—Cu2—S3171.12 (9)C37—C38—H38A120.2
N8—Cu2—S385.19 (11)C39—C38—H38A120.2
O3—Cu2—S498.83 (9)C40—C39—C38120.6 (5)
N8—Cu2—S4164.03 (10)C40—C39—H39A119.7
S3—Cu2—S484.48 (4)C38—C39—H39A119.7
C23—S3—Cu294.78 (15)C39—C40—C41120.1 (4)
C34—S4—Cu2115.93 (15)C39—C40—H40A120.0
C26—O3—Cu2127.9 (3)C41—C40—H40A120.0
C37—O4—H4O105 (4)C40—C41—C36120.9 (5)
C23—N7—N8112.3 (4)C40—C41—H41A119.6
C24—N8—N7113.7 (4)C36—C41—H41A119.6
C24—N8—Cu2125.3 (3)N12—C42—C43112.3 (4)
N7—N8—Cu2121.0 (3)N12—C42—H42A109.1
C23—N9—C31124.7 (4)C43—C42—H42A109.1
C23—N9—H9N123 (3)N12—C42—H42B109.1
C31—N9—H9N112 (3)C43—C42—H42B109.1
C34—N10—N11121.1 (4)H42A—C42—H42B107.9
C34—N10—H10N121 (3)C44—C43—C42125.6 (5)
N11—N10—H10N115 (3)C44—C43—H43A117.2
C35—N11—N10113.4 (4)C42—C43—H43A117.2
C34—N12—C42125.0 (4)C43—C44—H44A120.0
C34—N12—H12N122 (4)C43—C44—H44B120.0
C42—N12—H12N113 (4)H44A—C44—H44B120.0
N6—C12—N4120.3 (4)H51O—O5—H52O102 (5)
N6—C12—S2121.1 (3)H61O—O6—H62O105 (4)
N4—C12—S2118.5 (3)
O1—Cu1—S1—C188.0 (6)N5—N4—C12—N610.0 (7)
N2—Cu1—S1—C17.14 (17)N5—N4—C12—S2170.0 (3)
S2—Cu1—S1—C1159.67 (14)Cu1—S2—C12—N6174.9 (3)
O1—Cu1—S2—C127.56 (19)Cu1—S2—C12—N45.0 (4)
N2—Cu1—S2—C12127.8 (4)N4—N5—C13—C14172.7 (4)
S1—Cu1—S2—C12178.27 (17)N5—C13—C14—C19174.4 (4)
N2—Cu1—O1—C43.7 (4)N5—C13—C14—C153.9 (6)
S1—Cu1—O1—C476.5 (7)C19—C14—C15—O2178.6 (4)
S2—Cu1—O1—C4172.3 (3)C13—C14—C15—O20.3 (7)
C1—N1—N2—C2168.4 (4)C19—C14—C15—C160.2 (7)
C1—N1—N2—Cu110.2 (5)C13—C14—C15—C16178.5 (4)
O1—Cu1—N2—C22.7 (3)O2—C15—C16—C17179.8 (4)
S1—Cu1—N2—C2167.5 (3)C14—C15—C16—C171.0 (7)
S2—Cu1—N2—C2138.6 (3)C15—C16—C17—C181.9 (8)
O1—Cu1—N2—N1178.9 (3)C16—C17—C18—C191.6 (8)
S1—Cu1—N2—N110.9 (3)C17—C18—C19—C140.4 (7)
S2—Cu1—N2—N143.1 (6)C15—C14—C19—C180.5 (7)
C12—N4—N5—C13176.5 (4)C13—C14—C19—C18178.9 (4)
N2—N1—C1—N3177.3 (4)C12—N6—C20—C2189.1 (5)
N2—N1—C1—S12.1 (6)N6—C20—C21—C22141.8 (5)
C9—N3—C1—N15.4 (8)N8—N7—C23—N9178.9 (4)
C9—N3—C1—S1174.0 (4)N8—N7—C23—S30.3 (6)
Cu1—S1—C1—N15.0 (4)C31—N9—C23—N74.6 (7)
Cu1—S1—C1—N3175.7 (4)C31—N9—C23—S3176.1 (3)
N1—N2—C2—C3179.3 (4)Cu2—S3—C23—N78.1 (4)
Cu1—N2—C2—C32.2 (6)Cu2—S3—C23—N9171.2 (3)
N2—C2—C3—C8179.1 (4)N7—N8—C24—C25177.1 (4)
N2—C2—C3—C41.7 (7)Cu2—N8—C24—C254.1 (6)
Cu1—O1—C4—C5175.4 (3)N8—C24—C25—C30178.4 (4)
Cu1—O1—C4—C34.2 (6)N8—C24—C25—C261.3 (7)
C8—C3—C4—O1178.2 (4)Cu2—O3—C26—C27174.8 (3)
C2—C3—C4—O12.6 (7)Cu2—O3—C26—C254.3 (6)
C8—C3—C4—C52.3 (6)C30—C25—C26—O3178.4 (4)
C2—C3—C4—C5177.0 (4)C24—C25—C26—O31.3 (7)
O1—C4—C5—C6178.3 (4)C30—C25—C26—C272.5 (6)
C3—C4—C5—C62.1 (7)C24—C25—C26—C27177.8 (4)
C4—C5—C6—C70.2 (7)O3—C26—C27—C28178.0 (4)
C5—C6—C7—C81.5 (7)C25—C26—C27—C282.8 (7)
C6—C7—C8—C31.4 (7)C26—C27—C28—C291.4 (7)
C4—C3—C8—C70.6 (7)C27—C28—C29—C300.5 (7)
C2—C3—C8—C7178.8 (4)C28—C29—C30—C250.8 (7)
C1—N3—C9—C10B123.5 (9)C26—C25—C30—C290.7 (7)
C1—N3—C9—C10A173.4 (6)C24—C25—C30—C29179.5 (4)
C10B—C9—C10A—C11A19 (3)C23—N9—C31—C3274.2 (6)
N3—C9—C10A—C11A120 (3)N9—C31—C32—C33116.7 (5)
C10A—C9—C10B—C11B18 (5)C42—N12—C34—N10177.9 (4)
N3—C9—C10B—C11B119 (5)C42—N12—C34—S40.6 (6)
O3—Cu2—S3—C2389.0 (6)N11—N10—C34—N1213.1 (6)
N8—Cu2—S3—C239.12 (16)N11—N10—C34—S4168.3 (3)
S4—Cu2—S3—C23158.68 (14)Cu2—S4—C34—N12170.7 (3)
O3—Cu2—S4—C343.31 (18)Cu2—S4—C34—N1010.7 (4)
N8—Cu2—S4—C34135.1 (4)N10—N11—C35—C36172.2 (4)
S3—Cu2—S4—C34175.00 (17)N11—C35—C36—C375.8 (7)
N8—Cu2—O3—C265.2 (4)N11—C35—C36—C41173.0 (4)
S3—Cu2—O3—C2674.0 (8)C41—C36—C37—C380.7 (7)
S4—Cu2—O3—C26174.7 (3)C35—C36—C37—C38178.1 (4)
C23—N7—N8—C24168.7 (4)C41—C36—C37—O4179.6 (4)
C23—N7—N8—Cu210.2 (5)C35—C36—C37—O41.7 (7)
O3—Cu2—N8—C245.0 (3)O4—C37—C38—C39179.6 (4)
S3—Cu2—N8—C24166.2 (3)C36—C37—C38—C390.2 (7)
S4—Cu2—N8—C24143.9 (3)C37—C38—C39—C400.5 (7)
O3—Cu2—N8—N7176.2 (3)C38—C39—C40—C410.2 (7)
S3—Cu2—N8—N712.6 (3)C39—C40—C41—C361.1 (7)
S4—Cu2—N8—N737.3 (6)C37—C36—C41—C401.4 (6)
C34—N10—N11—C35179.9 (4)C35—C36—C41—C40177.5 (4)
C20—N6—C12—N4177.0 (4)C34—N12—C42—C4382.6 (5)
C20—N6—C12—S23.0 (6)N12—C42—C43—C44132.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N50.75 (5)2.05 (5)2.718 (5)148 (6)
N4—H4N···O10.83 (3)1.94 (3)2.715 (5)155 (4)
N6—H6N···O60.79 (3)2.14 (4)2.876 (5)154 (5)
O4—H4O···N110.79 (3)2.00 (4)2.714 (5)151 (6)
N9—H9N···S10.81 (3)2.71 (3)3.460 (4)154 (4)
N10—H10N···O30.82 (3)1.96 (3)2.753 (5)160 (4)
N12—H12N···O50.84 (5)2.06 (5)2.864 (5)159 (5)
O5—H51O···O2i0.75 (3)2.13 (4)2.833 (4)157 (5)
O5—H52O···N1ii0.78 (4)2.19 (5)2.912 (6)155 (5)
O6—H61O···N7iii0.89 (3)2.07 (3)2.890 (5)153 (4)
O6—H62O···O4iv0.87 (3)1.97 (3)2.827 (4)165 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H11N3OS)(C11H13N3OS)]·H2O
Mr550.15
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)25.763 (3), 8.5526 (9), 24.496 (3)
β (°) 116.458 (3)
V3)4832.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.50 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.606, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
25072, 8043, 6716
Rint0.048
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.074, 1.03
No. of reflections8043
No. of parameters656
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.36
Absolute structureFlack (1983), 3047 Friedel pairs
Absolute structure parameter0.464 (13)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O11.906 (3)Cu2—O31.908 (3)
Cu1—N21.949 (4)Cu2—N81.964 (4)
Cu1—S12.2519 (13)Cu2—S32.2401 (13)
Cu1—S22.3347 (12)Cu2—S42.3320 (12)
S1—C11.733 (5)S3—C231.747 (4)
S2—C121.721 (4)S4—C341.714 (4)
O1—Cu1—N293.03 (13)O3—Cu2—N893.19 (13)
N2—Cu1—S185.32 (11)N8—Cu2—S385.19 (11)
O1—Cu1—S298.68 (9)O3—Cu2—S498.83 (9)
S1—Cu1—S285.02 (5)S3—Cu2—S484.48 (4)
N2—N1—C1—N3177.3 (4)N8—N7—C23—N9178.9 (4)
N5—N4—C12—N610.0 (7)N11—N10—C34—N1213.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N50.75 (5)2.05 (5)2.718 (5)148 (6)
N4—H4N···O10.83 (3)1.94 (3)2.715 (5)155 (4)
N6—H6N···O60.79 (3)2.14 (4)2.876 (5)154 (5)
O4—H4O···N110.79 (3)2.00 (4)2.714 (5)151 (6)
N9—H9N···S10.81 (3)2.71 (3)3.460 (4)154 (4)
N10—H10N···O30.82 (3)1.96 (3)2.753 (5)160 (4)
N12—H12N···O50.84 (5)2.06 (5)2.864 (5)159 (5)
O5—H51O···O2i0.75 (3)2.13 (4)2.833 (4)157 (5)
O5—H52O···N1ii0.78 (4)2.19 (5)2.912 (6)155 (5)
O6—H61O···N7iii0.89 (3)2.07 (3)2.890 (5)153 (4)
O6—H62O···O4iv0.87 (3)1.97 (3)2.827 (4)165 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds