Download citation
Download citation
link to html
The structures of four isomeric compounds, all C7H4ClNO4·C9H7N, of quinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-5-nitro­benzoic acid–quinoline (1/1), (I), 3-chloro-2-nitro­benzoic acid–quinoline (1/1), (II), 4-chloro-2-nitro­benzoic acid–quinoline (1/1), (III), and 5-chloro-2-nitro­benzoic acid–quinoline (1/1), (IV), have been determined at 185 K. In each compound, a short hydrogen bond is observed between the pyridine N atom and a carboxyl O atom. The N...O distances are 2.6476 (13), 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å for (I), (II), (III) and (IV), respectively. Although in (I) the H atom in the hydrogen bond is located at the O site, in (II), (III) and (IV) the H atom is disordered in the hydrogen bond over two positions with (N site):(O site) occupancies of 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109037688/gd3308sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037688/gd3308Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037688/gd3308IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037688/gd3308IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037688/gd3308IVsup5.hkl
Contains datablock IV

CCDC references: 755995; 755996; 755997; 755998

Comment top

Solid hydrogen-bonded compounds of 2-chloro-4-nitrobenzoic acid with amines and pyridine derivatives were studied by Kalenik et al. (1989), Habeeb & Awad (1995) and Awad & Habeeb (1996) using 35Cl NQR and IR techniques. They reported that the hydrogen bonds formed between the acid and the bases vary from an O—H···N to an O···H—N type with increasing pKa or proton affinities (PA) of the bases, and that the critical (inversion) point at 50% proton transfer, where a quite [relatively] short hydrogen bond and a broad single minimum potential energy curve for the H atom or a double-minimum potential would be expected, exists in the compound of 3,5-dimethylpyridine (pKa 6.15, PA 218 kcal mol-1). However, there is not yet any crystallographic evidence supporting these findings. Moreover, the shapes of the proton donor and acceptor molecules may be as important as the pKa or PA in determining the critical point. This has prompted us to carry out continuous studies on the structure of chloro- and nitro-substituted benzoic acid compounds with amines and pyridine derivatives (Ishida et al., 2001a, 2002a,b,c; Ishida & Fukunaga, 2004; Gotoh & Ishida, 2007). In addition, the chloro- and nitro-substituted benzoic acid compounds with amine and pyridine systems are of interest in crystal engineering for the formation of chiral two-component molecular crystals (Koshima et al., 1996; Ishida et al., 2001b,c; Sugiyama et al., 2002a,b). Previously, we have analysed the crystal structure of the 2-chloro-4-nitrobenzoic acid–3,5-dimethylpyridine system, but this compound consisted of a 2-chloro-4-nitrobenzoic acid molecule, a 2-chloro-4-nitrobenzate anion and a 3,5-dimethylpyridininum cation in the asymmetric unit, and the hydrogen bond between the acid and the base was an N—H···O type (Ishida et al., 2004).

In this communication, we report the four isomeric compounds, C7H4ClNO4.C9H7N, 2-chloro-5-nitrobenzoic acid–quinoline (1/1), (I), 3-chloro-2-nitrobenzoic acid–quinoline (1/1), (II), 4-chloro-2-nitrobenzoic acid–quinoline (1/1), (III), 5-chloro-2-nitrobenzoic acid–quinoline (1/1), (IV). The values of pKa are 4.90, 2.22, 1.82, 1.97 and 1.86, respectively, for quinoline, 2-chloro-5-nitrobenzoic acid, 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrbenzoic acid and 5-chloro-2-nitrobenzoic acid. The ΔpKa [pKa(base) - pKa(acid)] values are 2.68, 3.08, 2.93 and 3.04, respectively, for (I), (II), (III) and (IV), which are smaller than that of 4.18 for the 2-chloro-4-nitrobenzoic acid–3,5-dimethylpyridine system.

The molecular structures of the four compounds, (I), (II), (III) and (IV), are shown in Figs. 1, 2, 3 and 4, respectively. The base and the acid in each compound are held together by a short hydrogen bond between the N atom of the base and the carboxyl group of the acid. In (I), no acid–base interaction is observed and the H atom in the hydrogen bond is located at the O site (Table 1). In (II), (III) and (IV), quite [relatively] short hydrogen bonds between the acid and the base are observed; the N···O distances are 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å, respectively, for (II), (III) and (IV) (Tables 2–4), which are much shorter than that of 2.6476 (13) Å in (I). In the short hydrogen bonds, the H atoms are disordered. This feature is clearly shown in difference Fourier maps (Fig. 5). In (I), only one peak is observed between the acid and base, while in (II), (III) and (IV), two distinct peaks are observed, indicating that the H atom is disordered over two positions. The occupancies of the N site and the O site were refined to 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively, for (II), (III) and (IV). The benzene C1–C6 ring and the quinoline N2/C8–C16 ring system are approximately coplanar in (I) and (II) with dihedral angles of 1.92 (4) and 4.71 (5)°, respectively, between them, while in (III) and (IV), the two ring planes are twisted out with dihedral angles of 31.65 (4) and 54.43 (5)°, probably due to steric repulsion between the nitro group and the quinoline ring. On the other hand, the dihedral angle between the CO2 plane and the quinoline ring system in (I) is 22.48 (14)°, which is larger than the dihedral angles of 6.18 (16), 18.77 (13) and 5.41 (15)° in (II), (III) and (IV), respectively. It is of note that compound (I) differs from (II), (III) and (IV) in the orientation of the carboxyl group with respect to the quinoline molecule; in (I), the carbonyl C7O2 group points to the C15—H15 group, but in (II), (III) and (IV), it points to the C8—H8 group, forming a weak C—H···O hydrogen bond (C8—H8···O2; Tables 2–4). In the C10···N2···O1 angle, which may be a measure of the N···H···O hydrogen-bond strength, (I) also differs from the other compounds; the angles are 165.01 (15), 177.33 (5), 173.02 (4) and 176.76 (5)°, respectively, for (I), (II), (III) and (IV).

The packing diagram of the four compounds are given in Figs. 6–9. In (I), the acid and base units held by the hydrogen bond are stacked in an antiparallel manner along the a axis through ππ stacking interactions between the benzene C1–C6 ring and the quinoline N2/C8–C16 ring system (Fig. 6). The centroid–centroid distances are in the range 3.6269 (8)–3.7302 (8) Å. The detailed geometries are given in Table 5. In (II), the acid and base units are linked by a C—H···O hydrogen bond [C5—H5···O2i; Table 2], forming a molecular tape running along the b axis (Fig. 7). A short Cl···O contact [Cl1···O4ii 3.0389 (10) Å; symmetry code; (ii) -x, -y + 1, -z] is observed between the tapes. Furthermore, the acid and base are alternately stacked along the a axis through ππ stacking interactions between the benzene ring and the quinoline ring system (Table 5). In (III), the hydrogen-bonded acid and base units related to each other by an inversion centre are linked by a C—H···O hydrogen bond [C9—H9···O2i; Table 3], forming a centrosymmetric 2 + 2 aggregate (Fig. 8). Furthermore, the two components are separately stacked in columns in an antiparallel manner along the b axis through ππ interactions (Table 5). In (IV), the acid molecules are connected by a C—H···O hydrogen bond [C4—H4···O1i; Table 4] into a chain running along the c axis (Fig. 9). A ππ interaction between the quinoline ring systems is observed (Table 5). A short Cl···O contact [Cl1···O4ii 2.9953 (12) Å; symmetry code: (ii) x - 1, -y + 1/2, z + 1/2] is also present between the chains.

In this communication, we show that the compounds (II), (III) and (IV) have a short double-well N···H···O hydrogen bond. Although these compounds have ΔpKa of 2.93–3.08, larger than that of 2.68 in (I), more systematic structural studies are required to confirm whether this ΔpKa range is appropriate to determine the critical point in the chloro- and nitro-substituted benzoic acid–pyridine systems.

Related literature top

For related literature, see: Awad & Habeeb (1996); Habeeb & Awad (1995); Ishida & Fukunaga (2004); Ishida et al. (2001a, 2001b, 2001c, 2002a, 2002b, 2002c); Ishida, Rahman & Kashino (2004); Kalenik et al. (1989); Koshima et al. (1996); Sugiyama et al. (2002a, 2002b).

Experimental top

Crystals of all compounds were obtained by slow evaporation from acetonitrile solutions of quinoline with corresponding chloro- and nitro-substituted benzoic acid in a 1:1 molar ratio at room temperature [150 ml acetonitrile solution of quinoline (0.455 g) and 2-chloro-5-nitrobenzoic acid (0.709 g) for (I), 30 ml solution of quinoline (0.204 g) and 3-chloro-2-nitrobenzoic acid (0.318 g) for (II), 20 ml solution of quinoline (0.205 g) and 4-chloro-2-nitrobenzoic acid (0.320 g) for (III), and 30 ml solution of quinoline (0.288 g) and 5-chloro-2-nitrobenzoic acid (0.449 g) for (IV)].

Refinement top

For (I), the H atom of the carboxyl group was found in a difference Fourier map and refined isotropically. The refined distance is given in Table 1. For (II), (III) and (IV), H atoms in the N···H···O hydrogen bonds were found to be disordered over two positions in difference Fourier maps. Since the site-occupancy factors and isotropic displacement parameters were strongly correlated, the positional parameters and occupancy factors were refined, with Uiso(H) = 1.2Ueq(N or O). The refined distances are given in Tables 2, 3 and 4. Other H atoms of all compounds were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

For all compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A molecular view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The O—H···N hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. A molecular view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The N···H···O hydrogen bond is indicated by a dashed line.
[Figure 3] Fig. 3. A molecular view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The N···H···O hydrogen bond is indicated by a dashed line.
[Figure 4] Fig. 4. A molecular view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The N···H···O hydrogen bond is indicated by a dashed line.
[Figure 5] Fig. 5. Difference Fourier maps of (I), (II), (III) and (IV) associated with the N···H···O hydrogen bond between the acid and the base. Maps were calculated on the mean plane of O1/N2/C8/C16 from a model containing all atoms apart from the H atom in the hydrogen bond.
[Figure 6] Fig. 6. A packing diagram of (I), showing ππ interactions between the benzene ring and the quinoline ring system. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. H atoms not involved in the O—H···N hydrogen bond have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.].
[Figure 7] Fig. 7. A packing diagram of (II), viewed down the a axis. Dashed lines show N···H···O and C—H···O hydrogen bonds, and Cl···O short contacts. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z.].
[Figure 8] Fig. 8. A packing diagram of (III), showing a centrosymmetric 2 + 2 aggregate. N···H···O and C—H···O hydrogen bonds are shown by dashed lines. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z.].
[Figure 9] Fig. 9. A packing diagram of (IV), viewed approximately down the a axis, showing a molecular chain running along the c axis. N···H···O and C—H···O hydrogen bonds are shown by dashed lines. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (i) x, -y + 1/2, z + 1/2.]
(I) 2-chloro-5-nitrobenzoic acid–quinoline (1/1) top
Crystal data top
C7H4ClNO4·C9H7NZ = 2
Mr = 330.73F(000) = 340.00
Triclinic, P1Dx = 1.554 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.9254 (10) ÅCell parameters from 13073 reflections
b = 7.4746 (11) Åθ = 3.3–30.1°
c = 14.310 (2) ŵ = 0.29 mm1
α = 75.861 (4)°T = 185 K
β = 89.207 (3)°Block, colourless
γ = 79.842 (4)°0.33 × 0.28 × 0.20 mm
V = 706.71 (17) Å3
Data collection top
Rigaku RAXIS-RAPIDII
diffractometer
3703 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.019
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.932, Tmax = 0.943k = 1010
14562 measured reflectionsl = 2020
4109 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.1631P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H4ClNO4·C9H7Nγ = 79.842 (4)°
Mr = 330.73V = 706.71 (17) Å3
Triclinic, P1Z = 2
a = 6.9254 (10) ÅMo Kα radiation
b = 7.4746 (11) ŵ = 0.29 mm1
c = 14.310 (2) ÅT = 185 K
α = 75.861 (4)°0.33 × 0.28 × 0.20 mm
β = 89.207 (3)°
Data collection top
Rigaku RAXIS-RAPIDII
diffractometer
4109 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
3703 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.943Rint = 0.019
14562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
4109 reflectionsΔρmin = 0.25 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89847 (4)0.10086 (4)0.623531 (19)0.03206 (9)
O10.78199 (16)0.52083 (12)0.54961 (6)0.0400 (2)
O20.72799 (16)0.27161 (13)0.50107 (6)0.0410 (2)
O30.80941 (16)0.28751 (13)0.99105 (6)0.0411 (2)
O40.73704 (15)0.53965 (11)0.87597 (6)0.0383 (2)
N10.78272 (13)0.36891 (12)0.90536 (6)0.02517 (17)
N20.70282 (13)0.75824 (12)0.37861 (6)0.02605 (17)
C10.80281 (13)0.24022 (13)0.66829 (6)0.02067 (17)
C20.85561 (13)0.04479 (13)0.70085 (7)0.02144 (17)
C30.88318 (14)0.04260 (13)0.79921 (7)0.02355 (18)
H30.91870.17520.81950.028*
C40.85911 (14)0.06253 (13)0.86688 (7)0.02261 (18)
H40.87740.00430.93380.027*
C50.80750 (13)0.25573 (13)0.83436 (6)0.02017 (17)
C60.78006 (14)0.34545 (13)0.73740 (6)0.02125 (17)
H60.74580.47820.71790.025*
C70.76746 (15)0.34347 (14)0.56340 (7)0.02508 (19)
C80.65425 (16)0.92705 (16)0.39399 (7)0.0286 (2)
H80.65520.93820.45870.034*
C90.60095 (16)1.09191 (15)0.32017 (8)0.0292 (2)
H90.56691.21040.33510.035*
C100.59913 (15)1.07817 (14)0.22679 (8)0.0265 (2)
H100.56351.18730.17580.032*
C110.65070 (13)0.90007 (13)0.20670 (7)0.02105 (17)
C120.65327 (16)0.87471 (16)0.11190 (7)0.0280 (2)
H120.62030.98040.05870.034*
C130.70285 (16)0.69915 (18)0.09610 (8)0.0318 (2)
H130.70390.68330.03220.038*
C140.75246 (16)0.54171 (16)0.17486 (9)0.0322 (2)
H140.78600.42030.16330.039*
C150.75301 (16)0.56097 (14)0.26779 (8)0.0281 (2)
H150.78760.45380.32000.034*
C160.70185 (13)0.74116 (13)0.28540 (6)0.02089 (17)
H10.757 (3)0.581 (3)0.4912 (16)0.073 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03734 (15)0.03113 (14)0.03126 (14)0.00075 (10)0.00146 (10)0.01912 (10)
O10.0712 (6)0.0286 (4)0.0192 (3)0.0123 (4)0.0077 (4)0.0013 (3)
O20.0678 (6)0.0381 (4)0.0204 (4)0.0134 (4)0.0035 (4)0.0101 (3)
O30.0700 (6)0.0351 (4)0.0177 (3)0.0052 (4)0.0012 (4)0.0084 (3)
O40.0626 (6)0.0229 (4)0.0298 (4)0.0019 (4)0.0009 (4)0.0111 (3)
N10.0327 (4)0.0245 (4)0.0200 (4)0.0051 (3)0.0015 (3)0.0086 (3)
N20.0304 (4)0.0283 (4)0.0190 (4)0.0053 (3)0.0005 (3)0.0048 (3)
C10.0221 (4)0.0233 (4)0.0177 (4)0.0044 (3)0.0010 (3)0.0068 (3)
C20.0208 (4)0.0233 (4)0.0227 (4)0.0038 (3)0.0008 (3)0.0103 (3)
C30.0266 (4)0.0191 (4)0.0246 (4)0.0026 (3)0.0005 (3)0.0058 (3)
C40.0262 (4)0.0220 (4)0.0190 (4)0.0038 (3)0.0002 (3)0.0041 (3)
C50.0232 (4)0.0209 (4)0.0178 (4)0.0042 (3)0.0010 (3)0.0072 (3)
C60.0255 (4)0.0200 (4)0.0187 (4)0.0039 (3)0.0008 (3)0.0057 (3)
C70.0287 (4)0.0283 (5)0.0181 (4)0.0041 (4)0.0013 (3)0.0062 (3)
C80.0310 (5)0.0352 (5)0.0235 (4)0.0074 (4)0.0015 (4)0.0135 (4)
C90.0291 (5)0.0255 (5)0.0373 (5)0.0051 (4)0.0008 (4)0.0154 (4)
C100.0275 (4)0.0208 (4)0.0302 (5)0.0040 (3)0.0031 (4)0.0043 (4)
C110.0210 (4)0.0228 (4)0.0199 (4)0.0062 (3)0.0004 (3)0.0045 (3)
C120.0303 (5)0.0355 (5)0.0190 (4)0.0099 (4)0.0005 (4)0.0055 (4)
C130.0317 (5)0.0450 (6)0.0260 (5)0.0125 (4)0.0042 (4)0.0185 (4)
C140.0314 (5)0.0311 (5)0.0404 (6)0.0072 (4)0.0051 (4)0.0201 (4)
C150.0304 (5)0.0212 (4)0.0324 (5)0.0035 (4)0.0005 (4)0.0066 (4)
C160.0217 (4)0.0218 (4)0.0196 (4)0.0049 (3)0.0005 (3)0.0052 (3)
Geometric parameters (Å, º) top
Cl1—C21.7213 (9)C6—H60.9500
O1—C71.3134 (13)C8—C91.4089 (16)
O1—H10.85 (2)C8—H80.9500
O2—C71.2046 (13)C9—C101.3653 (15)
O3—N11.2288 (12)C9—H90.9500
O4—N11.2267 (12)C10—C111.4138 (13)
N1—C51.4633 (11)C10—H100.9500
N2—C81.3182 (14)C11—C121.4143 (13)
N2—C161.3709 (12)C11—C161.4190 (13)
C1—C61.3977 (12)C12—C131.3692 (16)
C1—C21.4029 (13)C12—H120.9500
C1—C71.5120 (13)C13—C141.4118 (18)
C2—C31.3995 (13)C13—H130.9500
C3—C41.3799 (13)C14—C151.3722 (15)
C3—H30.9500C14—H140.9500
C4—C51.3871 (13)C15—C161.4135 (13)
C4—H40.9500C15—H150.9500
C5—C61.3852 (12)
C7—O1—H1112.2 (14)N2—C8—H8118.1
O4—N1—O3123.72 (9)C9—C8—H8118.1
O4—N1—C5118.16 (8)C10—C9—C8118.74 (9)
O3—N1—C5118.12 (8)C10—C9—H9120.6
C8—N2—C16118.35 (9)C8—C9—H9120.6
C6—C1—C2117.78 (8)C9—C10—C11119.42 (9)
C6—C1—C7118.12 (8)C9—C10—H10120.3
C2—C1—C7124.10 (8)C11—C10—H10120.3
C3—C2—C1121.31 (8)C10—C11—C12122.70 (9)
C3—C2—Cl1115.98 (7)C10—C11—C16118.18 (9)
C1—C2—Cl1122.68 (7)C12—C11—C16119.12 (9)
C4—C3—C2120.44 (9)C13—C12—C11120.57 (10)
C4—C3—H3119.8C13—C12—H12119.7
C2—C3—H3119.8C11—C12—H12119.7
C3—C4—C5118.06 (9)C12—C13—C14119.93 (10)
C3—C4—H4121.0C12—C13—H13120.0
C5—C4—H4121.0C14—C13—H13120.0
C6—C5—C4122.55 (8)C15—C14—C13121.16 (10)
C6—C5—N1118.85 (8)C15—C14—H14119.4
C4—C5—N1118.59 (8)C13—C14—H14119.4
C5—C6—C1119.86 (8)C14—C15—C16119.65 (10)
C5—C6—H6120.1C14—C15—H15120.2
C1—C6—H6120.1C16—C15—H15120.2
O2—C7—O1124.69 (10)N2—C16—C15119.00 (9)
O2—C7—C1123.85 (9)N2—C16—C11121.42 (9)
O1—C7—C1111.46 (8)C15—C16—C11119.57 (9)
N2—C8—C9123.89 (9)
C6—C1—C2—C30.51 (14)C2—C1—C7—O1159.84 (10)
C7—C1—C2—C3178.95 (9)C16—N2—C8—C90.05 (16)
C6—C1—C2—Cl1177.22 (7)N2—C8—C9—C100.10 (17)
C7—C1—C2—Cl13.31 (13)C8—C9—C10—C110.09 (15)
C1—C2—C3—C40.11 (15)C9—C10—C11—C12179.66 (10)
Cl1—C2—C3—C4177.77 (7)C9—C10—C11—C160.31 (14)
C2—C3—C4—C50.09 (14)C10—C11—C12—C13179.51 (10)
C3—C4—C5—C60.13 (14)C16—C11—C12—C130.52 (15)
C3—C4—C5—N1179.63 (8)C11—C12—C13—C140.17 (16)
O4—N1—C5—C60.49 (14)C12—C13—C14—C150.32 (17)
O3—N1—C5—C6179.30 (9)C13—C14—C15—C160.43 (16)
O4—N1—C5—C4179.99 (10)C8—N2—C16—C15179.81 (9)
O3—N1—C5—C40.22 (14)C8—N2—C16—C110.18 (14)
C4—C5—C6—C10.55 (15)C14—C15—C16—N2179.92 (9)
N1—C5—C6—C1179.96 (8)C14—C15—C16—C110.07 (15)
C2—C1—C6—C50.72 (14)C10—C11—C16—N20.36 (14)
C7—C1—C6—C5178.78 (8)C12—C11—C16—N2179.61 (9)
C6—C1—C7—O2158.22 (11)C10—C11—C16—C15179.63 (9)
C2—C1—C7—O221.24 (16)C12—C11—C16—C150.41 (14)
C6—C1—C7—O120.70 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (2)1.81 (2)2.6476 (13)166 (2)
(II) 3-chloro-2-nitrobenzoic acid–quinoline (1/1) top
Crystal data top
C7H3.61ClNO4·C9H7.39NZ = 2
Mr = 330.73F(000) = 340.00
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.6022 (3) ÅCell parameters from 15293 reflections
b = 7.6251 (4) Åθ = 3.3–30.1°
c = 12.9978 (5) ŵ = 0.29 mm1
α = 82.300 (2)°T = 185 K
β = 75.1792 (12)°Block, colourless
γ = 85.3277 (19)°0.37 × 0.20 × 0.16 mm
V = 720.94 (5) Å3
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3577 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.021
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.932, Tmax = 0.955k = 1010
18189 measured reflectionsl = 1817
4204 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.102P]
where P = (Fo2 + 2Fc2)/3
4204 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H3.61ClNO4·C9H7.39Nγ = 85.3277 (19)°
Mr = 330.73V = 720.94 (5) Å3
Triclinic, P1Z = 2
a = 7.6022 (3) ÅMo Kα radiation
b = 7.6251 (4) ŵ = 0.29 mm1
c = 12.9978 (5) ÅT = 185 K
α = 82.300 (2)°0.37 × 0.20 × 0.16 mm
β = 75.1792 (12)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
4204 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
3577 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.955Rint = 0.021
18189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
4204 reflectionsΔρmin = 0.27 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.09948 (4)0.70840 (4)0.01727 (2)0.03763 (10)
O10.24102 (14)0.47705 (11)0.47472 (7)0.0418 (2)
H10.264 (4)0.374 (4)0.517 (2)0.050*0.61 (3)
O20.18112 (19)0.29600 (11)0.36934 (8)0.0613 (3)
O30.31375 (15)0.35291 (13)0.13335 (9)0.0542 (3)
O40.01995 (13)0.34379 (11)0.18207 (8)0.0431 (2)
N10.16239 (14)0.41318 (11)0.17418 (7)0.0323 (2)
N20.29206 (15)0.18802 (13)0.59096 (8)0.0334 (2)
H20.274 (6)0.269 (6)0.567 (4)0.040*0.39 (3)
C10.17248 (15)0.60366 (13)0.31381 (8)0.0282 (2)
C20.15183 (14)0.58771 (12)0.21242 (8)0.0263 (2)
C30.12482 (14)0.73432 (13)0.14239 (8)0.0272 (2)
C40.11837 (15)0.90228 (13)0.17275 (9)0.0310 (2)
H40.09931.00380.12520.037*
C50.13999 (16)0.92066 (14)0.27306 (10)0.0341 (2)
H50.13671.03560.29430.041*
C60.16636 (17)0.77302 (14)0.34269 (9)0.0330 (2)
H60.18050.78780.41150.040*
C70.19938 (17)0.44310 (14)0.38938 (9)0.0337 (2)
C80.28180 (19)0.03692 (16)0.55550 (10)0.0412 (3)
H80.25310.03940.48830.049*
C90.3111 (2)0.12728 (16)0.61202 (11)0.0455 (3)
H90.30140.23420.58420.055*
C100.35369 (18)0.13093 (15)0.70764 (11)0.0406 (3)
H100.37710.24130.74650.049*
C110.36323 (15)0.02816 (14)0.74940 (9)0.0310 (2)
C120.40007 (17)0.03508 (17)0.84986 (10)0.0388 (3)
H120.42480.07160.89170.047*
C130.40033 (18)0.19334 (19)0.88711 (10)0.0423 (3)
H130.42410.19640.95510.051*
C140.36574 (18)0.35207 (17)0.82578 (10)0.0403 (3)
H140.36520.46170.85300.048*
C150.33282 (16)0.35105 (15)0.72764 (10)0.0346 (2)
H150.31190.45950.68620.042*
C160.33003 (14)0.18897 (14)0.68804 (8)0.0284 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.05550 (19)0.03204 (14)0.02944 (14)0.00563 (11)0.01797 (12)0.00142 (10)
O10.0729 (6)0.0259 (4)0.0359 (4)0.0021 (4)0.0300 (4)0.0041 (3)
O20.1274 (10)0.0215 (4)0.0534 (6)0.0011 (5)0.0564 (6)0.0057 (4)
O30.0614 (6)0.0401 (5)0.0622 (6)0.0122 (4)0.0118 (5)0.0260 (5)
O40.0630 (6)0.0253 (4)0.0508 (5)0.0107 (4)0.0300 (4)0.0031 (3)
N10.0508 (6)0.0204 (4)0.0308 (4)0.0016 (4)0.0189 (4)0.0062 (3)
N20.0460 (5)0.0244 (4)0.0323 (5)0.0016 (4)0.0155 (4)0.0003 (3)
C10.0374 (5)0.0204 (4)0.0302 (5)0.0007 (4)0.0134 (4)0.0057 (4)
C20.0328 (5)0.0188 (4)0.0302 (5)0.0009 (3)0.0114 (4)0.0065 (3)
C30.0321 (5)0.0233 (4)0.0285 (5)0.0029 (4)0.0113 (4)0.0029 (3)
C40.0377 (5)0.0200 (4)0.0363 (5)0.0031 (4)0.0119 (4)0.0008 (4)
C50.0460 (6)0.0193 (4)0.0404 (6)0.0028 (4)0.0141 (5)0.0078 (4)
C60.0479 (6)0.0229 (5)0.0334 (5)0.0013 (4)0.0170 (5)0.0086 (4)
C70.0506 (6)0.0231 (5)0.0327 (5)0.0014 (4)0.0196 (5)0.0059 (4)
C80.0606 (8)0.0296 (6)0.0385 (6)0.0024 (5)0.0212 (6)0.0044 (4)
C90.0685 (9)0.0245 (5)0.0473 (7)0.0030 (5)0.0212 (6)0.0044 (5)
C100.0524 (7)0.0249 (5)0.0440 (6)0.0001 (5)0.0150 (6)0.0028 (4)
C110.0315 (5)0.0286 (5)0.0318 (5)0.0010 (4)0.0080 (4)0.0008 (4)
C120.0417 (6)0.0403 (6)0.0338 (6)0.0003 (5)0.0132 (5)0.0042 (5)
C130.0465 (7)0.0519 (7)0.0313 (5)0.0012 (6)0.0148 (5)0.0052 (5)
C140.0477 (7)0.0385 (6)0.0375 (6)0.0033 (5)0.0125 (5)0.0105 (5)
C150.0417 (6)0.0273 (5)0.0359 (5)0.0018 (4)0.0119 (5)0.0032 (4)
C160.0297 (5)0.0265 (5)0.0289 (5)0.0021 (4)0.0081 (4)0.0006 (4)
Geometric parameters (Å, º) top
Cl1—C31.7244 (11)C5—H50.9500
O1—C71.2913 (13)C6—H60.9500
O1—H10.93 (3)C8—C91.3960 (17)
O2—C71.2113 (13)C8—H80.9500
O3—N11.2181 (14)C9—C101.3586 (19)
O4—N11.2186 (13)C9—H90.9500
N1—C21.4711 (13)C10—C111.4079 (17)
N2—C81.3120 (15)C10—H100.9500
N2—C161.3655 (14)C11—C161.4120 (14)
N2—H20.68 (5)C11—C121.4122 (16)
C1—C61.3864 (13)C12—C131.3594 (19)
C1—C21.3885 (14)C12—H120.9500
C1—C71.4985 (14)C13—C141.4023 (19)
C2—C31.3805 (14)C13—H130.9500
C3—C41.3834 (14)C14—C151.3623 (17)
C4—C51.3816 (16)C14—H140.9500
C4—H40.9500C15—C161.4047 (15)
C5—C61.3819 (15)C15—H150.9500
C7—O1—H1111.3 (18)N2—C8—C9122.96 (12)
O3—N1—O4125.30 (10)N2—C8—H8118.5
O3—N1—C2116.80 (10)C9—C8—H8118.5
O4—N1—C2117.83 (9)C10—C9—C8118.57 (11)
C8—N2—C16119.94 (10)C10—C9—H9120.7
C8—N2—H2126 (4)C8—C9—H9120.7
C16—N2—H2114 (4)C9—C10—C11120.27 (11)
C6—C1—C2117.68 (9)C9—C10—H10119.9
C6—C1—C7121.30 (9)C11—C10—H10119.9
C2—C1—C7121.02 (9)C10—C11—C16117.83 (10)
C3—C2—C1121.68 (9)C10—C11—C12123.60 (10)
C3—C2—N1117.16 (9)C16—C11—C12118.55 (10)
C1—C2—N1121.14 (9)C13—C12—C11120.48 (11)
C2—C3—C4119.84 (10)C13—C12—H12119.8
C2—C3—Cl1120.14 (8)C11—C12—H12119.8
C4—C3—Cl1120.02 (8)C12—C13—C14120.42 (11)
C5—C4—C3119.25 (10)C12—C13—H13119.8
C5—C4—H4120.4C14—C13—H13119.8
C3—C4—H4120.4C15—C14—C13120.84 (11)
C4—C5—C6120.46 (10)C15—C14—H14119.6
C4—C5—H5119.8C13—C14—H14119.6
C6—C5—H5119.8C14—C15—C16119.71 (11)
C5—C6—C1121.09 (10)C14—C15—H15120.1
C5—C6—H6119.5C16—C15—H15120.1
C1—C6—H6119.5N2—C16—C15119.62 (10)
O2—C7—O1124.74 (11)N2—C16—C11120.39 (10)
O2—C7—C1120.85 (10)C15—C16—C11119.98 (10)
O1—C7—C1114.41 (9)
C6—C1—C2—C30.44 (16)C6—C1—C7—O19.21 (17)
C7—C1—C2—C3179.23 (10)C2—C1—C7—O1171.14 (11)
C6—C1—C2—N1178.05 (10)C16—N2—C8—C91.1 (2)
C7—C1—C2—N12.28 (16)N2—C8—C9—C100.6 (2)
O3—N1—C2—C393.08 (12)C8—C9—C10—C111.6 (2)
O4—N1—C2—C384.24 (12)C9—C10—C11—C160.95 (19)
O3—N1—C2—C185.47 (13)C9—C10—C11—C12177.61 (12)
O4—N1—C2—C197.21 (12)C10—C11—C12—C13177.45 (12)
C1—C2—C3—C40.19 (16)C16—C11—C12—C131.10 (18)
N1—C2—C3—C4178.35 (9)C11—C12—C13—C140.62 (19)
C1—C2—C3—Cl1179.90 (8)C12—C13—C14—C150.6 (2)
N1—C2—C3—Cl11.56 (13)C13—C14—C15—C161.21 (19)
C2—C3—C4—C50.29 (16)C8—N2—C16—C15177.19 (12)
Cl1—C3—C4—C5179.62 (9)C8—N2—C16—C111.70 (17)
C3—C4—C5—C60.50 (17)C14—C15—C16—N2178.20 (11)
C4—C5—C6—C10.25 (18)C14—C15—C16—C110.69 (17)
C2—C1—C6—C50.22 (17)C10—C11—C16—N20.70 (16)
C7—C1—C6—C5179.45 (11)C12—C11—C16—N2179.33 (10)
C6—C1—C7—O2170.35 (13)C10—C11—C16—C15178.18 (10)
C2—C1—C7—O29.30 (19)C12—C11—C16—C150.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.93 (3)1.63 (3)2.5610 (13)176 (3)
N2—H2···O10.68 (4)1.89 (4)2.5610 (13)169 (5)
C5—H5···O2i0.952.413.3408 (15)167
C8—H8···O20.952.443.1247 (17)129
Symmetry code: (i) x, y+1, z.
(III) 4-chloro-2-nitrobenzoic acid–quinoline (1/1) top
Crystal data top
C7H3.53ClNO4·C9H7.47NZ = 2
Mr = 330.73F(000) = 340.00
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.9684 (8) ÅCell parameters from 9812 reflections
b = 8.6178 (7) Åθ = 3.0–30.0°
c = 11.1202 (9) ŵ = 0.28 mm1
α = 88.959 (2)°T = 185 K
β = 80.348 (3)°Block, colourless
γ = 78.671 (3)°0.45 × 0.45 × 0.35 mm
V = 738.06 (11) Å3
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3681 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.804, Tmax = 0.906k = 1212
11936 measured reflectionsl = 1515
4237 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
4237 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H3.53ClNO4·C9H7.47Nγ = 78.671 (3)°
Mr = 330.73V = 738.06 (11) Å3
Triclinic, P1Z = 2
a = 7.9684 (8) ÅMo Kα radiation
b = 8.6178 (7) ŵ = 0.28 mm1
c = 11.1202 (9) ÅT = 185 K
α = 88.959 (2)°0.45 × 0.45 × 0.35 mm
β = 80.348 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
4237 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3681 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.906Rint = 0.032
11936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.42 e Å3
4237 reflectionsΔρmin = 0.26 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.44149 (4)0.01184 (3)0.78073 (2)0.03670 (10)
O10.75936 (10)0.41131 (10)0.30316 (8)0.03226 (18)
H10.766 (4)0.465 (4)0.249 (4)0.039*0.53 (3)
O20.48528 (12)0.44258 (13)0.27182 (9)0.0448 (2)
O30.93926 (13)0.09385 (14)0.35728 (11)0.0573 (3)
O40.96626 (15)0.2538 (2)0.49643 (12)0.0776 (5)
N10.88154 (12)0.18311 (14)0.44458 (10)0.0396 (3)
N20.80002 (11)0.59677 (10)0.12311 (8)0.02490 (17)
H20.792 (4)0.529 (4)0.194 (3)0.030*0.47 (3)
C10.56693 (12)0.28796 (11)0.43825 (9)0.02345 (19)
C20.69549 (12)0.19857 (12)0.49544 (9)0.02463 (19)
C30.66070 (13)0.11225 (12)0.59936 (9)0.0262 (2)
H30.75190.05260.63590.031*
C40.48841 (13)0.11573 (12)0.64835 (9)0.02481 (19)
C50.35483 (13)0.19985 (13)0.59393 (10)0.0282 (2)
H50.23720.19920.62750.034*
C60.39571 (13)0.28507 (12)0.48970 (10)0.0269 (2)
H60.30440.34310.45240.032*
C70.60165 (14)0.38830 (12)0.32806 (10)0.0265 (2)
C80.69009 (14)0.61092 (12)0.04541 (10)0.0280 (2)
H80.59220.56180.06410.034*
C90.71070 (15)0.69512 (13)0.06374 (10)0.0303 (2)
H90.62860.70240.11750.036*
C100.85079 (15)0.76620 (13)0.09110 (10)0.0297 (2)
H100.86750.82340.16460.036*
C110.97095 (13)0.75437 (11)0.00960 (9)0.02514 (19)
C121.12012 (15)0.82365 (13)0.03319 (12)0.0338 (2)
H121.14200.88160.10570.041*
C131.23235 (15)0.80694 (15)0.04862 (14)0.0392 (3)
H131.33160.85450.03300.047*
C141.20253 (15)0.71999 (15)0.15591 (13)0.0378 (3)
H141.28280.70880.21130.045*
C151.05948 (15)0.65113 (13)0.18181 (10)0.0309 (2)
H151.04020.59320.25460.037*
C160.94107 (12)0.66765 (11)0.09858 (9)0.02343 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04098 (17)0.03931 (16)0.02862 (14)0.01142 (12)0.00060 (11)0.01079 (11)
O10.0267 (4)0.0366 (4)0.0342 (4)0.0082 (3)0.0063 (3)0.0155 (3)
O20.0353 (4)0.0601 (6)0.0460 (5)0.0164 (4)0.0209 (4)0.0284 (5)
O30.0368 (5)0.0538 (6)0.0633 (7)0.0098 (4)0.0191 (5)0.0145 (5)
O40.0409 (6)0.1516 (14)0.0573 (7)0.0523 (8)0.0204 (5)0.0261 (8)
N10.0210 (4)0.0571 (6)0.0394 (5)0.0061 (4)0.0060 (4)0.0257 (5)
N20.0244 (4)0.0236 (4)0.0256 (4)0.0042 (3)0.0022 (3)0.0040 (3)
C10.0223 (4)0.0255 (4)0.0233 (4)0.0053 (3)0.0056 (3)0.0035 (3)
C20.0192 (4)0.0300 (5)0.0249 (4)0.0052 (3)0.0044 (3)0.0048 (4)
C30.0239 (4)0.0293 (5)0.0252 (4)0.0036 (4)0.0055 (4)0.0050 (4)
C40.0277 (5)0.0245 (4)0.0219 (4)0.0069 (4)0.0013 (3)0.0023 (3)
C50.0219 (4)0.0322 (5)0.0293 (5)0.0055 (4)0.0009 (4)0.0011 (4)
C60.0208 (4)0.0301 (5)0.0298 (5)0.0034 (4)0.0059 (4)0.0031 (4)
C70.0280 (5)0.0266 (4)0.0261 (4)0.0058 (4)0.0077 (4)0.0049 (4)
C80.0251 (5)0.0271 (5)0.0319 (5)0.0054 (4)0.0051 (4)0.0024 (4)
C90.0302 (5)0.0328 (5)0.0287 (5)0.0041 (4)0.0101 (4)0.0029 (4)
C100.0331 (5)0.0295 (5)0.0250 (5)0.0038 (4)0.0037 (4)0.0069 (4)
C110.0241 (4)0.0218 (4)0.0274 (5)0.0030 (3)0.0003 (4)0.0014 (4)
C120.0279 (5)0.0285 (5)0.0432 (6)0.0081 (4)0.0018 (4)0.0034 (4)
C130.0267 (5)0.0332 (5)0.0582 (8)0.0088 (4)0.0040 (5)0.0053 (5)
C140.0290 (5)0.0377 (6)0.0477 (7)0.0012 (4)0.0148 (5)0.0095 (5)
C150.0307 (5)0.0315 (5)0.0296 (5)0.0011 (4)0.0086 (4)0.0008 (4)
C160.0231 (4)0.0211 (4)0.0246 (4)0.0018 (3)0.0025 (3)0.0000 (3)
Geometric parameters (Å, º) top
Cl1—C41.7342 (10)C5—H50.9500
O1—C71.2940 (13)C6—H60.9500
O1—H10.75 (4)C8—C91.4052 (15)
O2—C71.2179 (13)C8—H80.9500
O3—N11.2183 (17)C9—C101.3645 (16)
O4—N11.2102 (18)C9—H90.9500
N1—C21.4762 (13)C10—C111.4135 (15)
N2—C81.3178 (14)C10—H100.9500
N2—C161.3681 (13)C11—C161.4154 (14)
N2—H20.97 (4)C11—C121.4166 (15)
C1—C21.3921 (13)C12—C131.3658 (19)
C1—C61.3930 (14)C12—H120.9500
C1—C71.5058 (14)C13—C141.408 (2)
C2—C31.3813 (14)C13—H130.9500
C3—C41.3843 (14)C14—C151.3725 (17)
C3—H30.9500C14—H140.9500
C4—C51.3862 (15)C15—C161.4151 (14)
C5—C61.3877 (15)C15—H150.9500
C7—O1—H1108 (2)N2—C8—C9123.16 (10)
O4—N1—O3125.17 (12)N2—C8—H8118.4
O4—N1—C2117.50 (12)C9—C8—H8118.4
O3—N1—C2117.22 (11)C10—C9—C8118.77 (10)
C8—N2—C16119.42 (9)C10—C9—H9120.6
C8—N2—H2122.4 (19)C8—C9—H9120.6
C16—N2—H2117.9 (19)C9—C10—C11119.67 (10)
C2—C1—C6116.61 (9)C9—C10—H10120.2
C2—C1—C7124.38 (9)C11—C10—H10120.2
C6—C1—C7119.00 (9)C10—C11—C16118.19 (9)
C3—C2—C1123.46 (9)C10—C11—C12122.53 (10)
C3—C2—N1114.83 (9)C16—C11—C12119.27 (10)
C1—C2—N1121.63 (9)C13—C12—C11119.82 (11)
C2—C3—C4117.70 (9)C13—C12—H12120.1
C2—C3—H3121.2C11—C12—H12120.1
C4—C3—H3121.2C12—C13—C14120.73 (11)
C3—C4—C5121.43 (9)C12—C13—H13119.6
C3—C4—Cl1118.53 (8)C14—C13—H13119.6
C5—C4—Cl1120.04 (8)C15—C14—C13121.09 (11)
C4—C5—C6118.92 (10)C15—C14—H14119.5
C4—C5—H5120.5C13—C14—H14119.5
C6—C5—H5120.5C14—C15—C16119.10 (11)
C5—C6—C1121.84 (9)C14—C15—H15120.4
C5—C6—H6119.1C16—C15—H15120.4
C1—C6—H6119.1N2—C16—C15119.22 (9)
O2—C7—O1125.42 (10)N2—C16—C11120.79 (9)
O2—C7—C1120.23 (10)C15—C16—C11119.98 (10)
O1—C7—C1114.34 (9)
C6—C1—C2—C31.24 (16)C6—C1—C7—O1165.55 (10)
C7—C1—C2—C3177.33 (10)C16—N2—C8—C90.57 (15)
C6—C1—C2—N1175.61 (10)N2—C8—C9—C100.12 (16)
C7—C1—C2—N15.82 (17)C8—C9—C10—C110.26 (16)
O4—N1—C2—C375.93 (15)C9—C10—C11—C160.17 (15)
O3—N1—C2—C3100.52 (12)C9—C10—C11—C12179.21 (10)
O4—N1—C2—C1106.96 (14)C10—C11—C12—C13179.42 (10)
O3—N1—C2—C176.59 (14)C16—C11—C12—C130.40 (16)
C1—C2—C3—C40.01 (16)C11—C12—C13—C140.67 (18)
N1—C2—C3—C4177.04 (10)C12—C13—C14—C150.65 (18)
C2—C3—C4—C51.40 (16)C13—C14—C15—C160.32 (17)
C2—C3—C4—Cl1178.58 (8)C8—N2—C16—C15179.52 (9)
C3—C4—C5—C61.50 (16)C8—N2—C16—C110.64 (14)
Cl1—C4—C5—C6178.48 (8)C14—C15—C16—N2178.85 (10)
C4—C5—C6—C10.18 (16)C14—C15—C16—C110.04 (15)
C2—C1—C6—C51.13 (16)C10—C11—C16—N20.27 (14)
C7—C1—C6—C5177.52 (10)C12—C11—C16—N2178.79 (9)
C2—C1—C7—O2168.26 (11)C10—C11—C16—C15179.15 (9)
C6—C1—C7—O213.20 (16)C12—C11—C16—C150.08 (15)
C2—C1—C7—O113.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.75 (4)1.81 (4)2.5569 (12)175 (3)
N2—H2···O10.97 (3)1.59 (3)2.5569 (12)173 (3)
C8—H8···O20.952.593.2445 (15)126
C9—H9···O2i0.952.523.3527 (16)146
Symmetry code: (i) x+1, y+1, z.
(IV) 5-chloro-2-nitrobenzoic acid–quinoline (1/1) top
Crystal data top
C7H3.35ClNO4·C9H7.65NF(000) = 680.00
Mr = 330.73Dx = 1.488 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 14851 reflections
a = 7.0456 (4) Åθ = 3.0–30.0°
b = 22.6829 (13) ŵ = 0.28 mm1
c = 9.6273 (6) ÅT = 185 K
β = 106.3182 (18)°Needle, colourless
V = 1476.61 (15) Å30.33 × 0.25 × 0.16 mm
Z = 4
Data collection top
Rigaku RAXIS-RAPIDII
diffractometer
3709 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.831, Tmax = 0.956k = 3131
19004 measured reflectionsl = 1313
4277 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3728P]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H3.35ClNO4·C9H7.65NV = 1476.61 (15) Å3
Mr = 330.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0456 (4) ŵ = 0.28 mm1
b = 22.6829 (13) ÅT = 185 K
c = 9.6273 (6) Å0.33 × 0.25 × 0.16 mm
β = 106.3182 (18)°
Data collection top
Rigaku RAXIS-RAPIDII
diffractometer
4277 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3709 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.956Rint = 0.022
19004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
4277 reflectionsΔρmin = 0.20 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.43606 (4)0.247752 (12)0.67740 (3)0.02656 (8)
O10.78505 (14)0.10343 (4)0.27660 (9)0.02784 (18)
H10.785 (7)0.076 (3)0.251 (5)0.033*0.35 (3)
O20.78570 (17)0.06199 (4)0.48733 (10)0.0406 (2)
O31.15435 (13)0.15440 (5)0.42372 (11)0.0416 (2)
O41.12136 (16)0.24239 (5)0.33042 (11)0.0451 (3)
N11.06974 (14)0.20202 (5)0.39705 (10)0.0306 (2)
N20.77466 (14)0.00154 (4)0.18202 (10)0.02455 (19)
H20.784 (3)0.0399 (13)0.221 (3)0.029*0.65 (3)
C10.78003 (15)0.16587 (5)0.47057 (11)0.02072 (19)
C20.90034 (15)0.21271 (5)0.45437 (11)0.0234 (2)
C30.87565 (17)0.26945 (5)0.49860 (13)0.0282 (2)
H30.95810.30040.48300.034*
C40.72958 (17)0.28074 (5)0.56591 (12)0.0267 (2)
H40.70990.31940.59700.032*
C50.61298 (15)0.23436 (5)0.58689 (11)0.02139 (19)
C60.63462 (15)0.17766 (5)0.53938 (11)0.02142 (19)
H60.55040.14690.55380.026*
C70.78717 (16)0.10454 (5)0.41008 (11)0.0231 (2)
C80.78470 (19)0.04613 (5)0.27095 (13)0.0305 (2)
H80.80290.03850.37090.037*
C90.7692 (2)0.10471 (5)0.22223 (15)0.0345 (3)
H90.77820.13640.28830.041*
C100.74088 (19)0.11544 (5)0.07822 (15)0.0331 (3)
H100.72550.15480.04320.040*
C110.73437 (16)0.06815 (5)0.01933 (13)0.0268 (2)
C120.71506 (19)0.07595 (6)0.16837 (14)0.0368 (3)
H120.70170.11450.20870.044*
C130.7156 (2)0.02829 (7)0.25406 (14)0.0416 (3)
H130.70410.03390.35390.050*
C140.73280 (19)0.02933 (6)0.19694 (14)0.0355 (3)
H140.73200.06200.25870.043*
C150.75066 (17)0.03866 (5)0.05328 (13)0.0286 (2)
H150.76150.07760.01540.034*
C160.75274 (15)0.01041 (5)0.03818 (11)0.0224 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02649 (14)0.03043 (14)0.02693 (13)0.00097 (9)0.01434 (10)0.00486 (9)
O10.0421 (5)0.0215 (4)0.0218 (4)0.0017 (3)0.0120 (3)0.0037 (3)
O20.0711 (7)0.0258 (4)0.0293 (4)0.0078 (4)0.0216 (4)0.0037 (3)
O30.0269 (4)0.0507 (6)0.0498 (6)0.0006 (4)0.0150 (4)0.0200 (5)
O40.0392 (5)0.0659 (7)0.0383 (5)0.0152 (5)0.0243 (4)0.0035 (5)
N10.0230 (4)0.0459 (6)0.0253 (4)0.0081 (4)0.0109 (4)0.0130 (4)
N20.0271 (4)0.0226 (4)0.0249 (4)0.0002 (3)0.0089 (3)0.0032 (3)
C10.0216 (4)0.0230 (5)0.0174 (4)0.0007 (4)0.0052 (3)0.0025 (3)
C20.0210 (5)0.0309 (5)0.0204 (4)0.0038 (4)0.0091 (4)0.0054 (4)
C30.0300 (5)0.0286 (5)0.0295 (5)0.0105 (4)0.0138 (4)0.0068 (4)
C40.0308 (5)0.0236 (5)0.0280 (5)0.0042 (4)0.0121 (4)0.0068 (4)
C50.0208 (4)0.0256 (5)0.0193 (4)0.0006 (4)0.0083 (4)0.0030 (4)
C60.0223 (5)0.0224 (5)0.0210 (4)0.0012 (4)0.0085 (4)0.0007 (4)
C70.0252 (5)0.0225 (5)0.0220 (5)0.0021 (4)0.0074 (4)0.0022 (4)
C80.0349 (6)0.0281 (5)0.0288 (5)0.0007 (5)0.0095 (5)0.0009 (4)
C90.0396 (7)0.0235 (5)0.0403 (6)0.0013 (5)0.0112 (5)0.0057 (5)
C100.0318 (6)0.0226 (5)0.0455 (7)0.0007 (4)0.0118 (5)0.0061 (5)
C110.0218 (5)0.0268 (5)0.0324 (5)0.0004 (4)0.0086 (4)0.0083 (4)
C120.0345 (6)0.0424 (7)0.0352 (6)0.0025 (5)0.0123 (5)0.0168 (5)
C130.0384 (7)0.0608 (9)0.0273 (6)0.0020 (6)0.0121 (5)0.0083 (6)
C140.0335 (6)0.0461 (7)0.0290 (6)0.0020 (5)0.0119 (5)0.0070 (5)
C150.0278 (5)0.0291 (5)0.0307 (5)0.0021 (4)0.0111 (4)0.0018 (4)
C160.0190 (4)0.0238 (5)0.0251 (5)0.0012 (4)0.0072 (4)0.0040 (4)
Geometric parameters (Å, º) top
Cl1—C51.7366 (10)C5—C61.3876 (14)
O1—C71.2811 (13)C6—H60.9500
O1—H10.67 (6)C8—C91.4030 (17)
O2—C71.2202 (14)C8—H80.9500
O3—N11.2255 (15)C9—C101.3660 (19)
O4—N11.2302 (15)C9—H90.9500
N1—C21.4690 (14)C10—C111.4181 (18)
N2—C81.3142 (15)C10—H100.9500
N2—C161.3645 (14)C11—C161.4135 (15)
N2—H21.01 (3)C11—C121.4138 (17)
C1—C61.3934 (14)C12—C131.360 (2)
C1—C21.3950 (15)C12—H120.9500
C1—C71.5144 (14)C13—C141.410 (2)
C2—C31.3819 (16)C13—H130.9500
C3—C41.3855 (16)C14—C151.3695 (17)
C3—H30.9500C14—H140.9500
C4—C51.3841 (15)C15—C161.4167 (16)
C4—H40.9500C15—H150.9500
C7—O1—H1113 (4)N2—C8—C9121.75 (11)
O3—N1—O4124.59 (11)N2—C8—H8119.1
O3—N1—C2117.75 (10)C9—C8—H8119.1
O4—N1—C2117.60 (11)C10—C9—C8118.92 (11)
C8—N2—C16121.18 (10)C10—C9—H9120.5
C8—N2—H2119.5 (13)C8—C9—H9120.5
C16—N2—H2119.3 (13)C9—C10—C11120.38 (11)
C6—C1—C2117.26 (9)C9—C10—H10119.8
C6—C1—C7117.87 (9)C11—C10—H10119.8
C2—C1—C7124.73 (9)C16—C11—C12119.05 (11)
C3—C2—C1122.81 (10)C16—C11—C10117.33 (10)
C3—C2—N1117.10 (10)C12—C11—C10123.61 (11)
C1—C2—N1119.97 (10)C13—C12—C11120.01 (12)
C2—C3—C4119.38 (10)C13—C12—H12120.0
C2—C3—H3120.3C11—C12—H12120.0
C4—C3—H3120.3C12—C13—C14120.97 (12)
C5—C4—C3118.50 (10)C12—C13—H13119.5
C5—C4—H4120.8C14—C13—H13119.5
C3—C4—H4120.8C15—C14—C13120.69 (12)
C4—C5—C6122.12 (10)C15—C14—H14119.7
C4—C5—Cl1118.64 (8)C13—C14—H14119.7
C6—C5—Cl1119.23 (8)C14—C15—C16119.23 (11)
C5—C6—C1119.88 (9)C14—C15—H15120.4
C5—C6—H6120.1C16—C15—H15120.4
C1—C6—H6120.1N2—C16—C11120.40 (10)
O2—C7—O1126.59 (10)N2—C16—C15119.56 (10)
O2—C7—C1119.03 (9)C11—C16—C15120.04 (10)
O1—C7—C1114.30 (9)
C6—C1—C2—C32.38 (16)C2—C1—C7—O148.59 (14)
C7—C1—C2—C3173.28 (10)C16—N2—C8—C91.39 (18)
C6—C1—C2—N1173.45 (9)N2—C8—C9—C100.7 (2)
C7—C1—C2—N110.90 (16)C8—C9—C10—C112.20 (19)
O3—N1—C2—C3144.34 (11)C9—C10—C11—C161.69 (17)
O4—N1—C2—C332.90 (15)C9—C10—C11—C12176.88 (12)
O3—N1—C2—C131.71 (14)C16—C11—C12—C130.40 (18)
O4—N1—C2—C1151.04 (11)C10—C11—C12—C13178.15 (12)
C1—C2—C3—C41.94 (18)C11—C12—C13—C140.8 (2)
N1—C2—C3—C4173.99 (10)C12—C13—C14—C150.4 (2)
C2—C3—C4—C50.14 (17)C13—C14—C15—C160.34 (19)
C3—C4—C5—C61.73 (17)C8—N2—C16—C111.89 (16)
C3—C4—C5—Cl1177.56 (9)C8—N2—C16—C15177.42 (11)
C4—C5—C6—C11.26 (16)C12—C11—C16—N2178.99 (10)
Cl1—C5—C6—C1178.02 (8)C10—C11—C16—N20.35 (15)
C2—C1—C6—C50.76 (15)C12—C11—C16—C150.32 (16)
C7—C1—C6—C5175.20 (9)C10—C11—C16—C15178.96 (10)
C6—C1—C7—O249.88 (15)C14—C15—C16—N2178.63 (10)
C2—C1—C7—O2134.49 (12)C14—C15—C16—C110.68 (16)
C6—C1—C7—O1127.04 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.67 (5)1.88 (5)2.5429 (12)177 (6)
N2—H2···O11.01 (3)1.54 (3)2.5429 (13)177 (3)
C4—H4···O1i0.952.413.2748 (14)151
C8—H8···O20.952.563.2165 (15)127
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC7H4ClNO4·C9H7NC7H3.61ClNO4·C9H7.39NC7H3.53ClNO4·C9H7.47NC7H3.35ClNO4·C9H7.65N
Mr330.73330.73330.73330.73
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)185185185185
a, b, c (Å)6.9254 (10), 7.4746 (11), 14.310 (2)7.6022 (3), 7.6251 (4), 12.9978 (5)7.9684 (8), 8.6178 (7), 11.1202 (9)7.0456 (4), 22.6829 (13), 9.6273 (6)
α, β, γ (°)75.861 (4), 89.207 (3), 79.842 (4)82.300 (2), 75.1792 (12), 85.3277 (19)88.959 (2), 80.348 (3), 78.671 (3)90, 106.3182 (18), 90
V3)706.71 (17)720.94 (5)738.06 (11)1476.61 (15)
Z2224
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.290.290.280.28
Crystal size (mm)0.33 × 0.28 × 0.200.37 × 0.20 × 0.160.45 × 0.45 × 0.350.33 × 0.25 × 0.16
Data collection
DiffractometerRigaku RAXIS-RAPIDII
diffractometer
Rigaku RAXIS-RAPID
diffractometer
Rigaku RAXIS-RAPID
diffractometer
Rigaku RAXIS-RAPIDII
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Numerical
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.932, 0.9430.932, 0.9550.804, 0.9060.831, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
14562, 4109, 3703 18189, 4204, 3577 11936, 4237, 3681 19004, 4277, 3709
Rint0.0190.0210.0320.022
(sin θ/λ)max1)0.7030.7030.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.06 0.037, 0.106, 1.06 0.037, 0.106, 1.08 0.035, 0.093, 1.03
No. of reflections4109420442374277
No. of parameters212215215215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.250.39, 0.270.42, 0.260.44, 0.20

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (2)1.81 (2)2.6476 (13)166 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.93 (3)1.63 (3)2.5610 (13)176 (3)
N2—H2···O10.68 (4)1.89 (4)2.5610 (13)169 (5)
C5—H5···O2i0.952.413.3408 (15)167
C8—H8···O20.952.443.1247 (17)129
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.75 (4)1.81 (4)2.5569 (12)175 (3)
N2—H2···O10.97 (3)1.59 (3)2.5569 (12)173 (3)
C8—H8···O20.952.593.2445 (15)126
C9—H9···O2i0.952.523.3527 (16)146
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.67 (5)1.88 (5)2.5429 (12)177 (6)
N2—H2···O11.01 (3)1.54 (3)2.5429 (13)177 (3)
C4—H4···O1i0.952.413.2748 (14)151
C8—H8···O20.952.563.2165 (15)127
Symmetry code: (i) x, y+1/2, z+1/2.
Geometries of ππ stacking interactions for compounds (I)–(IV). top
CgI···CgJ, α, CgI-Perp, CgJ-Perp and Slippage are centroid-centroid distance between rings I and J (Å), inter-ring dihedral angle (°), perpendicular distance of CgI on ring J (Å), perpendicular distance of CgJ on ring I (Å) and slippage distance (Å), respectively. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively.
CgI···CgJαCgI-PerpCgJ-PerpSlippage
(I)
Cg1···Cg2i3.6560 (8)2.07 (5)3.4271 (4)3.4283 (4)
Cg1···Cg2ii3.6851 (8)2.07 (5)3.44488 (4)3.4722 (4)
Cg1···Cg3i3.7302 (8)1.75 (5)3.4319 (4)3.4669 (4)
Cg1···Cg3ii3.6269 (8)1.75 (5)3.4485 (4)3.4336 (4)
(II)
Cg1···Cg2iii3.7950 (7)5.73 (6)3.3985 (5)3.3506 (5)
Cg1···Cg3i3.6881 (7)3.87 (6)3.4523 (5)3.5279 (5)
(III)
Cg1···Cg1iv3.7241 (7)03.5065 (4)3.5066 (4)1.254
Cg2···Cg3v3.6697 (7)0.75 (5)3.3383 (4)3.3225 (5)
(IV)
Cg3···Cg3vi3.8506 (8)03.4475 (5)3.4475 (5)1.715
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z; (vi) -x+2, -y, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds