Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Reactions of the title free-base porphyrin compound (TPyP) with dysprosium trinitrate hexa­hydrate in different crystallization environments yielded two solid products, viz. [μ-5,15-bis­(pyridin-1-ium-4-yl)-10,20-di-4-pyridyl­porphyrin]bis­[aqua­tetra­nitratodysprosium(III)] benzene solvate, [Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6, (I), and 5,10,15,20-tetra­kis­(pyridin-1-ium-4-yl)porphyrin penta­aqua­dinitratodysprosate(III) penta­nitrate diethanol solvate dihydrate, (C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2O, (II). Compound (I) represents a 2:1 metal–porphyrin coordinated complex, which lies across a centre of inversion. Two trans-related pyridyl groups are involved in Dy coordination. The two other pyridyl substituents are protonated and involved in inter­molecular hydrogen bonding along with the metal-coordinated water and nitrate ligands. Compound (II) represents an extended hydrogen-bonded assembly between the tetra­kis­(pyridin-1-ium-4-yl)porphyrin tetra­cation, the [Dy(NO3)2(H2O)5]+ cation and the free nitrate ions, as well as the ethanol and water solvent molecules. This report provides the first structural characterization of the exocyclic dysprosium complex with tetra­pyridyl­porphyrin. It also demonstrates that charge balance can be readily achieved by protonation of the peripheral pyridyl functions, which then enhances their capacity in hydrogen bonding as H-atom donors rather than H-atom acceptors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110026892/gd3355sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026892/gd3355Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026892/gd3355IIsup3.hkl
Contains datablock II

CCDC references: 790631; 790632

Comment top

The tetra(4-pyridyl)porphyrin ligand (TPyP) is characterized by rigid square-planar geometry, bears multiple diverging molecular recognition sites for metal coordination as well as hydrogen bonding, and consequently reveals an extraordinarily rich supramolecular chemistry. Of particular interest is the coordination polymerization of this scaffold through exocyclic metal ion connectors. A survey of the literature indicates that the TPyP moiety provides an excellent building block for the formation of extended hybrid coordination polymers of diverse topologies when reacted with exocyclic transition metal ion connectors such as Ag (e.g. Carlucci et al., 2003), Cd (e.g. Zheng et al., 2007), Cu (e.g. Ohmura et al., 2006), Fe (Hagrman et al., 1999), Hg and Pb (Sharma et al., 1999) ions. Structures with exocyclic coordination to the TPyP macroring of selected transition metals in discrete complexes have been reported as well (e.g. Kon et al., 2006). Only a few coordination polymers and molecular complexes of lanthanoid (Ln) ions with simple bipyridyl ligands are known (Sharma & Rogers, 1999), but analogous compounds with the TPyP unit have not been explored until recently. This could be due to the oxophilic nature of the lanthanoid ions and their much lower tendency to coordinate to aromatic pyridyl sites. In recent studies newer types of framework solids were obtained (Lipstman & Goldberg, 2010) by reacting the TPyP with various aqua nitrate salts of lanthanoid f-metals. Those materials are characterized by open architectures of three-dimensional connectivity, which are sustained either by a combination of coordination polymerization in one direction and hydrogen bonding in the other directions, or by hydrogen-bonding interactions between the organic and inorganic components in all three dimensions. Direct coordination bonding between a lanthanoid ion and the pyridyl sites of TPyP has been observed thus far for La, Nd, Sm, Gd and Tb ions (Lipstman & Goldberg, 2009, 2010). Direct insertion of the lanthanoids into the centre of the porphyrin core is unlikely due to the relatively large size of these ions. Only a small number of double-decker-type compounds in which the Ln ions are sandwiched between, and coordinated by, the central pyrrole rings of two TPyPs has been observed (Ikeda et al., 2000).

Within the context of our continuing investigations on porphyrin framework solids (Goldberg, 2008) and on the supramolecular hybrid assemblies of the TPyP with lanthanoid ions, we describe here the structures of two new solid products, (I) and (II), obtained by reacting the porphyrin ligand with dysprosium nitrate hexahydrate, DyIII(NO3)3.6(H2O), in different crystallization conditions. It should be noticed that the large excess of the aqua nitrate salt in the reaction creates acidic conditions which promote protonation of the TPyP Lewis base, accompanied by insertion of additional nitrate ions into the solid products. This has been observed in earlier studies of the tetranitrato lanthanide complexes with TPyP (Lipstman & Goldberg, 2009, 2010) as well as with 4,4'-bipyridine (Sharma & Rogers, 1999). Compound (I) provides another example of this. Here, two trans-related pyridyl groups of the TPyP component become protonated, while the other two pyridyl functions engage in coordinative bonds with two Dy metal centres. The ORTEP structure of this product, [Dy3+(NO3-)4(H2O)]2.(TPyPH2)2+, is illustrated in Fig. 1. The porphyrin core in the formed metallo-organic complex is essentially planar. The Dy ion doubly coordinates to the four nitrate ions and singly to a water molecule (Table 1), being thus characterized by a coordination number of 9 (typical of lanthanoid metal ions in their most common oxidation state of 3+). The crystal packing of (I) involves hydrogen-bonding interactions between neighbouring units of the complex, utilizing the water ligand and pyridinium fragments as H-atom donors and the metal-coordinated nitrate ions as H-atom acceptors (Table 2). It reveals columnar organization of the organic and inorganic components along the a axis of the crystal (Fig. 2). The porphyrin entities are stacked along a in an offset-stacked manner, as commonly observed in a large variety of tetraarylporphyrin compounds (Byrn et al., 1993). The interstitial voids between the porphyrin columns entrap disordered molecules of the benzene crystallization solvent. The inorganic [Dy3+(NO3-)4(H2O)] components displaced along the a axis at (x,1/2,0) are hydrogen bonded to one another across inversion centres at (0,1/2,0) and (1/2,1/2,0); the (TPyPH2)2+ entity located across the inversion centre at (1/2,1/2,1/2) takes part in hydrogen bonding with adjacent units of the coordination complex near the (1,1,0) and (0,0,1) corners of the unit cell (Table 2).

In more acidic conditions, due to the presence of benzenetricarboxylic acid in the crystallization mixture, a full protonation of the peripheral pyridyl groups of the TPyP has occurred in compound (II). Moreover, in such conditions the basic nitrate anions have comparable tendency to be present in either a free or a metal-coordinated state, due to the competing ion-pairing and coordination interactions. In an aqueous protic environment this leads also to crystallization of the product in a solvated form of complex composition: [Dy3+(NO3-)2(H2O)5].(TPyPH4)4+.5(NO3-).2EtOH.2H2O (Fig. 3). The Dy ion in (II) is also nine-coordinate, linking singly to five molecules of water and doubly to two nitrate ions (Table 3). Given the large number of potential O—H and N—H H-atom donor and the nitrate H-atom acceptor sites, the supramolecular organization in this structure is netted by a large number of O—H···O and N—H···O hydrogen bonds (Table 4). Fig. 4 illustrates the hydrogen-bonded crystal packing of (II). It also shows that the protonated pyridyl sites of the (TPyPH4)4+ residue are not available for metal coordination, being involved in charge-assisted hydrogen bonds with the surrounding nitrate ions and water molecules. The conformation of the porphyrin macrocycle in (II) is essentially planar. The observed crystal packing exhibit segregated zones of the porphyrin and the metal-complex fragment parallel to the (ac) plane of the crystal, the former being centred at y = 0 and the latter clustering around y = 1/2.

In summary, we report here on yet another example of previously rarely observed direct exocyclic coordination adducts of TPyP and lanthanoid ions (Lipstman & Goldberg, 2009, 2010). Structures in which the TPyP entity is involved in supramolecular hydrogen bonding through their pyridyl groups are also scarce (Koner & Goldberg, 2009, 2010; Langford & Woodward, 2007; Kim et al., 2005). While it is expected in crystal engineering that the pyridyl N sites will normally engage in hydrogen bonds as H-atom acceptors with complementary H-atom donors, in structures (I) and (II) the protonated pyridyl sites adopt and [an?] opposite H-atom donating function.

Related literature top

For related literature, see: Byrn et al. (1993); Carlucci et al. (2003); Goldberg (2008); Hagrman et al. (1999); Ikeda et al. (2000); Kim et al. (2005); Kon et al. (2006); Koner & Goldberg (2009, 2010); Langford & Woodward (2007); Lipstman & Goldberg (2009, 2010); Sharma & Rogers (1999); Sharma, Broker, Huddleston, Baldwin, Metzger & Rogers (1999); Spek (2009); Zheng et al. (2007).

Experimental top

The porphyrin and lanthanoid salt reagents as well as all solvents were obtained commercially. Compound (I) was obtained by dissolving dysprosium(III) trinitrate hexahydrate (1.24 mmol) and TPyP (0.046 mmol) in a mixture of ethanol (6 ml) and o-dichlorobenzene (8 ml). This solution was refluxed overnight and filtered. Then it was placed in a tube and covered carefully with a layer of benzene in order to induce crystallization of the product by slow diffusion of benzene into the mother solution. Nice purple prisms of the solid material, (I), were obtained after 5 months. Compound (II) was obtained in more acidic conditions by dissolving Dy(NO3)3.6(H2O) (0.607 mmol), TPyP (0.026 mmol) and 1,3.5-benzenetricarboxylic acid (0.030 mmol) in a mixture of ethanol (12 ml) and o-dichlorobenzene (12 ml). The resulting solution was refluxed for 12 h, filtered and left for crystallization by slow evaporation. Diffraction quality crystals of (II) appeared at the bottom of the tube after 40 d.

Refinement top

The H atoms bound to C atoms were located in calculated positions, and were constrained to ride on their parent atoms with C—H distances of 0.95 and 0.98 Å and with Uiso(H) = 1.2 or 1.5 Ueq(C). Those bound to O and N atoms were either located in difference Fourier maps or placed in calculated positions to correspond to idealized hydrogen-bonding geometries, with O—H and N—H distances within the range of 0.83–1.03 Å and 0.85–0.96 Å, respectively. Their atomic positions were not refined, and they were constrained to ride on their parent atoms with Uiso(H) = 1.5 Ueq(carrier). In (I), the benzene crystallization solvent trapped in the crystal lattice was found to be severely disordered such that it could not be reliably modelled as discrete atoms. It is located on, and disordered about, the centre of inversion at (0,0,1/2). For the final refinement its contribution to the diffraction pattern was subtracted by the Squeeze procedure, using PLATON (Spek, 2009). In (II) the two H atoms bound to N within the porphyrin core could not be located reliably. As some residual electron density was observed near all the pyrrole N atoms, the H atoms bound to them were assumed to be disordered between the four pyrrole rings, and accordingly they were placed in calculated positions with N—H distances of 0.88 Å andUiso(H) = 1.2 Ueq(N).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-III (Burnett & Johnson, 1996), Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Molecules of this complex are located across centres of inversion, and only the unique atoms of the asymmetric unit are labelled. The atom ellipsoids represent thermal displacement parameters at the 50% probability level at circa 110 K. The H atoms and the disordered benzene solvent have been omitted.
[Figure 2] Fig. 2. The crystal packing of (I) projected down the a axis of the unit cell. Note the separate columns of the organic and inorganic components of this structure. The intermolecular hydrogen bonds are depicted by dashed lines. Wireframe illustration; only the Dy ions and the coordinated water ligand are shown as small spheres. The benzene solvent located on, and disordered about, the inversion centre at (0,0,1/2) has been omitted.
[Figure 3] Fig. 3. The molecular structure of compound (II), showing the atom-labeling scheme. The atom ellipsoids represent thermal displacement parameters at the 50% probability level at circa 110 K. The H atoms are omitted. In order to avoid severe overcrowding the upper and lower parts of this figure were drawn and labelled separately. Consequently, only hydrogen bonds between the component species within each part are shown (dashed lines); all hydrogen-bonding interactions are listed in Table 4.
[Figure 4] Fig. 4. Ball-and-stick representation of the crystal packing in (II), dashed lines indicating the hydrogen bonding between the component species. Note the segregation between the porphyrin and the Dy complex zones in the crystal. H atoms have been omitted.
(I) [µ-5,15-bis(pyridin-1-ium-4-yl)-10,20-di-4- pyridylporphyrin]bis[aquatetranitratodysprosium(III)] benzene solvate top
Crystal data top
[Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6Z = 1
Mr = 1477.82F(000) = 724
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7897 (2) ÅCell parameters from 4507 reflections
b = 12.2577 (2) Åθ = 1.4–27.1°
c = 17.2316 (5) ŵ = 2.58 mm1
α = 70.1447 (10)°T = 110 K
β = 89.341 (1)°Prism, purple
γ = 75.3827 (16)°0.15 × 0.10 × 0.05 mm
V = 1492.45 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
6457 independent reflections
Radiation source: fine-focus sealed tube5074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 12.8 pixels mm-1θmax = 27.1°, θmin = 1.8°
1 deg. ϕ and ω scansh = 09
Absorption correction: multi-scan
(Blessing, 1995)
k = 1415
Tmin = 0.699, Tmax = 0.882l = 2122
13999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0346P)2]
where P = (Fo2 + 2Fc2)/3
6457 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6γ = 75.3827 (16)°
Mr = 1477.82V = 1492.45 (6) Å3
Triclinic, P1Z = 1
a = 7.7897 (2) ÅMo Kα radiation
b = 12.2577 (2) ŵ = 2.58 mm1
c = 17.2316 (5) ÅT = 110 K
α = 70.1447 (10)°0.15 × 0.10 × 0.05 mm
β = 89.341 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6457 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5074 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.882Rint = 0.054
13999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.97Δρmax = 1.36 e Å3
6457 reflectionsΔρmin = 1.03 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure contains also severely disordered benzene crystallization solvent, which could not be reliably modeled by discrete atoms. It is located on, and disordered about, crystallographic centers of inversion. Its contribution to the diffraction data was subtracted by the Squeeze procedure, using the PLATON software (Spek, 2003).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2728 (6)0.3326 (4)0.5960 (3)0.0215 (10)
C20.1662 (6)0.2578 (4)0.5839 (3)0.0281 (11)
H20.12040.20190.62600.034*
C30.1440 (6)0.2823 (4)0.5014 (3)0.0271 (11)
H30.07970.24590.47550.033*
C40.2331 (6)0.3720 (4)0.4594 (3)0.0220 (10)
C50.2514 (6)0.4171 (4)0.3747 (3)0.0220 (10)
C60.3575 (6)0.4952 (4)0.3365 (3)0.0217 (10)
C70.3675 (6)0.5434 (4)0.2473 (3)0.0254 (10)
H70.30580.52860.20630.031*
C80.4819 (6)0.6134 (4)0.2342 (3)0.0254 (10)
H80.51630.65710.18220.031*
C90.5422 (6)0.6086 (4)0.3152 (3)0.0199 (9)
C100.6628 (6)0.6701 (4)0.3280 (3)0.0191 (9)
N110.3067 (5)0.4004 (3)0.5196 (2)0.0212 (8)
H110.37500.45260.50760.025*
N120.4651 (5)0.5359 (3)0.3765 (2)0.0205 (8)
C130.1588 (6)0.3734 (4)0.3204 (2)0.0209 (10)
C140.0246 (6)0.3881 (4)0.3172 (3)0.0225 (10)
H140.09580.42520.35120.027*
C150.1021 (6)0.3477 (4)0.2637 (3)0.0227 (10)
H150.22720.35840.26210.027*
N160.0094 (5)0.2942 (3)0.2139 (2)0.0233 (8)
C170.1668 (6)0.2796 (4)0.2181 (3)0.0265 (10)
H170.23510.24260.18330.032*
C180.2552 (6)0.3157 (4)0.2707 (3)0.0253 (10)
H180.38110.30090.27260.030*
C190.7268 (6)0.7483 (4)0.2522 (2)0.0201 (9)
C200.6045 (7)0.8425 (4)0.1943 (3)0.0275 (11)
H200.48170.85910.20360.033*
C210.6621 (8)0.9121 (4)0.1229 (3)0.0339 (12)
H210.57890.97600.08240.041*
N220.8335 (7)0.8890 (4)0.1112 (2)0.0390 (12)
H220.86770.93480.06560.047*
C230.9597 (8)0.7988 (5)0.1657 (3)0.0381 (14)
H231.08160.78500.15480.046*
C240.9062 (7)0.7274 (4)0.2375 (3)0.0301 (11)
H240.99200.66400.27690.036*
Dy10.16769 (3)0.254801 (19)0.101320 (13)0.02266 (8)
O250.2795 (4)0.4577 (3)0.08919 (18)0.0258 (7)
H25A0.36440.51140.04500.031*
H25B0.20010.50310.09360.031*
N260.4919 (5)0.2577 (3)0.0150 (2)0.0263 (9)
O270.4881 (4)0.3514 (3)0.03221 (19)0.0286 (7)
O280.3643 (4)0.1658 (3)0.0483 (2)0.0290 (7)
O290.6091 (4)0.2586 (3)0.0314 (2)0.0338 (8)
N300.0376 (5)0.3841 (3)0.0494 (2)0.0259 (9)
O310.1794 (4)0.3517 (3)0.04998 (18)0.0281 (8)
O320.0434 (4)0.3574 (3)0.02102 (18)0.0284 (8)
O330.0176 (5)0.4394 (3)0.11420 (19)0.0324 (8)
N340.1371 (5)0.0616 (3)0.0877 (2)0.0263 (9)
O350.0091 (4)0.1066 (3)0.04046 (18)0.0240 (7)
O360.1508 (5)0.1072 (3)0.14148 (19)0.0334 (8)
O370.2524 (5)0.0201 (3)0.0783 (2)0.0372 (8)
N380.2955 (6)0.1028 (4)0.2415 (2)0.0327 (10)
O390.3617 (4)0.2172 (3)0.2115 (2)0.0303 (8)
O400.1591 (5)0.0617 (3)0.20781 (19)0.0309 (8)
O410.3601 (6)0.0392 (3)0.2978 (2)0.0551 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.023 (2)0.019 (2)0.009 (2)0.0011 (18)0.0049 (19)
C20.030 (3)0.031 (3)0.024 (3)0.016 (2)0.002 (2)0.006 (2)
C30.033 (3)0.033 (3)0.019 (2)0.019 (2)0.000 (2)0.007 (2)
C40.024 (2)0.024 (2)0.018 (2)0.009 (2)0.0048 (18)0.0051 (19)
C50.021 (2)0.025 (2)0.022 (2)0.010 (2)0.0013 (19)0.008 (2)
C60.023 (2)0.024 (2)0.017 (2)0.004 (2)0.0041 (18)0.0064 (19)
C70.032 (3)0.030 (2)0.018 (2)0.015 (2)0.0002 (19)0.009 (2)
C80.034 (3)0.031 (3)0.014 (2)0.017 (2)0.0044 (19)0.005 (2)
C90.019 (2)0.026 (2)0.015 (2)0.007 (2)0.0016 (18)0.0074 (19)
C100.018 (2)0.019 (2)0.018 (2)0.0074 (19)0.0020 (18)0.0021 (18)
N110.026 (2)0.0253 (19)0.0144 (18)0.0142 (17)0.0008 (15)0.0045 (16)
N120.022 (2)0.0233 (19)0.0176 (19)0.0106 (17)0.0006 (15)0.0060 (16)
C130.032 (3)0.021 (2)0.009 (2)0.012 (2)0.0020 (18)0.0008 (18)
C140.029 (3)0.023 (2)0.015 (2)0.009 (2)0.0044 (18)0.0028 (18)
C150.025 (2)0.021 (2)0.018 (2)0.007 (2)0.0052 (19)0.0007 (19)
N160.024 (2)0.026 (2)0.020 (2)0.0082 (18)0.0018 (16)0.0076 (17)
C170.030 (3)0.028 (3)0.023 (2)0.010 (2)0.001 (2)0.010 (2)
C180.023 (2)0.029 (2)0.025 (2)0.010 (2)0.0009 (19)0.009 (2)
C190.032 (3)0.017 (2)0.013 (2)0.012 (2)0.0001 (18)0.0046 (18)
C200.037 (3)0.027 (2)0.021 (2)0.016 (2)0.004 (2)0.006 (2)
C210.051 (4)0.027 (3)0.028 (3)0.019 (3)0.007 (2)0.009 (2)
N220.073 (4)0.045 (3)0.013 (2)0.042 (3)0.012 (2)0.009 (2)
C230.049 (3)0.048 (3)0.040 (3)0.036 (3)0.024 (3)0.029 (3)
C240.033 (3)0.030 (3)0.031 (3)0.016 (2)0.006 (2)0.011 (2)
Dy10.02996 (13)0.02089 (12)0.01821 (12)0.00914 (9)0.00270 (8)0.00626 (8)
O250.0329 (19)0.0191 (15)0.0244 (17)0.0080 (14)0.0076 (14)0.0053 (13)
N260.034 (2)0.023 (2)0.025 (2)0.0110 (19)0.0028 (18)0.0095 (17)
O270.036 (2)0.0220 (16)0.0297 (18)0.0087 (15)0.0054 (15)0.0102 (14)
O280.0300 (19)0.0202 (16)0.0353 (19)0.0051 (15)0.0038 (15)0.0087 (15)
O290.032 (2)0.043 (2)0.0336 (19)0.0151 (17)0.0078 (15)0.0182 (16)
N300.037 (2)0.023 (2)0.021 (2)0.0115 (19)0.0024 (18)0.0080 (17)
O310.038 (2)0.0290 (17)0.0205 (17)0.0191 (16)0.0021 (14)0.0057 (14)
O320.0352 (19)0.0348 (18)0.0200 (17)0.0169 (16)0.0023 (14)0.0100 (14)
O330.045 (2)0.0335 (19)0.0203 (18)0.0207 (17)0.0006 (15)0.0042 (15)
N340.034 (2)0.026 (2)0.020 (2)0.013 (2)0.0033 (17)0.0069 (17)
O350.0229 (17)0.0293 (17)0.0198 (16)0.0099 (14)0.0015 (13)0.0062 (14)
O360.043 (2)0.0372 (19)0.0256 (18)0.0091 (17)0.0041 (15)0.0191 (16)
O370.036 (2)0.037 (2)0.038 (2)0.0006 (18)0.0024 (17)0.0190 (17)
N380.048 (3)0.030 (2)0.023 (2)0.017 (2)0.004 (2)0.0086 (19)
O390.035 (2)0.0256 (18)0.0314 (19)0.0088 (16)0.0056 (15)0.0102 (15)
O400.041 (2)0.0237 (17)0.0227 (17)0.0044 (16)0.0004 (16)0.0045 (14)
O410.084 (3)0.043 (2)0.037 (2)0.030 (2)0.027 (2)0.0030 (19)
Geometric parameters (Å, º) top
C1—N111.361 (5)C20—C211.382 (7)
C1—C10i1.395 (6)C20—H200.9500
C1—C21.447 (6)C21—N221.321 (7)
C2—C31.354 (6)C21—H210.9500
C2—H20.9500N22—C231.356 (7)
C3—C41.431 (6)N22—H220.8800
C3—H30.9500C23—C241.380 (7)
C4—N111.374 (5)C23—H230.9500
C4—C51.393 (6)C24—H240.9500
C5—C61.412 (6)Dy1—O252.355 (3)
C5—C131.495 (5)Dy1—O392.406 (3)
C6—N121.373 (5)Dy1—O282.434 (3)
C6—C71.457 (6)Dy1—O402.439 (3)
C7—C81.352 (6)Dy1—O322.451 (3)
C7—H70.9500Dy1—O352.462 (3)
C8—C91.456 (6)Dy1—O312.462 (3)
C8—H80.9500Dy1—O272.582 (3)
C9—N121.374 (5)Dy1—O362.613 (4)
C9—C101.404 (6)Dy1—N382.850 (4)
C10—C1i1.395 (6)Dy1—N302.870 (4)
C10—C191.499 (6)O25—H25A0.9496
N11—H110.9023O25—H25B0.9496
C13—C181.388 (6)N26—O291.216 (4)
C13—C141.394 (6)N26—O281.263 (5)
C14—C151.391 (5)N26—O271.287 (4)
C14—H140.9500N30—O331.230 (5)
C15—N161.348 (6)N30—O311.266 (5)
C15—H150.9500N30—O321.273 (4)
N16—C171.338 (6)N34—O371.220 (5)
N16—Dy12.551 (3)N34—O361.252 (4)
C17—C181.389 (6)N34—O351.290 (5)
C17—H170.9500N38—O411.214 (5)
C18—H180.9500N38—O401.278 (5)
C19—C201.386 (6)N38—O391.284 (5)
C19—C241.393 (7)
N11—C1—C10i126.8 (4)O32—Dy1—O3578.50 (10)
N11—C1—C2107.1 (4)O25—Dy1—O3180.06 (10)
C10i—C1—C2126.1 (4)O39—Dy1—O31140.67 (11)
C3—C2—C1107.1 (4)O28—Dy1—O3176.14 (10)
C3—C2—H2126.4O40—Dy1—O31141.44 (10)
C1—C2—H2126.4O32—Dy1—O3152.24 (9)
C2—C3—C4109.0 (4)O35—Dy1—O3170.49 (10)
C2—C3—H3125.5O25—Dy1—N1670.85 (11)
C4—C3—H3125.5O39—Dy1—N1678.07 (11)
N11—C4—C5126.3 (4)O28—Dy1—N16155.05 (11)
N11—C4—C3106.4 (4)O40—Dy1—N1685.02 (11)
C5—C4—C3127.2 (4)O32—Dy1—N1679.31 (10)
C4—C5—C6125.6 (4)O35—Dy1—N16120.20 (11)
C4—C5—C13117.1 (3)O31—Dy1—N16128.62 (10)
C6—C5—C13117.3 (4)O25—Dy1—O2766.05 (9)
N12—C6—C5125.9 (4)O39—Dy1—O2773.92 (11)
N12—C6—C7110.5 (3)O28—Dy1—O2750.84 (10)
C5—C6—C7123.6 (3)O40—Dy1—O27108.53 (10)
C8—C7—C6106.7 (4)O32—Dy1—O27111.46 (10)
C8—C7—H7126.7O35—Dy1—O27109.73 (9)
C6—C7—H7126.7O31—Dy1—O2766.75 (11)
C7—C8—C9106.7 (4)N16—Dy1—O27130.06 (11)
C7—C8—H8126.7O25—Dy1—O36132.39 (10)
C9—C8—H8126.7O39—Dy1—O36112.77 (11)
N12—C9—C10125.3 (4)O28—Dy1—O36110.00 (10)
N12—C9—C8110.5 (3)O40—Dy1—O3666.18 (11)
C10—C9—C8124.2 (4)O32—Dy1—O3671.78 (11)
C1i—C10—C9126.6 (4)O35—Dy1—O3650.15 (9)
C1i—C10—C19116.5 (3)O31—Dy1—O36104.29 (11)
C9—C10—C19116.8 (4)N16—Dy1—O3670.23 (11)
C1—N11—C4110.4 (3)O27—Dy1—O36159.49 (9)
C1—N11—H11127.3O25—Dy1—N38110.38 (12)
C4—N11—H11122.1O39—Dy1—N3826.61 (11)
C9—N12—C6105.6 (3)O28—Dy1—N3873.28 (11)
C18—C13—C14117.4 (4)O40—Dy1—N3826.54 (11)
C18—C13—C5120.3 (4)O32—Dy1—N38157.26 (11)
C14—C13—C5122.3 (4)O35—Dy1—N38100.54 (11)
C15—C14—C13119.1 (4)O31—Dy1—N38149.15 (10)
C15—C14—H14120.5N16—Dy1—N3881.79 (11)
C13—C14—H14120.5O27—Dy1—N3890.41 (11)
N16—C15—C14123.6 (4)O36—Dy1—N3890.00 (12)
N16—C15—H15118.2O25—Dy1—N3076.23 (11)
C14—C15—H15118.2O39—Dy1—N30158.31 (11)
C17—N16—C15116.7 (3)O28—Dy1—N30100.69 (10)
C17—N16—Dy1121.5 (3)O40—Dy1—N30147.97 (12)
C15—N16—Dy1121.1 (3)O32—Dy1—N3026.19 (9)
N16—C17—C18123.4 (4)O35—Dy1—N3072.60 (10)
N16—C17—H17118.3O31—Dy1—N3026.05 (10)
C18—C17—H17118.3N16—Dy1—N30104.24 (10)
C17—C18—C13119.7 (4)O27—Dy1—N3089.08 (11)
C17—C18—H18120.1O36—Dy1—N3087.85 (11)
C13—C18—H18120.1N38—Dy1—N30172.46 (10)
C20—C19—C24118.8 (4)Dy1—O25—H25A120.4
C20—C19—C10119.5 (4)Dy1—O25—H25B120.0
C24—C19—C10121.7 (4)H25A—O25—H25B104.3
C21—C20—C19119.7 (5)O29—N26—O28122.4 (3)
C21—C20—H20120.2O29—N26—O27122.0 (4)
C19—C20—H20120.2O28—N26—O27115.6 (3)
N22—C21—C20119.6 (5)O29—N26—Dy1169.4 (3)
N22—C21—H21120.2O28—N26—Dy154.83 (18)
C20—C21—H21120.2O27—N26—Dy161.6 (2)
C21—N22—C23123.6 (4)N26—O27—Dy192.3 (2)
C21—N22—H22118.2N26—O28—Dy1100.1 (2)
C23—N22—H22118.2O33—N30—O31121.0 (3)
N22—C23—C24118.2 (5)O33—N30—O32122.1 (4)
N22—C23—H23120.9O31—N30—O32116.9 (4)
C24—C23—H23120.9O33—N30—Dy1179.7 (3)
C23—C24—C19120.2 (5)O31—N30—Dy158.7 (2)
C23—C24—H24119.9O32—N30—Dy158.2 (2)
C19—C24—H24119.9N30—O31—Dy195.3 (2)
O25—Dy1—O3984.46 (11)N30—O32—Dy195.6 (2)
O25—Dy1—O28116.89 (10)O37—N34—O36123.9 (4)
O39—Dy1—O2879.18 (11)O37—N34—O35120.1 (3)
O25—Dy1—O40135.09 (11)O36—N34—O35116.0 (4)
O39—Dy1—O4053.09 (11)N34—O35—Dy1100.0 (2)
O28—Dy1—O4073.14 (10)N34—O36—Dy193.8 (3)
O25—Dy1—O3275.02 (11)O41—N38—O40123.1 (4)
O39—Dy1—O32153.41 (10)O41—N38—O39121.5 (5)
O28—Dy1—O32125.15 (10)O40—N38—O39115.4 (4)
O40—Dy1—O32137.92 (11)O41—N38—Dy1175.5 (3)
O25—Dy1—O35148.64 (10)O40—N38—Dy158.5 (2)
O39—Dy1—O35125.43 (10)O39—N38—Dy157.1 (2)
O28—Dy1—O3566.71 (10)N38—O39—Dy196.3 (3)
O40—Dy1—O3576.26 (10)N38—O40—Dy195.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O35ii0.882.262.926 (5)132
O25—H25A···O27iii0.951.862.784 (4)164
O25—H25B···O33iv0.951.832.762 (4)168
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x, y+1, z.
(II) 5,10,15,20-tetrakis(pyridin-1-ium-4-yl)porphyrin pentaaquadinitratodysprosate(III) pentanitrate diethanol solvate dihydrate top
Crystal data top
(C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2OZ = 2
Mr = 1437.54F(000) = 1462
Triclinic, P1Dx = 1.698 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.8961 (2) ÅCell parameters from 12265 reflections
b = 12.9222 (2) Åθ = 1.4–27.9°
c = 18.5978 (3) ŵ = 1.44 mm1
α = 71.6843 (7)°T = 110 K
β = 80.9684 (8)°Needle, purple
γ = 73.3707 (7)°0.55 × 0.10 × 0.05 mm
V = 2811.52 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
13315 independent reflections
Radiation source: fine-focus sealed tube11865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 12.8 pixels mm-1θmax = 27.9°, θmin = 2.3°
1 deg. ϕ & ω scansh = 016
Absorption correction: multi-scan
(Blessing, 1995)
k = 1516
Tmin = 0.512, Tmax = 0.932l = 2324
47169 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0428P)2 + 2.844P]
where P = (Fo2 + 2Fc2)/3
13315 reflections(Δ/σ)max = 0.002
813 parametersΔρmax = 2.00 e Å3
0 restraintsΔρmin = 1.62 e Å3
Crystal data top
(C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2Oγ = 73.3707 (7)°
Mr = 1437.54V = 2811.52 (8) Å3
Triclinic, P1Z = 2
a = 12.8961 (2) ÅMo Kα radiation
b = 12.9222 (2) ŵ = 1.44 mm1
c = 18.5978 (3) ÅT = 110 K
α = 71.6843 (7)°0.55 × 0.10 × 0.05 mm
β = 80.9684 (8)°
Data collection top
Nonius KappaCCD
diffractometer
13315 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
11865 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.932Rint = 0.044
47169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 2.00 e Å3
13315 reflectionsΔρmin = 1.62 e Å3
813 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.18608 (19)0.0746 (2)0.32693 (13)0.0131 (5)
C20.09301 (19)0.1310 (2)0.28390 (14)0.0149 (5)
H20.08920.13690.23210.018*
C30.0111 (2)0.1748 (2)0.32993 (14)0.0161 (5)
H30.05970.21770.31590.019*
C40.05066 (18)0.1444 (2)0.40363 (13)0.0126 (5)
C50.00806 (19)0.1697 (2)0.46869 (13)0.0126 (5)
C60.02624 (19)0.1258 (2)0.54305 (13)0.0127 (5)
C70.03958 (19)0.1515 (2)0.60912 (14)0.0149 (5)
H70.11150.19790.60990.018*
C80.0210 (2)0.0969 (2)0.66893 (14)0.0159 (5)
H80.00050.09550.72040.019*
C90.12571 (19)0.0404 (2)0.63936 (13)0.0125 (5)
C100.21373 (19)0.0217 (2)0.68418 (13)0.0124 (5)
C110.31577 (19)0.0774 (2)0.65869 (13)0.0125 (5)
C120.40846 (19)0.1375 (2)0.70220 (14)0.0149 (5)
H120.41220.14540.75430.018*
C130.4899 (2)0.1810 (2)0.65582 (14)0.0150 (5)
H130.56010.22560.67000.018*
C140.45118 (19)0.1478 (2)0.58175 (13)0.0126 (5)
C150.51018 (18)0.1702 (2)0.51642 (14)0.0128 (5)
C160.47678 (19)0.1247 (2)0.44197 (13)0.0130 (5)
C170.5443 (2)0.1461 (2)0.37505 (14)0.0151 (5)
H170.61700.19030.37380.018*
C180.48353 (19)0.0910 (2)0.31525 (14)0.0148 (5)
H180.50560.08710.26350.018*
C190.37760 (19)0.0389 (2)0.34571 (13)0.0121 (4)
C200.28906 (19)0.0208 (2)0.30118 (13)0.0129 (5)
N210.15586 (16)0.08257 (17)0.39959 (11)0.0120 (4)
H210.19780.05240.43770.014*0.50
N220.12636 (16)0.05713 (17)0.56269 (11)0.0118 (4)
H220.17960.02970.53260.014*0.50
N230.34595 (16)0.08433 (17)0.58566 (11)0.0121 (4)
H230.30430.05300.54740.015*0.50
N240.37580 (16)0.05861 (17)0.42265 (11)0.0128 (4)
H240.32140.03410.45310.015*0.50
C250.11340 (19)0.2568 (2)0.45620 (13)0.0127 (5)
C260.1140 (2)0.3659 (2)0.41069 (14)0.0171 (5)
H260.04830.38310.38570.021*
C270.2099 (2)0.4481 (2)0.40207 (15)0.0190 (5)
H270.21060.52250.37130.023*
N280.30283 (17)0.42321 (19)0.43727 (12)0.0182 (4)
H280.36440.48210.42290.022*
C290.3059 (2)0.3191 (2)0.47957 (15)0.0184 (5)
H290.37320.30390.50250.022*
C300.21189 (19)0.2335 (2)0.49012 (14)0.0153 (5)
H300.21410.15950.52020.018*
C310.19750 (19)0.0302 (2)0.76687 (14)0.0142 (5)
C320.1699 (2)0.0650 (2)0.79307 (14)0.0169 (5)
H320.16280.13780.75800.020*
C330.1530 (2)0.0531 (2)0.87011 (15)0.0191 (5)
H330.13280.11770.88820.023*
N340.16514 (17)0.0500 (2)0.91918 (12)0.0187 (5)
H340.14520.05170.96750.022*
C350.1928 (2)0.1437 (2)0.89666 (15)0.0196 (5)
H350.20060.21540.93330.024*
C360.2097 (2)0.1362 (2)0.82055 (14)0.0179 (5)
H360.22970.20250.80440.022*
C370.61640 (19)0.2563 (2)0.52762 (13)0.0130 (5)
C380.6176 (2)0.3676 (2)0.56697 (14)0.0174 (5)
H380.55170.38760.58820.021*
C390.7145 (2)0.4486 (2)0.57502 (14)0.0174 (5)
H390.71570.52460.60210.021*
N400.80711 (16)0.41985 (18)0.54462 (12)0.0167 (4)
H400.86570.47010.55630.020*
C410.8094 (2)0.3135 (2)0.50728 (15)0.0180 (5)
H410.87680.29600.48730.022*
C420.7146 (2)0.2292 (2)0.49769 (14)0.0166 (5)
H420.71610.15370.47110.020*
C430.30547 (18)0.0287 (2)0.21861 (13)0.0133 (5)
C440.3304 (2)0.0677 (2)0.19423 (14)0.0163 (5)
H440.33620.13960.23020.020*
C450.3467 (2)0.0580 (2)0.11733 (14)0.0176 (5)
H450.36480.12330.10010.021*
N460.33671 (17)0.04407 (19)0.06738 (12)0.0165 (4)
H460.35420.04500.01510.020*
C470.3120 (2)0.1388 (2)0.08856 (14)0.0173 (5)
H470.30520.20970.05120.021*
C480.2964 (2)0.1331 (2)0.16457 (14)0.0161 (5)
H480.27950.19990.18000.019*
Dy10.702253 (9)0.533180 (10)0.860983 (6)0.01390 (4)
O490.79708 (15)0.69702 (15)0.81793 (10)0.0199 (4)
H49A0.81720.76340.84450.024*
H49B0.84230.68690.77470.024*
O500.53003 (14)0.40517 (16)0.85230 (11)0.0192 (4)
H50A0.46490.41770.84880.023*
H50B0.49890.35140.87030.023*
O510.60420 (15)0.66595 (16)0.92000 (10)0.0207 (4)
H51A0.55870.68010.89920.025*
H51B0.59210.69890.97060.025*
O520.61767 (15)0.53740 (16)0.75738 (10)0.0199 (4)
H52A0.63140.59680.74240.024*
H52B0.54530.48130.74090.024*
O530.84279 (15)0.63785 (17)0.94207 (11)0.0235 (4)
H53A0.90350.65930.92060.028*
H53B0.85280.62000.98060.028*
N540.81617 (19)0.4013 (2)0.73552 (13)0.0204 (5)
O550.71768 (15)0.36119 (17)0.75410 (11)0.0249 (4)
O560.86375 (16)0.49236 (17)0.78242 (12)0.0263 (4)
O570.86330 (19)0.3566 (2)0.67666 (12)0.0337 (5)
N580.67758 (18)0.43113 (19)0.98290 (12)0.0195 (5)
O590.64632 (15)0.51949 (16)0.99439 (11)0.0211 (4)
O600.71819 (16)0.39194 (16)0.91558 (10)0.0211 (4)
O610.67073 (18)0.38445 (17)1.03207 (11)0.0274 (4)
N620.44367 (17)0.14617 (19)0.07865 (12)0.0174 (4)
O630.44498 (17)0.24763 (16)0.07121 (11)0.0247 (4)
O640.44997 (18)0.11915 (18)0.02132 (11)0.0268 (4)
O650.43644 (17)0.07576 (17)0.14238 (11)0.0251 (4)
N660.33915 (17)0.38738 (19)0.73972 (12)0.0179 (4)
O670.25350 (15)0.32683 (18)0.71152 (12)0.0275 (4)
O680.42315 (15)0.41293 (16)0.69836 (11)0.0212 (4)
O690.34212 (15)0.42492 (18)0.81182 (11)0.0240 (4)
N700.50681 (18)0.63320 (18)0.35290 (12)0.0177 (4)
O710.42356 (16)0.64165 (17)0.30935 (11)0.0242 (4)
O720.59990 (15)0.67572 (16)0.32957 (11)0.0232 (4)
O730.49684 (15)0.58102 (17)0.42244 (10)0.0239 (4)
N740.09616 (18)0.0024 (2)1.08898 (12)0.0199 (5)
O750.13928 (17)0.09653 (17)1.07435 (11)0.0255 (4)
O760.07883 (19)0.08400 (18)1.03513 (12)0.0338 (5)
O770.07380 (17)0.0008 (2)1.15574 (11)0.0302 (5)
N780.98078 (18)0.62369 (19)0.65074 (13)0.0212 (5)
O790.88620 (15)0.63361 (17)0.67191 (11)0.0231 (4)
O801.05422 (18)0.66565 (19)0.69486 (13)0.0339 (5)
O811.00108 (15)0.56880 (17)0.58273 (11)0.0251 (4)
O821.03608 (16)0.69470 (18)0.86309 (12)0.0277 (4)
H821.02120.66440.81290.033*
C831.1105 (3)0.6398 (3)0.8749 (2)0.0410 (8)
H83A1.16110.69370.91260.049*
H83B1.06990.57690.89600.049*
C841.1733 (3)0.5954 (4)0.8043 (2)0.0482 (9)
H84A1.12350.54230.76660.072*
H84B1.21640.65780.78440.072*
H84C1.22180.55660.81470.072*
O850.15098 (16)0.38868 (18)0.91730 (12)0.0278 (5)
H850.21980.39710.88440.033*
C860.0596 (3)0.3396 (3)0.8703 (2)0.0396 (8)
H86A0.06400.38470.83520.048*
H86B0.06170.26210.83960.048*
C870.0442 (3)0.3365 (4)0.9190 (2)0.0474 (9)
H87A0.05080.28740.95120.071*
H87B0.04460.41280.95110.071*
H87C0.10530.30740.88670.071*
O880.35170 (16)0.12419 (17)0.08839 (11)0.0243 (4)
H88A0.39520.06990.11050.029*
H88B0.37990.17960.10380.029*
O890.44753 (16)0.69169 (17)0.84548 (11)0.0251 (4)
H89A0.39220.63440.85690.030*
H89B0.45070.67340.79110.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (11)0.0133 (12)0.0108 (11)0.0024 (9)0.0010 (9)0.0042 (9)
C20.0156 (11)0.0181 (12)0.0099 (11)0.0009 (9)0.0026 (9)0.0049 (9)
C30.0136 (11)0.0187 (13)0.0119 (11)0.0010 (9)0.0022 (9)0.0029 (9)
C40.0108 (10)0.0143 (12)0.0111 (11)0.0009 (9)0.0007 (9)0.0036 (9)
C50.0116 (11)0.0129 (11)0.0123 (11)0.0013 (9)0.0005 (9)0.0041 (9)
C60.0144 (11)0.0120 (11)0.0110 (11)0.0025 (9)0.0000 (9)0.0034 (9)
C70.0122 (11)0.0185 (13)0.0130 (11)0.0014 (9)0.0010 (9)0.0064 (10)
C80.0148 (11)0.0204 (13)0.0114 (11)0.0017 (9)0.0009 (9)0.0066 (10)
C90.0140 (11)0.0115 (11)0.0109 (11)0.0022 (9)0.0005 (9)0.0031 (9)
C100.0158 (11)0.0118 (11)0.0087 (10)0.0025 (9)0.0004 (9)0.0031 (9)
C110.0143 (11)0.0121 (11)0.0104 (11)0.0025 (9)0.0002 (9)0.0037 (9)
C120.0157 (11)0.0164 (12)0.0116 (11)0.0012 (9)0.0036 (9)0.0039 (9)
C130.0146 (11)0.0154 (12)0.0127 (11)0.0007 (9)0.0046 (9)0.0033 (9)
C140.0115 (10)0.0131 (12)0.0127 (11)0.0023 (9)0.0017 (9)0.0033 (9)
C150.0110 (10)0.0126 (11)0.0135 (11)0.0010 (9)0.0004 (9)0.0041 (9)
C160.0113 (11)0.0135 (12)0.0129 (11)0.0010 (9)0.0006 (9)0.0045 (9)
C170.0146 (11)0.0153 (12)0.0135 (11)0.0001 (9)0.0009 (9)0.0057 (9)
C180.0134 (11)0.0174 (12)0.0119 (11)0.0026 (9)0.0021 (9)0.0043 (9)
C190.0126 (11)0.0130 (11)0.0101 (11)0.0021 (9)0.0003 (9)0.0042 (9)
C200.0151 (11)0.0120 (11)0.0103 (11)0.0018 (9)0.0012 (9)0.0024 (9)
N210.0107 (9)0.0141 (10)0.0089 (9)0.0001 (7)0.0006 (7)0.0034 (8)
N220.0103 (9)0.0142 (10)0.0091 (9)0.0002 (7)0.0004 (7)0.0038 (8)
N230.0104 (9)0.0143 (10)0.0101 (9)0.0005 (7)0.0007 (7)0.0038 (8)
N240.0121 (9)0.0139 (10)0.0102 (9)0.0003 (8)0.0003 (7)0.0035 (8)
C250.0125 (11)0.0155 (12)0.0108 (11)0.0009 (9)0.0017 (9)0.0065 (9)
C260.0155 (12)0.0189 (13)0.0145 (12)0.0016 (10)0.0004 (9)0.0044 (10)
C270.0208 (13)0.0175 (13)0.0153 (12)0.0009 (10)0.0021 (10)0.0035 (10)
N280.0156 (10)0.0195 (11)0.0167 (10)0.0051 (8)0.0046 (8)0.0083 (9)
C290.0123 (11)0.0249 (14)0.0185 (12)0.0021 (10)0.0003 (9)0.0100 (11)
C300.0131 (11)0.0174 (12)0.0147 (11)0.0031 (9)0.0011 (9)0.0041 (10)
C310.0123 (11)0.0159 (12)0.0124 (11)0.0004 (9)0.0015 (9)0.0038 (9)
C320.0175 (12)0.0157 (12)0.0155 (12)0.0007 (9)0.0020 (9)0.0044 (10)
C330.0180 (12)0.0222 (14)0.0178 (12)0.0010 (10)0.0027 (10)0.0099 (10)
N340.0191 (11)0.0265 (12)0.0102 (10)0.0027 (9)0.0002 (8)0.0081 (9)
C350.0202 (12)0.0212 (14)0.0149 (12)0.0042 (10)0.0000 (10)0.0033 (10)
C360.0198 (12)0.0176 (13)0.0146 (12)0.0010 (10)0.0006 (10)0.0056 (10)
C370.0123 (11)0.0147 (12)0.0115 (11)0.0009 (9)0.0005 (9)0.0070 (9)
C380.0131 (11)0.0193 (13)0.0164 (12)0.0020 (9)0.0007 (9)0.0030 (10)
C390.0177 (12)0.0157 (12)0.0158 (12)0.0010 (10)0.0015 (10)0.0033 (10)
N400.0121 (10)0.0158 (11)0.0189 (11)0.0029 (8)0.0022 (8)0.0057 (9)
C410.0139 (11)0.0205 (13)0.0183 (12)0.0035 (10)0.0015 (10)0.0056 (10)
C420.0153 (11)0.0158 (12)0.0176 (12)0.0037 (9)0.0000 (9)0.0039 (10)
C430.0100 (10)0.0169 (12)0.0107 (11)0.0004 (9)0.0007 (8)0.0037 (9)
C440.0173 (12)0.0151 (12)0.0133 (12)0.0010 (9)0.0007 (9)0.0032 (9)
C450.0189 (12)0.0192 (13)0.0152 (12)0.0028 (10)0.0015 (10)0.0088 (10)
N460.0174 (10)0.0210 (11)0.0118 (10)0.0035 (8)0.0010 (8)0.0079 (8)
C470.0189 (12)0.0164 (13)0.0142 (12)0.0039 (10)0.0007 (10)0.0016 (10)
C480.0175 (12)0.0165 (12)0.0132 (11)0.0017 (9)0.0006 (9)0.0053 (10)
Dy10.01412 (6)0.01434 (7)0.01207 (6)0.00234 (4)0.00030 (4)0.00387 (4)
O490.0221 (9)0.0155 (9)0.0159 (9)0.0007 (7)0.0036 (7)0.0020 (7)
O500.0136 (8)0.0206 (10)0.0253 (10)0.0001 (7)0.0003 (7)0.0137 (8)
O510.0248 (10)0.0225 (10)0.0162 (9)0.0124 (8)0.0009 (7)0.0027 (7)
O520.0219 (9)0.0204 (10)0.0177 (9)0.0007 (7)0.0043 (7)0.0100 (7)
O530.0186 (9)0.0282 (11)0.0210 (10)0.0018 (8)0.0043 (7)0.0090 (8)
N540.0259 (12)0.0226 (12)0.0164 (11)0.0129 (9)0.0046 (9)0.0073 (9)
O550.0179 (9)0.0277 (11)0.0239 (10)0.0056 (8)0.0021 (8)0.0000 (8)
O560.0210 (10)0.0190 (10)0.0304 (11)0.0025 (8)0.0076 (8)0.0024 (8)
O570.0442 (13)0.0374 (13)0.0234 (11)0.0255 (11)0.0154 (10)0.0088 (9)
N580.0226 (11)0.0197 (12)0.0149 (10)0.0026 (9)0.0013 (9)0.0057 (9)
O590.0244 (10)0.0215 (10)0.0190 (9)0.0096 (8)0.0011 (8)0.0058 (8)
O600.0305 (10)0.0198 (10)0.0130 (9)0.0098 (8)0.0016 (7)0.0032 (7)
O610.0415 (12)0.0266 (11)0.0149 (9)0.0056 (9)0.0002 (8)0.0106 (8)
N620.0186 (10)0.0222 (12)0.0130 (10)0.0068 (9)0.0020 (8)0.0071 (9)
O630.0351 (11)0.0194 (10)0.0223 (10)0.0063 (8)0.0021 (8)0.0120 (8)
O640.0429 (12)0.0286 (11)0.0147 (9)0.0149 (9)0.0019 (8)0.0107 (8)
O650.0334 (11)0.0277 (11)0.0136 (9)0.0096 (9)0.0015 (8)0.0038 (8)
N660.0174 (10)0.0181 (11)0.0193 (11)0.0040 (8)0.0020 (9)0.0072 (9)
O670.0175 (9)0.0305 (11)0.0313 (11)0.0032 (8)0.0090 (8)0.0095 (9)
O680.0177 (9)0.0236 (10)0.0204 (9)0.0013 (7)0.0018 (7)0.0089 (8)
O690.0206 (9)0.0340 (12)0.0177 (9)0.0064 (8)0.0009 (7)0.0083 (8)
N700.0211 (11)0.0133 (11)0.0176 (11)0.0011 (8)0.0025 (9)0.0054 (8)
O710.0253 (10)0.0247 (11)0.0214 (10)0.0066 (8)0.0056 (8)0.0083 (8)
O720.0218 (9)0.0195 (10)0.0269 (10)0.0022 (8)0.0104 (8)0.0073 (8)
O730.0239 (10)0.0246 (10)0.0134 (9)0.0065 (8)0.0011 (7)0.0035 (8)
N740.0169 (10)0.0281 (13)0.0154 (11)0.0053 (9)0.0026 (8)0.0091 (9)
O750.0371 (11)0.0220 (10)0.0155 (9)0.0031 (9)0.0020 (8)0.0066 (8)
O760.0453 (13)0.0254 (11)0.0205 (10)0.0018 (10)0.0006 (9)0.0032 (9)
O770.0307 (11)0.0476 (14)0.0140 (9)0.0087 (10)0.0047 (8)0.0153 (9)
N780.0214 (11)0.0172 (11)0.0206 (11)0.0031 (9)0.0040 (9)0.0055 (9)
O790.0225 (10)0.0226 (10)0.0186 (9)0.0016 (8)0.0016 (8)0.0034 (8)
O800.0308 (11)0.0330 (12)0.0330 (12)0.0044 (9)0.0167 (9)0.0071 (10)
O810.0199 (9)0.0238 (10)0.0209 (10)0.0024 (8)0.0041 (8)0.0014 (8)
O820.0238 (10)0.0277 (11)0.0293 (11)0.0024 (8)0.0030 (8)0.0080 (9)
C830.0382 (18)0.044 (2)0.046 (2)0.0117 (15)0.0054 (16)0.0175 (17)
C840.045 (2)0.062 (3)0.049 (2)0.0258 (19)0.0048 (17)0.025 (2)
O850.0192 (9)0.0353 (12)0.0294 (11)0.0007 (8)0.0069 (8)0.0131 (9)
C860.0320 (17)0.046 (2)0.0380 (19)0.0074 (15)0.0112 (14)0.0059 (16)
C870.0287 (17)0.071 (3)0.047 (2)0.0189 (17)0.0013 (15)0.020 (2)
O880.0316 (11)0.0239 (10)0.0178 (9)0.0105 (8)0.0024 (8)0.0056 (8)
O890.0308 (11)0.0281 (11)0.0192 (10)0.0111 (9)0.0032 (8)0.0095 (8)
Geometric parameters (Å, º) top
C1—N211.374 (3)C41—H410.9500
C1—C201.399 (3)C42—H420.9500
C1—C21.431 (3)C43—C481.392 (3)
C2—C31.359 (3)C43—C441.393 (4)
C2—H20.9500C44—C451.383 (3)
C3—C41.435 (3)C44—H440.9500
C3—H30.9500C45—N461.338 (3)
C4—N211.367 (3)C45—H450.9500
C4—C51.401 (3)N46—C471.340 (3)
C5—C61.409 (3)N46—H460.9600
C5—C251.492 (3)C47—C481.378 (3)
C6—N221.370 (3)C47—H470.9500
C6—C71.452 (3)C48—H480.9500
C7—C81.345 (3)Dy1—O512.3172 (18)
C7—H70.9500Dy1—O502.3532 (17)
C8—C91.454 (3)Dy1—O532.3582 (18)
C8—H80.9500Dy1—O522.3802 (18)
C9—N221.372 (3)Dy1—O602.4185 (19)
C9—C101.408 (3)Dy1—O492.4280 (18)
C10—C111.397 (3)Dy1—O562.4372 (19)
C10—C311.492 (3)Dy1—O552.507 (2)
C11—N231.377 (3)Dy1—O592.5196 (19)
C11—C121.437 (3)Dy1—N542.892 (2)
C12—C131.359 (3)Dy1—N582.897 (2)
C12—H120.9500O49—H49A0.8329
C13—C141.433 (3)O49—H49B0.9132
C13—H130.9500O50—H50A0.9151
C14—N231.374 (3)O50—H50B0.8368
C14—C151.394 (3)O51—H51A0.8394
C15—C161.407 (3)O51—H51B0.9118
C15—C371.494 (3)O52—H52A0.8598
C16—N241.368 (3)O52—H52B1.0263
C16—C171.456 (3)O53—H53A0.8346
C17—C181.347 (3)O53—H53B0.8564
C17—H170.9500N54—O571.223 (3)
C18—C191.453 (3)N54—O551.265 (3)
C18—H180.9500N54—O561.277 (3)
C19—N241.370 (3)N58—O611.224 (3)
C19—C201.406 (3)N58—O591.263 (3)
C20—C431.492 (3)N58—O601.283 (3)
N21—H210.8800N62—O641.242 (3)
N22—H220.8800N62—O651.245 (3)
N23—H230.8800N62—O631.270 (3)
N24—H240.8800N66—O671.240 (3)
C25—C261.396 (4)N66—O681.252 (3)
C25—C301.396 (3)N66—O691.277 (3)
C26—C271.374 (4)N70—O711.249 (3)
C26—H260.9500N70—O721.252 (3)
C27—N281.346 (3)N70—O731.264 (3)
C27—H270.9500N74—O761.235 (3)
N28—C291.336 (4)N74—O771.235 (3)
N28—H280.9349N74—O751.279 (3)
C29—C301.379 (3)N78—O801.239 (3)
C29—H290.9500N78—O791.251 (3)
C30—H300.9500N78—O811.269 (3)
C31—C321.397 (4)O82—C831.423 (4)
C31—C361.401 (4)O82—H820.9192
C32—C331.381 (4)C83—C841.472 (5)
C32—H320.9500C83—H83A0.9900
C33—N341.340 (4)C83—H83B0.9900
C33—H330.9500C84—H84A0.9800
N34—C351.339 (4)C84—H84B0.9800
N34—H340.8903C84—H84C0.9800
C35—C361.375 (4)O85—C861.450 (4)
C35—H350.9500O85—H850.9950
C36—H360.9500C86—C871.491 (5)
C37—C381.390 (4)C86—H86A0.9900
C37—C421.395 (3)C86—H86B0.9900
C38—C391.375 (3)C87—H87A0.9800
C38—H380.9500C87—H87B0.9800
C39—N401.339 (3)C87—H87C0.9800
C39—H390.9500O88—H88A0.9271
N40—C411.337 (3)O88—H88B0.8452
N40—H400.8496O89—H89A0.9226
C41—C421.377 (3)O89—H89B0.9605
N21—C1—C20125.6 (2)C47—N46—H46121.5
N21—C1—C2107.1 (2)N46—C47—C48119.8 (2)
C20—C1—C2127.3 (2)N46—C47—H47120.1
C3—C2—C1108.2 (2)C48—C47—H47120.1
C3—C2—H2125.9C47—C48—C43119.5 (2)
C1—C2—H2125.9C47—C48—H48120.3
C2—C3—C4107.7 (2)C43—C48—H48120.3
C2—C3—H3126.2O51—Dy1—O5083.77 (7)
C4—C3—H3126.2O51—Dy1—O5389.82 (7)
N21—C4—C5125.9 (2)O50—Dy1—O53144.32 (6)
N21—C4—C3107.4 (2)O51—Dy1—O5278.20 (7)
C5—C4—C3126.7 (2)O50—Dy1—O5270.58 (6)
C4—C5—C6126.1 (2)O53—Dy1—O52142.08 (6)
C4—C5—C25116.1 (2)O51—Dy1—O60123.86 (6)
C6—C5—C25117.7 (2)O50—Dy1—O6075.63 (6)
N22—C6—C5125.2 (2)O53—Dy1—O6079.16 (7)
N22—C6—C7110.8 (2)O52—Dy1—O60137.02 (6)
C5—C6—C7123.9 (2)O51—Dy1—O4975.13 (7)
C8—C7—C6106.7 (2)O50—Dy1—O49137.69 (6)
C8—C7—H7126.7O53—Dy1—O4972.73 (7)
C6—C7—H7126.7O52—Dy1—O4969.45 (6)
C7—C8—C9106.6 (2)O60—Dy1—O49146.16 (7)
C7—C8—H8126.7O51—Dy1—O56147.01 (7)
C9—C8—H8126.7O50—Dy1—O56123.87 (7)
N22—C9—C10125.5 (2)O53—Dy1—O5677.20 (7)
N22—C9—C8110.7 (2)O52—Dy1—O5693.52 (7)
C10—C9—C8123.8 (2)O60—Dy1—O5683.76 (7)
C11—C10—C9126.1 (2)O49—Dy1—O5672.09 (7)
C11—C10—C31116.2 (2)O51—Dy1—O55147.18 (6)
C9—C10—C31117.6 (2)O50—Dy1—O5572.45 (6)
N23—C11—C10125.5 (2)O53—Dy1—O55122.64 (7)
N23—C11—C12107.0 (2)O52—Dy1—O5572.80 (7)
C10—C11—C12127.5 (2)O60—Dy1—O5572.23 (7)
C13—C12—C11108.1 (2)O49—Dy1—O55107.76 (6)
C13—C12—H12125.9O56—Dy1—O5551.53 (6)
C11—C12—H12125.9O51—Dy1—O5972.78 (6)
C12—C13—C14107.9 (2)O50—Dy1—O5975.60 (6)
C12—C13—H13126.0O53—Dy1—O5968.99 (6)
C14—C13—H13126.0O52—Dy1—O59137.25 (6)
N23—C14—C15125.7 (2)O60—Dy1—O5951.76 (6)
N23—C14—C13107.4 (2)O49—Dy1—O59129.27 (6)
C15—C14—C13126.8 (2)O56—Dy1—O59127.42 (7)
C14—C15—C16126.5 (2)O55—Dy1—O59120.51 (7)
C14—C15—C37116.4 (2)O51—Dy1—N54155.91 (6)
C16—C15—C37117.0 (2)O50—Dy1—N5498.26 (7)
N24—C16—C15125.0 (2)O53—Dy1—N54101.53 (7)
N24—C16—C17110.7 (2)O52—Dy1—N5479.88 (7)
C15—C16—C17124.2 (2)O60—Dy1—N5479.50 (6)
C18—C17—C16106.7 (2)O49—Dy1—N5487.93 (6)
C18—C17—H17126.6O56—Dy1—N5425.98 (7)
C16—C17—H17126.6O55—Dy1—N5425.85 (6)
C17—C18—C19106.3 (2)O59—Dy1—N54131.09 (6)
C17—C18—H18126.8O51—Dy1—N5898.26 (7)
C19—C18—H18126.8O50—Dy1—N5874.15 (6)
N24—C19—C20125.5 (2)O53—Dy1—N5872.13 (6)
N24—C19—C18111.0 (2)O52—Dy1—N58144.72 (6)
C20—C19—C18123.5 (2)O60—Dy1—N5825.98 (6)
C1—C20—C19126.1 (2)O49—Dy1—N58144.23 (6)
C1—C20—C43116.3 (2)O56—Dy1—N58106.10 (7)
C19—C20—C43117.6 (2)O55—Dy1—N5896.62 (7)
C4—N21—C1109.68 (19)O59—Dy1—N5825.77 (6)
C4—N21—H21125.2N54—Dy1—N58105.40 (6)
C1—N21—H21125.2Dy1—O49—H49A127.5
C6—N22—C9105.12 (19)Dy1—O49—H49B118.2
C6—N22—H22127.4H49A—O49—H49B108.6
C9—N22—H22127.4Dy1—O50—H50A128.2
C14—N23—C11109.53 (19)Dy1—O50—H50B134.8
C14—N23—H23125.2H50A—O50—H50B91.3
C11—N23—H23125.2Dy1—O51—H51A124.7
C16—N24—C19105.17 (19)Dy1—O51—H51B128.8
C16—N24—H24127.4H51A—O51—H51B104.7
C19—N24—H24127.4Dy1—O52—H52A122.0
C26—C25—C30118.6 (2)Dy1—O52—H52B121.0
C26—C25—C5119.4 (2)H52A—O52—H52B113.5
C30—C25—C5122.0 (2)Dy1—O53—H53A115.8
C27—C26—C25119.8 (2)Dy1—O53—H53B123.4
C27—C26—H26120.1H53A—O53—H53B107.8
C25—C26—H26120.1O57—N54—O55122.7 (2)
N28—C27—C26119.9 (2)O57—N54—O56121.8 (2)
N28—C27—H27120.0O55—N54—O56115.5 (2)
C26—C27—H27120.0O57—N54—Dy1170.23 (19)
C29—N28—C27122.0 (2)O55—N54—Dy159.79 (12)
C29—N28—H28124.1O56—N54—Dy156.70 (12)
C27—N28—H28113.2N54—O55—Dy194.36 (15)
N28—C29—C30120.4 (2)N54—O56—Dy197.32 (14)
N28—C29—H29119.8O61—N58—O59123.2 (2)
C30—C29—H29119.8O61—N58—O60120.9 (2)
C29—C30—C25119.3 (2)O59—N58—O60115.8 (2)
C29—C30—H30120.4O61—N58—Dy1176.54 (19)
C25—C30—H30120.4O59—N58—Dy160.16 (12)
C32—C31—C36118.3 (2)O60—N58—Dy155.68 (12)
C32—C31—C10121.9 (2)N58—O59—Dy194.06 (14)
C36—C31—C10119.8 (2)N58—O60—Dy198.33 (15)
C33—C32—C31119.8 (2)O64—N62—O65121.1 (2)
C33—C32—H32120.1O64—N62—O63118.7 (2)
C31—C32—H32120.1O65—N62—O63120.2 (2)
N34—C33—C32119.6 (2)O67—N66—O68120.8 (2)
N34—C33—H33120.2O67—N66—O69119.9 (2)
C32—C33—H33120.2O68—N66—O69119.3 (2)
C35—N34—C33122.6 (2)O71—N70—O72121.7 (2)
C35—N34—H34121.7O71—N70—O73119.1 (2)
C33—N34—H34115.2O72—N70—O73119.2 (2)
N34—C35—C36120.0 (2)O76—N74—O77122.5 (2)
N34—C35—H35120.0O76—N74—O75118.1 (2)
C36—C35—H35120.0O77—N74—O75119.4 (2)
C35—C36—C31119.7 (2)O80—N78—O79121.4 (2)
C35—C36—H36120.1O80—N78—O81119.7 (2)
C31—C36—H36120.1O79—N78—O81118.9 (2)
C38—C37—C42118.8 (2)C83—O82—H82106.4
C38—C37—C15119.2 (2)O82—C83—C84112.3 (3)
C42—C37—C15121.9 (2)O82—C83—H83A109.1
C39—C38—C37119.8 (2)C84—C83—H83A109.1
C39—C38—H38120.1O82—C83—H83B109.1
C37—C38—H38120.1C84—C83—H83B109.1
N40—C39—C38119.8 (2)H83A—C83—H83B107.9
N40—C39—H39120.1C83—C84—H84A109.5
C38—C39—H39120.1C83—C84—H84B109.5
C41—N40—C39122.1 (2)H84A—C84—H84B109.5
C41—N40—H40120.4C83—C84—H84C109.5
C39—N40—H40116.7H84A—C84—H84C109.5
N40—C41—C42120.3 (2)H84B—C84—H84C109.5
N40—C41—H41119.8C86—O85—H85109.6
C42—C41—H41119.8O85—C86—C87110.0 (3)
C41—C42—C37119.1 (2)O85—C86—H86A109.7
C41—C42—H42120.4C87—C86—H86A109.7
C37—C42—H42120.4O85—C86—H86B109.7
C48—C43—C44118.9 (2)C87—C86—H86B109.7
C48—C43—C20120.2 (2)H86A—C86—H86B108.2
C44—C43—C20120.8 (2)C86—C87—H87A109.5
C45—C44—C43119.6 (2)C86—C87—H87B109.5
C45—C44—H44120.2H87A—C87—H87B109.5
C43—C44—H44120.2C86—C87—H87C109.5
N46—C45—C44119.5 (2)H87A—C87—H87C109.5
N46—C45—H45120.3H87B—C87—H87C109.5
C44—C45—H45120.3H88A—O88—H88B106.0
C45—N46—C47122.7 (2)H89A—O89—H89B103.9
C45—N46—H46115.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N28—H28···O730.931.822.727 (3)164
N34—H34···O750.891.882.743 (3)162
N40—H40···O810.851.882.722 (3)174
N46—H46···O880.961.872.749 (3)150
O49—H49A···O75i0.831.962.776 (3)167
O49—H49B···O790.911.872.744 (3)159
O50—H50A···O690.921.862.748 (3)163
O50—H50B···O63ii0.841.902.724 (3)168
O51—H51A···O890.841.932.769 (3)173
O51—H51B···O63iii0.911.822.726 (3)174
O52—H52A···O72iv0.862.062.834 (3)149
O52—H52B···O681.031.742.744 (3)164
O53—H53A···O820.831.892.719 (3)174
O53—H53B···O85i0.861.932.759 (3)163
O82—H82···O800.922.173.011 (3)151
O85—H85···O691.001.942.923 (3)170
O88—H88A···O650.932.052.924 (3)156
O88—H88B···O89v0.852.002.840 (3)172
Symmetry codes: (i) x+1, y1, z+2; (ii) x, y, z+1; (iii) x+1, y1, z+1; (iv) x, y, z+1; (v) x, y+1, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6(C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2O
Mr1477.821437.54
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)110110
a, b, c (Å)7.7897 (2), 12.2577 (2), 17.2316 (5)12.8961 (2), 12.9222 (2), 18.5978 (3)
α, β, γ (°)70.1447 (10), 89.341 (1), 75.3827 (16)71.6843 (7), 80.9684 (8), 73.3707 (7)
V3)1492.45 (6)2811.52 (8)
Z12
Radiation typeMo KαMo Kα
µ (mm1)2.581.44
Crystal size (mm)0.15 × 0.10 × 0.050.55 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.699, 0.8820.512, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
13999, 6457, 5074 47169, 13315, 11865
Rint0.0540.044
(sin θ/λ)max1)0.6410.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.083, 0.97 0.034, 0.082, 1.04
No. of reflections645713315
No. of parameters379813
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 1.032.00, 1.62

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-III (Burnett & Johnson, 1996), Mercury (Macrae et al., 2006).

Selected bond lengths (Å) for (I) top
Dy1—O252.355 (3)Dy1—O352.462 (3)
Dy1—O392.406 (3)Dy1—O312.462 (3)
Dy1—O282.434 (3)Dy1—O272.582 (3)
Dy1—O402.439 (3)Dy1—O362.613 (4)
Dy1—O322.451 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O35i0.882.262.926 (5)132
O25—H25A···O27ii0.951.862.784 (4)164
O25—H25B···O33iii0.951.832.762 (4)168
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z.
Selected bond lengths (Å) for (II) top
Dy1—O512.3172 (18)Dy1—O492.4280 (18)
Dy1—O502.3532 (17)Dy1—O562.4372 (19)
Dy1—O532.3582 (18)Dy1—O552.507 (2)
Dy1—O522.3802 (18)Dy1—O592.5196 (19)
Dy1—O602.4185 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N28—H28···O730.931.822.727 (3)164
N34—H34···O750.891.882.743 (3)162
N40—H40···O810.851.882.722 (3)174
N46—H46···O880.961.872.749 (3)150
O49—H49A···O75i0.831.962.776 (3)167
O49—H49B···O790.911.872.744 (3)159
O50—H50A···O690.921.862.748 (3)163
O50—H50B···O63ii0.841.902.724 (3)168
O51—H51A···O890.841.932.769 (3)173
O51—H51B···O63iii0.911.822.726 (3)174
O52—H52A···O72iv0.862.062.834 (3)149
O52—H52B···O681.031.742.744 (3)164
O53—H53A···O820.831.892.719 (3)174
O53—H53B···O85i0.861.932.759 (3)163
O82—H82···O800.922.173.011 (3)151
O85—H85···O691.001.942.923 (3)170
O88—H88A···O650.932.052.924 (3)156
O88—H88B···O89v0.852.002.840 (3)172
Symmetry codes: (i) x+1, y1, z+2; (ii) x, y, z+1; (iii) x+1, y1, z+1; (iv) x, y, z+1; (v) x, y+1, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds