Download citation
Download citation
link to html
Four distinct hydrogen-bonding topologies were observed in the structures of six diethanol­amine ligands. These compounds are (1R*,2R*)-2-[(2-hydroxy­ethyl)(methyl)amino]-1,2-diphenyl­ethanol, C17H21NO2, (I), 1-[(2S)-2-(hydr­oxy­diphenyl­methyl)­pyrrolidin-1-yl]-2-methyl­propan-2-ol, C21H27NO2, (II), 2-[(2-hydroxy­ethyl)(methyl)amino]-1,1-diphenyl­ethanol, C17H21NO2, (III), 1-{(2-hydr­oxy-2-methyl­propyl)[(1S)-1-phenyl­ethyl]­amino}-2-methyl­propan-2-ol, C16H27NO2, (IV), 1-{[(2R)-2-hydroxy-2-phenyl­ethyl][(1S)-1-phenyl­ethyl]amino}-2-methyl­propan-2-ol, C20H27NO2, (V), and (1R*,2S*)-2-[(2-hydroxy­ethyl)­(methyl)­amino]-1,2-diphenyl­ethanol, C17H21NO2, (VI). In each compound, all `active' hydroxy H atoms are engaged in hydrogen bonding, but the N atoms are not involved in inter­molecular hydrogen bonding. In the structures of (I), (II) and (IV)–(VI), mol­ecules are linked into chains by inter­molecular O—H...O inter­actions. These chains are organized in such a way as to hide the hydro­philic groups inside, and so the outer surfaces of the chains are hydro­phobic. The structure of (VI) contains two distinct non-equivalent systems of inter­molecular O—H...O hydrogen bonds formed by disordered hydroxy H atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109036749/gd3304sup1.cif
Contains datablocks I, II, III, IV, V, VI_100, VI_300, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304VI_100sup7.hkl
Contains datablock VI_100

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036749/gd3304VI_300sup8.hkl
Contains datablock VI_300

CCDC references: 247117; 701170; 701171; 701172; 701173; 701174; 701175

Comment top

In the last two decades, polydentate ligand frameworks have been widely used in the synthesis of transition metal complexes which may be applied as catalysts for fine organic reactions or polymerization processes (Odom, 2005; Mountford, 1998; Coates, 2002). Within this field, ligands featuring anionic O donors (alkoxides, aryloxides), and especially alkoxides with an additional intramolecular donor group, have attracted particular attention (Mack & Eisen, 1998; Chmura et al., 2006; Knight et al., 2004). Among these ligands, diethanolamines look highly intriguing, due to the relative ease of manipulating the ligand topology (cyclic or open-chain), steric hindrance, chirality and coordination ability. We reported recently the synthesis of several titanium complexes based on chiral diethanolamines (Zaitsev et al., 2008).

N-Aryldiethanolamines are well known (El-Sayed et al., 2001; Centore & Tuzi, 2003; Luger & Roch, 1983; Chen & Shi, 2006), but in their structures the N atom never normally participates in hydrogen bonding due to significant aryl–N conjugation. Additionally, the structures of N-diethanolamines where the N atom bonds to a Csp3 atom are rare (Skinner et al., 2005; Wu & Rehder, 2005). Here, we report the structures of six N-alkyldiethanolamines, (I)–(VI). In the molecules of (I)–(VI), all bond lengths have normal values and the N atoms adopt pyramidal conformations, with the sums of the bond angles in the range 334.7–341.3°. However, analysis of the hydrogen bonding in these compounds demonstrates four distinct topologies.

In structures (I) and (II), the N atom forms a bent intramolecular hydrogen bond with one of the Oa atoms (A in Scheme 1; Fig. 1, Tables 1 and 2). The Oa—H···N angle varies from 126 (2) to 131 (2)°. The resulting five-membered rings are non-planar, and both `envelope' and `twist' conformations are observed. Atom Oa accepts an intermolecular hydrogen bond from a hydroxyl group Ob—H of an adjacent molecule. Atom Ob, however, serves only as a hydrogen-bond donor for the neighbouring molecule. This motif results in the formation of chains (Fig. 2).

As in the structures of (I) and (II), in compound (III) the N atom forms an intramolecular hydrogen bond with one of the Oa atoms, with an Oa—H···N angle of 126 (2)° (Table 2). However, in contrast with (I) and (II), the molecules of (III) form centrosymmetric S(5)R44(14) dimers (Bernstein et al., 1995) (Fig. 3).

In structures (IV) and (V), the N atom does not participate in hydrogen bonding (B in Scheme 1; Fig. 4). This is probably caused by the steric requirements of the bulky CH(Me)Ph substituent bound to the amine N atoms. The O atoms form an intramolecular Oa—H···Ob hydrogen bond, resulting in an eight-membered cycle closure. Additionally, both O atoms are engaged in intermolecular hydrogen bonds, combining adjacent molecules into chains (Fig. 5). The Oa—H···Ob bond is close to linear. The identical structural motif to that in (IV) was found previously for the related diethanolamine derivative o-(C5NH4)CH2N(CH2CMe2OH)2 (Skinner et al., 2005) and for some aryl-substituted ligands (Seo et al., 2007).

In the structure of (VI), the N atom is not involved in hydrogen bonding and no intramolecular hydrogen bonds were observed. However, both O atoms form intermolecular hydrogen bonds, resulting in chain generation. Interestingly, both hydroxyl H atoms are disordered over two positions with approximately equal occupancies (Fig. 6). Thus, (VI) demonstrates two distinct non-equivalent systems of intermolecular O—H···O bonds (see Scheme 2; Fig. 7). We have previously observed the same type of chains in the structure of 2-(hydroxymethyl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)phenol (Chukicheva et al., 2006). We made two data collections from the same crystal at different temperatures (100 and 300 K), but found only minimal structural changes.

In the structures of (I), (II) and (IV)–(VI), the chains are organized in such a way as to hide the hydrophilic groups inside, and hence the outer surfaces of the chains are hydrophobic. These chains are combined in two- or three-dimensional networks by T-shaped aromatic C—H···π interactions. No face-to-face intermolecular π=-π interactions were found. In the structure of (III), the dimers are also connected by intermolecular C—H···π interactions.

In all four packing motifs, we observed that the N atoms are not involved in intermolecular hydrogen bonding. However, Wu & Rehder (2005) found another supramolecular aggregation for the structure of allyldiethanolamine, (VII), where the N atom does interact intermolecularly with the hydroxyl groups. In (VII), one of two OH groups serves as both donor and acceptor of hydrogen bonds, while another acts as donor only. The latter results in the formation of hydrophobic chains of the molecules (see Scheme 3).

It is noteworthy that three of the compounds investigated here [(II), (IV) and (V)] were obtained from enantiopure amines (Zaitsev et al., 2008) and crystallize in the Sohncke space group P212121, forming helical chains along 21 screw axes. Therefore, they possess the potential for the effective transfer of chirality to a metal centre which is essential for successful asymmetric metal-based catalysis.

Experimental top

Compounds (I)–(VI) were synthesized by the methods described by Zaitsev et al. (2008). Single colourless crystals suitable for X-ray diffraction analysis were obtained from toluene solutions upon freezing to 258 K.

Refinement top

In the structures of (I) and (III)–(V), the hydroxyl H atoms were found in difference Fourier syntheses and refined with isotropic displacement parameters. In (II), all H atoms were found in a difference Fourier synthesis and refined isotropically. In (VI), the disordered hydroxyl H atoms were also found in a difference Fourier synthesis and refined with Uiso(H) = 1.5Ueq(O). The occupancies of these hydroxyl H atoms were refined in the last runs of SHELXL97 (Sheldrick, 2008). Their values converged to 0.51 (2):0.49 (2) for both datasets collected at 100 and 300 K from the same crystal. In all compounds, all other (C-bound) H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (CH), and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and k = 1.2 for all other H atoms. In the noncentrosymmetric structures (I), (II), (IV) and (V), Friedel pairs were merged in the final refinements (MERG 3 instruction in SHELXL97). In (VI), the possibility of a superstructure was checked but was not confirmed.

Computing details top

For all compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and hydroxyl H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity.
[Figure 2] Fig. 2. Chains along the b axis in the structure of (II). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) x, -1 + y, z; (iii) 1 - x, -3/2 + y, 1/2 - z.]
[Figure 3] Fig. 3. The centrosymmetric dimer in the structure of (III), showing the atom-numbering scheme [Please complete numbering]. Displacement ellipsoids are drawn at the 50% probability level and hydroxyl H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 2 - x, -y, 1 - z.]
[Figure 4] Fig. 4. The molecular structures of (a) (IV) and (b) (V), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and hydroxyl H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line. H atoms bonded to C atoms have been omitted for clarity.
[Figure 5] Fig. 5. Chains along the a axis in the structures of (a) (IV) and (b) (V). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes for (a): (i) 1/2 + x, -1/2 - y, -z; (ii) 1 + x, y, z; (iii) -1/2 + x, -1/2 - y, -z. Symmetry codes for (b): (i) -1/2 + x, 3/2 - y, -z; (ii) -1 + x, y, z; (iii) 1/2 + x, 3/2 - y, -z.]
[Figure 6] Fig. 6. The molecular structure of (VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydroxyl H atoms are shown as small spheres of arbitrary radii. H atoms bonded to C atoms have been omitted for clarity.
[Figure 7] Fig. 7. The disordered double chains in the structure of (VI). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z; (iii) 1 - x, 1 - y, 1 - z; (iv) -x, 1 - y, 1 - z; (v) -1 - x, 1 - y, 1 - z.]
(I) 2-[(2-hydroxyethyl)(methyl)amino]-1,2-diphenylethanol top
Crystal data top
C17H21NO2F(000) = 292
Mr = 271.35Dx = 1.245 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4308 reflections
a = 5.8366 (1) Åθ = 2.5–29.9°
b = 15.3018 (4) ŵ = 0.08 mm1
c = 8.1078 (2) ÅT = 120 K
β = 91.444 (1)°Block, colourless
V = 723.88 (3) Å30.40 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART 1K
diffractometer
1677 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.968, Tmax = 0.992k = 1919
4958 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.0768P]
where P = (Fo2 + 2Fc2)/3
1677 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H21NO2V = 723.88 (3) Å3
Mr = 271.35Z = 2
Monoclinic, PcMo Kα radiation
a = 5.8366 (1) ŵ = 0.08 mm1
b = 15.3018 (4) ÅT = 120 K
c = 8.1078 (2) Å0.40 × 0.20 × 0.10 mm
β = 91.444 (1)°
Data collection top
Bruker SMART 1K
diffractometer
1677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1626 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.992Rint = 0.029
4958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
1677 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8651 (2)0.35398 (9)0.27939 (17)0.0166 (3)
O10.6689 (2)0.52412 (8)0.25285 (17)0.0253 (3)
O20.9803 (2)0.40890 (8)0.01196 (15)0.0206 (3)
C10.5441 (3)0.45589 (11)0.3303 (2)0.0214 (3)
H1A0.37810.46440.30780.026*
H1B0.57140.45880.45120.026*
C20.6157 (3)0.36586 (11)0.2676 (2)0.0188 (3)
H2A0.54040.32000.33320.023*
H2B0.56350.35910.15110.023*
C30.9522 (3)0.34606 (12)0.4504 (2)0.0212 (3)
H3A0.90020.39620.51470.032*
H3B1.12010.34480.45160.032*
H3C0.89440.29190.49880.032*
C40.9550 (3)0.28428 (10)0.17160 (19)0.0151 (3)
H41.12260.27920.19860.018*
C50.9338 (3)0.31695 (10)0.0104 (2)0.0163 (3)
H50.77350.30690.05250.020*
C110.8504 (3)0.19411 (10)0.2025 (2)0.0163 (3)
C60.9644 (3)0.13769 (11)0.3123 (2)0.0209 (3)
H61.10940.15410.35820.025*
C70.8684 (3)0.05745 (12)0.3557 (2)0.0265 (4)
H70.94760.02000.43130.032*
C80.6575 (4)0.03254 (12)0.2885 (2)0.0266 (4)
H80.59200.02200.31760.032*
C90.5422 (3)0.08783 (12)0.1780 (2)0.0236 (4)
H90.39810.07070.13140.028*
C100.6368 (3)0.16814 (11)0.1354 (2)0.0190 (3)
H100.55630.20550.06050.023*
C121.0991 (3)0.27011 (11)0.12307 (19)0.0161 (3)
C131.0579 (3)0.18331 (11)0.1715 (2)0.0205 (3)
H130.92650.15350.13370.025*
C141.2093 (3)0.14079 (12)0.2747 (2)0.0243 (4)
H141.18150.08180.30550.029*
C151.4011 (3)0.18402 (13)0.3333 (2)0.0243 (4)
H151.50420.15480.40340.029*
C161.4396 (3)0.27083 (12)0.2876 (2)0.0217 (4)
H161.56830.30120.32850.026*
C171.2906 (3)0.31327 (11)0.1823 (2)0.0185 (3)
H171.31980.37210.15080.022*
H10.770 (5)0.5387 (16)0.321 (4)0.035 (7)*
H20.948 (5)0.4278 (18)0.081 (4)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (6)0.0189 (7)0.0149 (7)0.0006 (5)0.0014 (5)0.0018 (5)
O10.0322 (7)0.0203 (6)0.0231 (6)0.0007 (5)0.0033 (6)0.0022 (5)
O20.0283 (6)0.0155 (6)0.0183 (6)0.0005 (5)0.0050 (5)0.0013 (5)
C10.0220 (8)0.0200 (8)0.0223 (8)0.0020 (7)0.0023 (7)0.0022 (7)
C20.0160 (7)0.0201 (8)0.0202 (8)0.0001 (6)0.0015 (6)0.0018 (6)
C30.0209 (8)0.0266 (9)0.0160 (8)0.0010 (7)0.0003 (6)0.0012 (6)
C40.0140 (6)0.0163 (7)0.0151 (7)0.0007 (6)0.0016 (6)0.0002 (6)
C50.0163 (7)0.0158 (7)0.0167 (7)0.0008 (6)0.0017 (6)0.0014 (6)
C110.0190 (8)0.0154 (7)0.0145 (7)0.0011 (6)0.0039 (6)0.0002 (6)
C60.0225 (8)0.0193 (8)0.0208 (8)0.0019 (6)0.0007 (7)0.0003 (6)
C70.0377 (10)0.0189 (8)0.0228 (9)0.0027 (8)0.0001 (8)0.0037 (7)
C80.0371 (10)0.0181 (8)0.0247 (9)0.0059 (7)0.0057 (8)0.0009 (7)
C90.0241 (8)0.0240 (9)0.0228 (8)0.0058 (7)0.0037 (7)0.0039 (7)
C100.0185 (7)0.0199 (8)0.0189 (8)0.0006 (6)0.0018 (6)0.0002 (6)
C120.0177 (7)0.0186 (8)0.0120 (7)0.0014 (6)0.0001 (6)0.0009 (6)
C130.0226 (8)0.0198 (8)0.0193 (8)0.0012 (7)0.0022 (7)0.0002 (6)
C140.0294 (10)0.0218 (8)0.0216 (9)0.0037 (7)0.0005 (7)0.0039 (7)
C150.0240 (8)0.0319 (10)0.0170 (8)0.0078 (7)0.0018 (7)0.0009 (7)
C160.0175 (8)0.0316 (9)0.0162 (8)0.0001 (7)0.0022 (6)0.0023 (7)
C170.0194 (7)0.0214 (8)0.0147 (8)0.0015 (6)0.0002 (6)0.0014 (6)
Geometric parameters (Å, º) top
N1—C21.468 (2)C11—C101.405 (2)
N1—C31.469 (2)C6—C71.398 (3)
N1—C41.483 (2)C6—H60.9500
O1—C11.427 (2)C7—C81.387 (3)
O1—H10.83 (3)C7—H70.9500
O2—C51.4329 (19)C8—C91.393 (3)
O2—H20.83 (3)C8—H80.9500
C1—C21.530 (2)C9—C101.394 (2)
C1—H1A0.9900C9—H90.9500
C1—H1B0.9900C10—H100.9500
C2—H2A0.9900C12—C171.394 (2)
C2—H2B0.9900C12—C131.404 (2)
C3—H3A0.9800C13—C141.394 (2)
C3—H3B0.9800C13—H130.9500
C3—H3C0.9800C14—C151.394 (3)
C4—C111.532 (2)C14—H140.9500
C4—C51.560 (2)C15—C161.396 (3)
C4—H41.0000C15—H150.9500
C5—C121.524 (2)C16—C171.394 (2)
C5—H51.0000C16—H160.9500
C11—C61.397 (2)C17—H170.9500
C2—N1—C3113.00 (13)C6—C11—C4118.40 (15)
C2—N1—C4114.56 (13)C10—C11—C4123.01 (14)
C3—N1—C4112.18 (13)C7—C6—C11121.06 (17)
C1—O1—H1105.5 (19)C7—C6—H6119.5
C5—O2—H2106.7 (19)C11—C6—H6119.5
O1—C1—C2111.44 (14)C8—C7—C6119.97 (17)
O1—C1—H1A109.3C8—C7—H7120.0
C2—C1—H1A109.3C6—C7—H7120.0
O1—C1—H1B109.3C7—C8—C9119.70 (17)
C2—C1—H1B109.3C7—C8—H8120.2
H1A—C1—H1B108.0C9—C8—H8120.2
N1—C2—C1111.62 (14)C10—C9—C8120.44 (17)
N1—C2—H2A109.3C10—C9—H9119.8
C1—C2—H2A109.3C8—C9—H9119.8
N1—C2—H2B109.3C9—C10—C11120.41 (16)
C1—C2—H2B109.3C9—C10—H10119.8
H2A—C2—H2B108.0C11—C10—H10119.8
N1—C3—H3A109.5C17—C12—C13119.00 (15)
N1—C3—H3B109.5C17—C12—C5120.59 (14)
H3A—C3—H3B109.5C13—C12—C5120.40 (14)
N1—C3—H3C109.5C14—C13—C12120.20 (16)
H3A—C3—H3C109.5C14—C13—H13119.9
H3B—C3—H3C109.5C12—C13—H13119.9
N1—C4—C11113.74 (13)C15—C14—C13120.65 (16)
N1—C4—C5107.83 (12)C15—C14—H14119.7
C11—C4—C5114.90 (13)C13—C14—H14119.7
N1—C4—H4106.6C14—C15—C16119.12 (16)
C11—C4—H4106.6C14—C15—H15120.4
C5—C4—H4106.6C16—C15—H15120.4
O2—C5—C12109.50 (13)C15—C16—C17120.45 (16)
O2—C5—C4108.20 (13)C15—C16—H16119.8
C12—C5—C4112.32 (13)C17—C16—H16119.8
O2—C5—H5108.9C12—C17—C16120.56 (15)
C12—C5—H5108.9C12—C17—H17119.7
C4—C5—H5108.9C16—C17—H17119.7
C6—C11—C10118.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)1.97 (3)2.7954 (19)170 (3)
O2—H2···N10.83 (3)2.04 (3)2.6111 (18)126 (2)
Symmetry code: (i) x, y+1, z+1/2.
(II) 1-{2-[hydroxy(diphenyl)methyl]pyrrolidin-1-yl}- 2-methylpropan-2-ol top
Crystal data top
C21H27NO2F(000) = 704
Mr = 325.44Dx = 1.206 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6375 reflections
a = 8.5024 (4) Åθ = 2.3–29.9°
b = 11.9480 (5) ŵ = 0.08 mm1
c = 17.6485 (7) ÅT = 120 K
V = 1792.85 (13) Å3Block, colourless
Z = 40.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART 1K
diffractometer
2712 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.977, Tmax = 0.985k = 1216
12996 measured reflectionsl = 1924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.083All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2289P]
where P = (Fo2 + 2Fc2)/3
2712 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H27NO2V = 1792.85 (13) Å3
Mr = 325.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5024 (4) ŵ = 0.08 mm1
b = 11.9480 (5) ÅT = 120 K
c = 17.6485 (7) Å0.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART 1K
diffractometer
2712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2398 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.040
12996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.083All H-atom parameters refined
S = 1.03Δρmax = 0.21 e Å3
2712 reflectionsΔρmin = 0.20 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35346 (16)0.52971 (12)0.27771 (8)0.0168 (3)
O10.28678 (14)0.74120 (10)0.30108 (7)0.0189 (2)
O20.66413 (14)0.47597 (11)0.20799 (7)0.0221 (3)
C10.5350 (2)0.52078 (14)0.16482 (9)0.0189 (3)
C20.37558 (19)0.48853 (14)0.19995 (10)0.0184 (3)
C30.5592 (2)0.64710 (15)0.16528 (11)0.0225 (4)
C40.5423 (2)0.47535 (18)0.08388 (10)0.0263 (4)
C50.4226 (2)0.45467 (15)0.33634 (10)0.0227 (4)
C60.2884 (3)0.42443 (16)0.38944 (11)0.0280 (4)
C70.1827 (2)0.52712 (16)0.38402 (10)0.0232 (4)
C80.18740 (19)0.55350 (13)0.29899 (9)0.0167 (3)
C90.14822 (18)0.67934 (13)0.28141 (9)0.0167 (3)
C100.10664 (18)0.70077 (14)0.19757 (9)0.0180 (3)
C110.1615 (2)0.79812 (15)0.16237 (10)0.0228 (4)
C120.1260 (2)0.82006 (18)0.08651 (11)0.0306 (4)
C130.0340 (2)0.7466 (2)0.04558 (10)0.0314 (4)
C140.0230 (2)0.65083 (18)0.08018 (10)0.0279 (4)
C150.0126 (2)0.62770 (16)0.15586 (10)0.0224 (4)
C160.01362 (19)0.71839 (13)0.33306 (9)0.0172 (3)
C170.0390 (2)0.79870 (15)0.38896 (10)0.0218 (3)
C180.0794 (2)0.82608 (17)0.44028 (10)0.0260 (4)
C190.2242 (2)0.77320 (16)0.43673 (10)0.0247 (4)
C200.2520 (2)0.69529 (17)0.37973 (10)0.0251 (4)
C210.1349 (2)0.66812 (15)0.32815 (10)0.0226 (4)
H10.360 (3)0.695 (2)0.2932 (14)0.037 (7)*
H20.673 (3)0.406 (2)0.2018 (15)0.039 (7)*
H80.111 (2)0.5054 (17)0.2722 (10)0.016 (5)*
H110.226 (3)0.8489 (19)0.1884 (13)0.029 (6)*
H120.166 (2)0.8904 (19)0.0638 (12)0.024 (5)*
H130.004 (3)0.759 (2)0.0051 (15)0.040 (6)*
H140.094 (3)0.5981 (19)0.0528 (11)0.026 (5)*
H150.030 (2)0.5631 (18)0.1773 (11)0.021 (5)*
H170.141 (2)0.8358 (17)0.3923 (11)0.019 (5)*
H180.063 (3)0.881 (2)0.4783 (12)0.030 (6)*
H190.306 (3)0.7904 (18)0.4737 (12)0.026 (5)*
H200.358 (3)0.6615 (19)0.3750 (12)0.027 (6)*
H210.158 (2)0.6126 (17)0.2876 (11)0.015 (5)*
H220.294 (2)0.5219 (18)0.1672 (11)0.023 (5)*
H230.368 (2)0.4065 (18)0.1989 (12)0.022 (5)*
H310.650 (3)0.6659 (19)0.1338 (12)0.027 (6)*
H320.467 (3)0.6827 (18)0.1449 (12)0.024 (5)*
H330.573 (2)0.6771 (18)0.2192 (12)0.023 (5)*
H410.535 (3)0.393 (2)0.0857 (12)0.031 (6)*
H420.451 (3)0.507 (2)0.0521 (13)0.040 (7)*
H430.642 (3)0.4923 (19)0.0583 (13)0.028 (6)*
H510.506 (3)0.494 (2)0.3651 (12)0.032 (6)*
H520.473 (3)0.3898 (19)0.3115 (12)0.027 (5)*
H610.327 (3)0.409 (2)0.4391 (14)0.033 (6)*
H620.231 (3)0.358 (2)0.3697 (12)0.027 (6)*
H710.077 (3)0.513 (2)0.4013 (13)0.034 (6)*
H720.229 (3)0.589 (2)0.4111 (13)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (6)0.0155 (6)0.0168 (6)0.0015 (5)0.0003 (5)0.0015 (5)
O10.0165 (5)0.0148 (5)0.0255 (6)0.0015 (5)0.0002 (5)0.0021 (5)
O20.0193 (5)0.0162 (6)0.0307 (7)0.0028 (5)0.0023 (5)0.0004 (5)
C10.0188 (7)0.0168 (7)0.0210 (8)0.0019 (7)0.0002 (7)0.0005 (6)
C20.0179 (7)0.0183 (8)0.0191 (8)0.0007 (6)0.0009 (6)0.0022 (6)
C30.0237 (8)0.0166 (8)0.0273 (9)0.0012 (7)0.0032 (8)0.0038 (7)
C40.0264 (9)0.0294 (10)0.0231 (9)0.0003 (8)0.0033 (7)0.0032 (7)
C50.0232 (8)0.0206 (8)0.0244 (8)0.0017 (7)0.0030 (7)0.0052 (7)
C60.0342 (10)0.0235 (9)0.0263 (9)0.0058 (9)0.0039 (8)0.0096 (7)
C70.0301 (10)0.0207 (8)0.0186 (8)0.0047 (8)0.0035 (7)0.0038 (7)
C80.0166 (7)0.0145 (7)0.0190 (7)0.0015 (6)0.0002 (6)0.0005 (6)
C90.0181 (7)0.0136 (7)0.0183 (7)0.0014 (6)0.0006 (6)0.0001 (6)
C100.0162 (7)0.0203 (7)0.0176 (7)0.0047 (6)0.0018 (6)0.0002 (6)
C110.0231 (8)0.0216 (8)0.0236 (9)0.0038 (7)0.0012 (7)0.0039 (7)
C120.0335 (10)0.0328 (10)0.0256 (9)0.0081 (9)0.0084 (8)0.0112 (8)
C130.0343 (10)0.0428 (11)0.0170 (8)0.0154 (10)0.0022 (8)0.0036 (8)
C140.0254 (9)0.0369 (11)0.0216 (9)0.0078 (8)0.0024 (7)0.0043 (7)
C150.0216 (8)0.0258 (8)0.0199 (8)0.0018 (7)0.0009 (7)0.0000 (7)
C160.0194 (7)0.0156 (7)0.0167 (7)0.0024 (6)0.0000 (6)0.0018 (6)
C170.0235 (8)0.0202 (8)0.0218 (8)0.0023 (7)0.0008 (7)0.0029 (7)
C180.0297 (9)0.0279 (9)0.0203 (8)0.0021 (8)0.0009 (7)0.0061 (7)
C190.0251 (9)0.0278 (9)0.0212 (8)0.0059 (7)0.0045 (7)0.0018 (7)
C200.0211 (8)0.0277 (9)0.0266 (9)0.0011 (8)0.0032 (7)0.0013 (7)
C210.0221 (8)0.0235 (8)0.0220 (9)0.0020 (7)0.0002 (7)0.0022 (7)
Geometric parameters (Å, º) top
N1—C21.470 (2)C8—C91.571 (2)
N1—C81.488 (2)C8—H80.99 (2)
N1—C51.490 (2)C9—C161.536 (2)
O1—C91.4334 (19)C9—C101.543 (2)
O1—H10.84 (3)C10—C151.394 (2)
O2—C11.439 (2)C10—C111.399 (2)
O2—H20.85 (3)C11—C121.397 (3)
C1—C31.523 (2)C11—H110.94 (2)
C1—C41.530 (2)C12—C131.380 (3)
C1—C21.540 (2)C12—H120.99 (2)
C2—H220.98 (2)C13—C141.385 (3)
C2—H230.98 (2)C13—H130.94 (3)
C3—H310.98 (2)C14—C151.397 (3)
C3—H320.96 (2)C14—H141.00 (2)
C3—H331.02 (2)C15—H150.93 (2)
C4—H410.99 (2)C16—C171.393 (2)
C4—H421.03 (3)C16—C211.401 (2)
C4—H430.99 (2)C17—C181.393 (3)
C5—C61.520 (3)C17—H170.98 (2)
C5—H510.99 (2)C18—C191.386 (3)
C5—H520.99 (2)C18—H180.95 (2)
C6—C71.524 (3)C19—C201.391 (3)
C6—H610.96 (2)C19—H190.98 (2)
C6—H620.99 (2)C20—C211.388 (2)
C7—C81.534 (2)C20—H200.99 (2)
C7—H710.96 (3)C21—H210.99 (2)
C7—H720.96 (2)
C2—N1—C8114.89 (13)N1—C8—C9109.52 (13)
C2—N1—C5113.36 (14)C7—C8—C9112.60 (14)
C8—N1—C5108.29 (13)N1—C8—H8113.0 (11)
C9—O1—H1103.1 (17)C7—C8—H8109.4 (11)
C1—O2—H2111.3 (17)C9—C8—H8108.8 (11)
O2—C1—C3105.26 (14)O1—C9—C16108.19 (13)
O2—C1—C4109.37 (14)O1—C9—C10109.57 (13)
C3—C1—C4110.56 (15)C16—C9—C10110.37 (13)
O2—C1—C2111.43 (13)O1—C9—C8105.75 (12)
C3—C1—C2111.37 (14)C16—C9—C8109.37 (13)
C4—C1—C2108.83 (14)C10—C9—C8113.38 (13)
N1—C2—C1113.88 (14)C15—C10—C11118.52 (16)
N1—C2—H22108.9 (12)C15—C10—C9122.28 (15)
C1—C2—H22106.2 (12)C11—C10—C9119.18 (15)
N1—C2—H23110.0 (13)C12—C11—C10120.63 (18)
C1—C2—H23107.6 (12)C12—C11—H11118.3 (14)
H22—C2—H23110.1 (17)C10—C11—H11121.0 (14)
C1—C3—H31109.3 (14)C13—C12—C11120.32 (19)
C1—C3—H32109.1 (13)C13—C12—H12121.3 (12)
H31—C3—H32109.1 (16)C11—C12—H12118.3 (13)
C1—C3—H33111.6 (12)C12—C13—C14119.54 (17)
H31—C3—H33110.9 (17)C12—C13—H13123.6 (17)
H32—C3—H33106.7 (17)C14—C13—H13116.8 (17)
C1—C4—H41108.7 (13)C13—C14—C15120.62 (19)
C1—C4—H42110.4 (14)C13—C14—H14121.3 (12)
H41—C4—H42109.9 (19)C15—C14—H14118.0 (12)
C1—C4—H43113.0 (13)C10—C15—C14120.35 (18)
H41—C4—H43105.7 (19)C10—C15—H15121.9 (12)
H42—C4—H43109.0 (17)C14—C15—H15117.7 (12)
N1—C5—C6105.97 (14)C17—C16—C21118.60 (16)
N1—C5—H51110.9 (13)C17—C16—C9120.95 (15)
C6—C5—H51109.6 (12)C21—C16—C9120.32 (14)
N1—C5—H52109.5 (12)C18—C17—C16120.70 (17)
C6—C5—H52114.4 (13)C18—C17—H17119.8 (12)
H51—C5—H52106.5 (18)C16—C17—H17119.5 (12)
C5—C6—C7102.29 (14)C19—C18—C17120.38 (17)
C5—C6—H61110.6 (14)C19—C18—H18118.8 (14)
C7—C6—H61114.9 (15)C17—C18—H18120.9 (14)
C5—C6—H62109.9 (13)C18—C19—C20119.25 (17)
C7—C6—H62109.4 (13)C18—C19—H19120.5 (13)
H61—C6—H62109 (2)C20—C19—H19120.3 (13)
C6—C7—C8102.19 (14)C21—C20—C19120.63 (17)
C6—C7—H71113.1 (15)C21—C20—H20120.0 (13)
C8—C7—H71111.7 (14)C19—C20—H20119.3 (13)
C6—C7—H72110.1 (14)C20—C21—C16120.39 (16)
C8—C7—H72108.6 (14)C20—C21—H21119.3 (11)
H71—C7—H72111 (2)C16—C21—H21120.4 (11)
N1—C8—C7103.45 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (3)1.99 (3)2.6223 (18)131 (2)
O2—H2···O1i0.85 (3)1.99 (3)2.8404 (17)172 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
(III) 2-[(2-hydroxyethyl)(methyl)amino]-1,1-diphenylethanol top
Crystal data top
C17H21NO2F(000) = 584
Mr = 271.35Dx = 1.210 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4201 reflections
a = 9.3438 (2) Åθ = 2.4–30.0°
b = 15.9896 (4) ŵ = 0.08 mm1
c = 10.9479 (3) ÅT = 120 K
β = 114.441 (1)°Block, colourless
V = 1489.08 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 912
Tmin = 0.977, Tmax = 0.984k = 2017
10283 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2784P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3416 reflectionsΔρmax = 0.26 e Å3
191 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (15)
Crystal data top
C17H21NO2V = 1489.08 (6) Å3
Mr = 271.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3438 (2) ŵ = 0.08 mm1
b = 15.9896 (4) ÅT = 120 K
c = 10.9479 (3) Å0.30 × 0.20 × 0.20 mm
β = 114.441 (1)°
Data collection top
Bruker SMART 1K
diffractometer
3416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2508 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.039
10283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
3416 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85622 (13)0.05759 (7)0.74752 (11)0.0209 (3)
O11.00400 (13)0.06277 (7)0.64116 (13)0.0371 (3)
O20.80726 (11)0.09856 (6)0.49626 (10)0.0230 (2)
C11.09664 (17)0.00902 (9)0.74820 (15)0.0274 (3)
H1A1.12360.04250.71210.033*
H1B1.19560.03740.80660.033*
C21.00289 (17)0.01278 (9)0.82778 (14)0.0263 (3)
H2A0.97710.03930.86330.032*
H2B1.06820.04800.90520.032*
C30.74175 (17)0.05058 (9)0.80697 (15)0.0263 (3)
H3A0.64380.07860.74890.039*
H3B0.78450.07710.89560.039*
H3C0.72060.00860.81610.039*
C40.88563 (16)0.14520 (8)0.72346 (13)0.0202 (3)
H4A0.99920.15340.74780.024*
H4B0.85450.18260.78030.024*
C50.78997 (15)0.16750 (8)0.57320 (13)0.0183 (3)
C60.61520 (15)0.18108 (8)0.54241 (13)0.0196 (3)
C70.56931 (16)0.25041 (9)0.59572 (14)0.0240 (3)
H70.64600.28980.64860.029*
C80.41220 (17)0.26216 (9)0.57198 (16)0.0291 (3)
H80.38250.30940.60880.035*
C90.29885 (17)0.20507 (10)0.49461 (15)0.0315 (4)
H90.19160.21330.47770.038*
C100.34365 (17)0.13601 (10)0.44236 (15)0.0297 (4)
H100.26680.09650.39020.036*
C110.50079 (16)0.12408 (9)0.46581 (14)0.0251 (3)
H110.52990.07660.42910.030*
C120.85580 (15)0.24542 (8)0.53429 (13)0.0184 (3)
C130.93583 (16)0.30651 (8)0.62954 (14)0.0233 (3)
H130.95030.29940.72010.028*
C140.99440 (17)0.37765 (9)0.59293 (15)0.0259 (3)
H141.04830.41880.65840.031*
C150.97449 (17)0.38869 (9)0.46163 (16)0.0279 (3)
H151.01540.43710.43700.033*
C160.89443 (18)0.32875 (9)0.36600 (15)0.0270 (3)
H160.87990.33640.27560.032*
C170.83539 (16)0.25766 (8)0.40184 (14)0.0219 (3)
H170.78070.21700.33560.026*
H11.060 (2)0.0751 (12)0.596 (2)0.062 (6)*
H20.816 (2)0.0551 (12)0.547 (2)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (6)0.0214 (6)0.0233 (6)0.0025 (5)0.0096 (5)0.0037 (5)
O10.0323 (6)0.0335 (6)0.0558 (8)0.0081 (5)0.0285 (6)0.0159 (6)
O20.0292 (5)0.0184 (5)0.0228 (5)0.0001 (4)0.0124 (4)0.0018 (4)
C10.0211 (7)0.0259 (7)0.0338 (8)0.0039 (6)0.0100 (6)0.0018 (6)
C20.0254 (8)0.0269 (7)0.0243 (7)0.0061 (6)0.0078 (6)0.0069 (6)
C30.0256 (7)0.0293 (7)0.0271 (7)0.0028 (6)0.0142 (6)0.0054 (6)
C40.0203 (7)0.0210 (7)0.0187 (7)0.0000 (6)0.0073 (5)0.0002 (5)
C50.0211 (7)0.0171 (6)0.0174 (6)0.0018 (5)0.0085 (5)0.0023 (5)
C60.0199 (7)0.0222 (7)0.0160 (6)0.0010 (5)0.0066 (5)0.0048 (5)
C70.0233 (7)0.0238 (7)0.0245 (7)0.0009 (6)0.0096 (6)0.0028 (6)
C80.0274 (8)0.0292 (8)0.0351 (8)0.0069 (6)0.0173 (7)0.0093 (7)
C90.0184 (7)0.0433 (9)0.0320 (8)0.0036 (7)0.0097 (6)0.0144 (7)
C100.0219 (7)0.0399 (9)0.0231 (7)0.0086 (7)0.0052 (6)0.0041 (7)
C110.0258 (7)0.0276 (8)0.0193 (7)0.0037 (6)0.0068 (6)0.0020 (6)
C120.0157 (6)0.0193 (7)0.0201 (6)0.0015 (5)0.0074 (5)0.0001 (5)
C130.0229 (7)0.0250 (7)0.0221 (7)0.0012 (6)0.0095 (6)0.0009 (6)
C140.0246 (7)0.0214 (7)0.0333 (8)0.0046 (6)0.0136 (6)0.0037 (6)
C150.0302 (8)0.0197 (7)0.0408 (9)0.0001 (6)0.0219 (7)0.0021 (6)
C160.0329 (8)0.0275 (7)0.0256 (8)0.0054 (6)0.0170 (6)0.0057 (6)
C170.0236 (7)0.0218 (7)0.0213 (7)0.0023 (6)0.0102 (6)0.0006 (6)
Geometric parameters (Å, º) top
N1—C31.4684 (17)C6—C71.4002 (19)
N1—C41.4722 (16)C7—C81.394 (2)
N1—C21.4721 (17)C7—H70.9500
O1—C11.4219 (18)C8—C91.389 (2)
O1—H10.88 (2)C8—H80.9500
O2—C51.4364 (15)C9—C101.386 (2)
O2—H20.87 (2)C9—H90.9500
C1—C21.510 (2)C10—C111.395 (2)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—H110.9500
C2—H2A0.9900C12—C171.3959 (19)
C2—H2B0.9900C12—C131.3984 (19)
C3—H3A0.9800C13—C141.3913 (19)
C3—H3B0.9800C13—H130.9500
C3—H3C0.9800C14—C151.382 (2)
C4—C51.5541 (18)C14—H140.9500
C4—H4A0.9900C15—C161.388 (2)
C4—H4B0.9900C15—H150.9500
C5—C121.5261 (18)C16—C171.3891 (19)
C5—C61.5402 (18)C16—H160.9500
C6—C111.3909 (19)C17—H170.9500
C3—N1—C4112.09 (11)C11—C6—C5121.36 (12)
C3—N1—C2111.55 (11)C7—C6—C5120.01 (12)
C4—N1—C2111.92 (11)C8—C7—C6120.64 (13)
C1—O1—H1107.3 (14)C8—C7—H7119.7
C5—O2—H2104.0 (13)C6—C7—H7119.7
O1—C1—C2108.32 (12)C9—C8—C7120.23 (14)
O1—C1—H1A110.0C9—C8—H8119.9
C2—C1—H1A110.0C7—C8—H8119.9
O1—C1—H1B110.0C10—C9—C8119.41 (14)
C2—C1—H1B110.0C10—C9—H9120.3
H1A—C1—H1B108.4C8—C9—H9120.3
N1—C2—C1112.77 (11)C9—C10—C11120.51 (14)
N1—C2—H2A109.0C9—C10—H10119.7
C1—C2—H2A109.0C11—C10—H10119.7
N1—C2—H2B109.0C6—C11—C10120.61 (14)
C1—C2—H2B109.0C6—C11—H11119.7
H2A—C2—H2B107.8C10—C11—H11119.7
N1—C3—H3A109.5C17—C12—C13118.55 (12)
N1—C3—H3B109.5C17—C12—C5120.45 (12)
H3A—C3—H3B109.5C13—C12—C5121.00 (12)
N1—C3—H3C109.5C14—C13—C12120.59 (13)
H3A—C3—H3C109.5C14—C13—H13119.7
H3B—C3—H3C109.5C12—C13—H13119.7
N1—C4—C5109.85 (10)C15—C14—C13120.29 (14)
N1—C4—H4A109.7C15—C14—H14119.9
C5—C4—H4A109.7C13—C14—H14119.9
N1—C4—H4B109.7C14—C15—C16119.65 (13)
C5—C4—H4B109.7C14—C15—H15120.2
H4A—C4—H4B108.2C16—C15—H15120.2
O2—C5—C12107.87 (10)C15—C16—C17120.34 (13)
O2—C5—C6110.25 (10)C15—C16—H16119.8
C12—C5—C6109.70 (10)C17—C16—H16119.8
O2—C5—C4106.84 (10)C16—C17—C12120.57 (13)
C12—C5—C4111.16 (10)C16—C17—H17119.7
C6—C5—C4110.94 (10)C12—C17—H17119.7
C11—C6—C7118.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.87 (2)2.07 (2)2.6765 (15)126.0 (16)
O1—H1···O2i0.88 (2)1.93 (2)2.8101 (15)177 (2)
Symmetry code: (i) x+2, y, z+1.
(IV) 1-[(2-hydroxy-2-methylpropyl)(1-phenylethyl)amino]- 2-methylpropan-2-ol top
Crystal data top
C16H27NO2F(000) = 584
Mr = 265.39Dx = 1.092 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4891 reflections
a = 8.6781 (5) Åθ = 2.8–28.7°
b = 12.8084 (7) ŵ = 0.07 mm1
c = 14.5243 (8) ÅT = 120 K
V = 1614.41 (16) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART 1K
diffractometer
2428 independent reflections
Radiation source: fine-focus sealed tube1986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.979, Tmax = 0.986k = 717
11540 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.1881P]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H27NO2V = 1614.41 (16) Å3
Mr = 265.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6781 (5) ŵ = 0.07 mm1
b = 12.8084 (7) ÅT = 120 K
c = 14.5243 (8) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART 1K
diffractometer
2428 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1986 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.039
11540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2428 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33183 (16)0.03617 (11)0.00955 (10)0.0249 (3)
O10.10809 (16)0.14653 (9)0.01479 (9)0.0297 (3)
O20.40324 (16)0.18861 (9)0.03175 (9)0.0320 (3)
C10.4068 (2)0.14075 (13)0.00743 (12)0.0296 (4)
H1A0.51470.13010.02960.036*
C20.3331 (3)0.22025 (15)0.07315 (14)0.0412 (5)
H2A0.33190.19170.13570.062*
H2B0.39310.28510.07240.062*
H2C0.22730.23480.05330.062*
C30.4195 (2)0.17997 (15)0.09170 (13)0.0339 (4)
C40.4949 (3)0.11861 (18)0.15682 (15)0.0454 (5)
H40.53680.05310.13900.055*
C50.5098 (3)0.1519 (2)0.24784 (17)0.0622 (8)
H50.55960.10850.29170.075*
C60.4526 (4)0.2473 (2)0.27417 (18)0.0727 (9)
H60.46370.27020.33600.087*
C70.3794 (4)0.3092 (2)0.21094 (18)0.0697 (9)
H70.33960.37520.22920.084*
C80.3629 (3)0.27612 (18)0.11993 (15)0.0478 (6)
H80.31230.32000.07670.057*
C110.1692 (2)0.04041 (13)0.01720 (13)0.0284 (4)
H11A0.10590.04700.03920.034*
H11B0.15230.10400.05460.034*
C120.1122 (2)0.05432 (13)0.07207 (12)0.0296 (4)
C130.2141 (3)0.07307 (16)0.15569 (12)0.0391 (5)
H13A0.17010.12920.19320.059*
H13B0.22030.00900.19240.059*
H13C0.31770.09310.13530.059*
C140.0548 (2)0.03491 (17)0.09920 (16)0.0432 (5)
H14A0.09510.09620.13170.065*
H14B0.11640.02230.04370.065*
H14C0.06050.02620.13960.065*
C210.3589 (2)0.01954 (13)0.09660 (11)0.0293 (4)
H21A0.39870.03100.14230.035*
H21B0.25880.04570.11970.035*
C220.4715 (2)0.11187 (14)0.09130 (13)0.0317 (4)
C230.4893 (3)0.15751 (18)0.18736 (14)0.0543 (7)
H23A0.55570.21930.18460.081*
H23B0.53580.10530.22810.081*
H23C0.38780.17730.21130.081*
C240.6267 (2)0.07987 (16)0.05172 (17)0.0453 (5)
H24A0.69500.14070.04960.068*
H24B0.61220.05240.01070.068*
H24C0.67270.02580.09070.068*
H10.196 (4)0.163 (2)0.0063 (17)0.064 (9)*
H20.470 (3)0.242 (2)0.0305 (17)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0237 (7)0.0204 (6)0.0307 (7)0.0014 (6)0.0026 (6)0.0011 (6)
O10.0305 (7)0.0232 (6)0.0355 (6)0.0047 (5)0.0035 (6)0.0051 (5)
O20.0319 (7)0.0239 (6)0.0402 (7)0.0062 (6)0.0054 (6)0.0077 (5)
C10.0290 (9)0.0251 (8)0.0348 (9)0.0066 (7)0.0018 (8)0.0035 (7)
C20.0545 (13)0.0259 (9)0.0431 (11)0.0026 (9)0.0091 (10)0.0053 (8)
C30.0290 (9)0.0352 (10)0.0375 (9)0.0155 (8)0.0017 (8)0.0003 (8)
C40.0426 (12)0.0487 (13)0.0449 (11)0.0154 (11)0.0135 (10)0.0026 (10)
C50.0657 (16)0.0780 (18)0.0429 (11)0.0374 (15)0.0192 (12)0.0082 (14)
C60.098 (2)0.080 (2)0.0400 (13)0.0490 (18)0.0003 (14)0.0118 (13)
C70.100 (2)0.0548 (15)0.0544 (15)0.0259 (16)0.0164 (17)0.0199 (13)
C80.0574 (14)0.0396 (11)0.0464 (12)0.0132 (11)0.0058 (11)0.0047 (10)
C110.0250 (8)0.0229 (8)0.0374 (9)0.0004 (7)0.0047 (8)0.0036 (7)
C120.0300 (9)0.0256 (8)0.0331 (9)0.0059 (7)0.0020 (8)0.0070 (7)
C130.0471 (12)0.0392 (11)0.0310 (10)0.0110 (10)0.0001 (9)0.0005 (8)
C140.0349 (10)0.0374 (10)0.0575 (13)0.0071 (9)0.0110 (10)0.0145 (10)
C210.0360 (10)0.0259 (8)0.0259 (8)0.0012 (7)0.0022 (8)0.0042 (7)
C220.0365 (10)0.0253 (8)0.0333 (9)0.0046 (8)0.0057 (8)0.0061 (7)
C230.0846 (19)0.0402 (13)0.0381 (11)0.0200 (13)0.0136 (12)0.0034 (9)
C240.0293 (10)0.0357 (10)0.0709 (14)0.0025 (8)0.0046 (10)0.0069 (10)
Geometric parameters (Å, º) top
N1—C111.465 (2)C8—H80.9500
N1—C211.471 (2)C11—C121.534 (2)
N1—C11.489 (2)C11—H11A0.9900
O1—C121.445 (2)C11—H11B0.9900
O1—H10.80 (3)C12—C131.522 (3)
O2—C221.437 (2)C12—C141.523 (3)
O2—H20.89 (3)C13—H13A0.9800
C1—C31.529 (2)C13—H13B0.9800
C1—C21.535 (3)C13—H13C0.9800
C1—H1A1.0000C14—H14A0.9800
C2—H2A0.9800C14—H14B0.9800
C2—H2B0.9800C14—H14C0.9800
C2—H2C0.9800C21—C221.536 (2)
C3—C81.388 (3)C21—H21A0.9900
C3—C41.393 (3)C21—H21B0.9900
C4—C51.395 (3)C22—C231.521 (3)
C4—H40.9500C22—C241.520 (3)
C5—C61.372 (4)C23—H23A0.9800
C5—H50.9500C23—H23B0.9800
C6—C71.370 (4)C23—H23C0.9800
C6—H60.9500C24—H24A0.9800
C7—C81.396 (3)C24—H24B0.9800
C7—H70.9500C24—H24C0.9800
C11—N1—C21113.58 (14)O1—C12—C14105.01 (14)
C11—N1—C1112.45 (13)C13—C12—C14111.89 (16)
C21—N1—C1112.60 (13)O1—C12—C11110.82 (14)
C12—O1—H1106.5 (19)C13—C12—C11110.61 (15)
C22—O2—H2105.7 (17)C14—C12—C11108.20 (16)
N1—C1—C3110.28 (14)C12—C13—H13A109.5
N1—C1—C2113.69 (15)C12—C13—H13B109.5
C3—C1—C2113.44 (16)H13A—C13—H13B109.5
N1—C1—H1A106.3C12—C13—H13C109.5
C3—C1—H1A106.3H13A—C13—H13C109.5
C2—C1—H1A106.3H13B—C13—H13C109.5
C1—C2—H2A109.5C12—C14—H14A109.5
C1—C2—H2B109.5C12—C14—H14B109.5
H2A—C2—H2B109.5H14A—C14—H14B109.5
C1—C2—H2C109.5C12—C14—H14C109.5
H2A—C2—H2C109.5H14A—C14—H14C109.5
H2B—C2—H2C109.5H14B—C14—H14C109.5
C8—C3—C4117.8 (2)N1—C21—C22115.61 (14)
C8—C3—C1122.96 (18)N1—C21—H21A108.4
C4—C3—C1119.22 (18)C22—C21—H21A108.4
C3—C4—C5121.0 (2)N1—C21—H21B108.4
C3—C4—H4119.5C22—C21—H21B108.4
C5—C4—H4119.5H21A—C21—H21B107.4
C6—C5—C4120.2 (3)O2—C22—C23109.34 (16)
C6—C5—H5119.9O2—C22—C24108.78 (16)
C4—C5—H5119.9C23—C22—C24111.15 (19)
C7—C6—C5119.8 (2)O2—C22—C21107.13 (14)
C7—C6—H6120.1C23—C22—C21108.34 (16)
C5—C6—H6120.1C24—C22—C21112.01 (15)
C6—C7—C8120.4 (3)C22—C23—H23A109.5
C6—C7—H7119.8C22—C23—H23B109.5
C8—C7—H7119.8H23A—C23—H23B109.5
C3—C8—C7120.9 (3)C22—C23—H23C109.5
C3—C8—H8119.6H23A—C23—H23C109.5
C7—C8—H8119.6H23B—C23—H23C109.5
N1—C11—C12114.78 (15)C22—C24—H24A109.5
N1—C11—H11A108.6C22—C24—H24B109.5
C12—C11—H11A108.6H24A—C24—H24B109.5
N1—C11—H11B108.6C22—C24—H24C109.5
C12—C11—H11B108.6H24A—C24—H24C109.5
H11A—C11—H11B107.5H24B—C24—H24C109.5
O1—C12—C13110.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.80 (3)1.91 (3)2.703 (2)170 (3)
O2—H2···O1i0.89 (3)1.88 (3)2.7713 (18)174 (2)
Symmetry code: (i) x+1/2, y1/2, z.
(V) 1-[(2-Hydroxy-2-phenylethyl)(1-phenylethyl)amino]- 2-methylpropan-2-ol top
Crystal data top
C20H27NO2F(000) = 680
Mr = 313.43Dx = 1.131 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5538 reflections
a = 8.9681 (8) Åθ = 2.5–29.4°
b = 12.5151 (11) ŵ = 0.07 mm1
c = 16.3960 (14) ÅT = 120 K
V = 1840.2 (3) Å3Block, colourless
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1K
diffractometer
2772 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 612
Tmin = 0.982, Tmax = 0.993k = 1715
13036 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.2857P]
where P = (Fo2 + 2Fc2)/3
2772 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H27NO2V = 1840.2 (3) Å3
Mr = 313.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9681 (8) ŵ = 0.07 mm1
b = 12.5151 (11) ÅT = 120 K
c = 16.3960 (14) Å0.25 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1K
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2376 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.045
13036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
2772 reflectionsΔρmin = 0.19 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85952 (16)0.77498 (11)0.19666 (9)0.0187 (3)
O11.09159 (15)0.79961 (11)0.07312 (8)0.0242 (3)
O20.82898 (15)0.69725 (11)0.03022 (8)0.0244 (3)
C10.74550 (19)0.79181 (14)0.26025 (10)0.0205 (3)
H110.65480.75180.24220.025*
C20.7875 (2)0.74692 (15)0.34383 (11)0.0283 (4)
H2A0.80060.66940.33980.042*
H2B0.70800.76290.38300.042*
H2C0.88080.77970.36230.042*
C30.70169 (19)0.90978 (15)0.26258 (11)0.0214 (4)
C40.7442 (2)0.97833 (15)0.32537 (12)0.0266 (4)
H40.79990.95130.37010.032*
C50.7059 (2)1.08579 (16)0.32311 (13)0.0302 (4)
H50.73641.13190.36600.036*
C60.6240 (2)1.12599 (16)0.25894 (14)0.0326 (5)
H60.59861.19970.25740.039*
C70.5788 (2)1.05855 (15)0.19666 (13)0.0310 (4)
H70.52141.08570.15260.037*
C80.6173 (2)0.95203 (15)0.19879 (12)0.0256 (4)
H80.58570.90630.15590.031*
C110.8686 (2)0.66259 (13)0.17157 (10)0.0199 (4)
H11A0.83710.61670.21770.024*
H11B0.97360.64500.15860.024*
C120.7717 (2)0.63768 (13)0.09766 (10)0.0199 (4)
H120.66680.66050.10890.024*
C130.7751 (2)0.51779 (14)0.08189 (10)0.0208 (4)
C140.6618 (2)0.45290 (15)0.11208 (12)0.0270 (4)
H140.57910.48410.13940.032*
C150.6691 (3)0.34255 (16)0.10237 (13)0.0352 (5)
H150.59150.29860.12320.042*
C160.7885 (3)0.29681 (17)0.06266 (12)0.0371 (5)
H160.79370.22140.05670.044*
C170.9011 (3)0.36087 (16)0.03131 (12)0.0338 (5)
H170.98270.32940.00330.041*
C180.8944 (2)0.47086 (16)0.04095 (11)0.0260 (4)
H180.97170.51450.01950.031*
C211.0045 (2)0.82471 (14)0.21296 (10)0.0194 (3)
H21A1.07410.76950.23340.023*
H21B0.99230.87900.25640.023*
C221.0727 (2)0.87806 (14)0.13747 (10)0.0203 (4)
C230.9759 (2)0.96925 (16)0.10625 (13)0.0308 (4)
H23A1.02211.00070.05770.046*
H23B0.96661.02390.14870.046*
H23C0.87680.94180.09220.046*
C241.2299 (2)0.91583 (15)0.15766 (12)0.0258 (4)
H24A1.27070.95530.11110.039*
H24B1.29330.85390.16930.039*
H24C1.22680.96260.20560.039*
H20.753 (3)0.701 (2)0.0058 (16)0.056 (8)*
H11.005 (3)0.7799 (18)0.0595 (14)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0182 (7)0.0190 (7)0.0190 (7)0.0023 (6)0.0016 (6)0.0007 (6)
O10.0208 (7)0.0315 (7)0.0203 (6)0.0060 (6)0.0035 (5)0.0054 (5)
O20.0262 (7)0.0267 (7)0.0202 (6)0.0055 (6)0.0051 (6)0.0049 (5)
C10.0181 (8)0.0214 (8)0.0219 (8)0.0035 (7)0.0028 (7)0.0002 (7)
C20.0366 (11)0.0270 (9)0.0213 (9)0.0014 (9)0.0073 (8)0.0024 (8)
C30.0158 (8)0.0238 (8)0.0248 (9)0.0023 (7)0.0049 (7)0.0006 (7)
C40.0205 (9)0.0289 (10)0.0304 (10)0.0013 (8)0.0009 (8)0.0032 (8)
C50.0224 (9)0.0278 (9)0.0405 (11)0.0026 (8)0.0019 (8)0.0083 (9)
C60.0231 (9)0.0228 (9)0.0519 (13)0.0018 (8)0.0048 (10)0.0007 (9)
C70.0212 (9)0.0315 (11)0.0405 (11)0.0008 (8)0.0010 (9)0.0079 (9)
C80.0198 (8)0.0293 (10)0.0277 (9)0.0027 (8)0.0016 (8)0.0017 (8)
C110.0208 (8)0.0190 (8)0.0200 (8)0.0007 (7)0.0011 (7)0.0001 (7)
C120.0195 (8)0.0193 (8)0.0208 (8)0.0012 (7)0.0000 (7)0.0011 (7)
C130.0233 (9)0.0215 (9)0.0176 (8)0.0002 (7)0.0058 (7)0.0008 (7)
C140.0288 (10)0.0265 (9)0.0258 (9)0.0032 (8)0.0017 (8)0.0008 (8)
C150.0476 (13)0.0250 (10)0.0330 (11)0.0089 (10)0.0061 (10)0.0021 (8)
C160.0575 (14)0.0223 (10)0.0313 (11)0.0031 (11)0.0142 (10)0.0036 (8)
C170.0416 (12)0.0364 (11)0.0234 (9)0.0130 (10)0.0065 (9)0.0091 (9)
C180.0250 (9)0.0321 (10)0.0208 (9)0.0018 (8)0.0027 (8)0.0008 (8)
C210.0178 (8)0.0202 (8)0.0203 (8)0.0013 (7)0.0015 (7)0.0011 (7)
C220.0200 (8)0.0200 (8)0.0208 (8)0.0025 (7)0.0023 (7)0.0012 (7)
C230.0266 (10)0.0312 (10)0.0344 (10)0.0001 (9)0.0055 (9)0.0095 (9)
C240.0217 (9)0.0278 (9)0.0280 (9)0.0041 (8)0.0038 (8)0.0048 (8)
Geometric parameters (Å, º) top
N1—C211.466 (2)C11—H11B0.9900
N1—C111.468 (2)C12—C131.523 (2)
N1—C11.475 (2)C12—H121.0000
O1—C221.451 (2)C13—C181.393 (3)
O1—H10.84 (3)C13—C141.392 (3)
O2—C121.429 (2)C14—C151.392 (3)
O2—H20.90 (3)C14—H140.9500
C1—C21.528 (2)C15—C161.378 (3)
C1—C31.528 (2)C15—H150.9500
C1—H111.0000C16—C171.388 (3)
C2—H2A0.9800C16—H160.9500
C2—H2B0.9800C17—C181.387 (3)
C2—H2C0.9800C17—H170.9500
C3—C41.393 (3)C18—H180.9500
C3—C81.395 (3)C21—C221.534 (2)
C4—C51.388 (3)C21—H21A0.9900
C4—H40.9500C21—H21B0.9900
C5—C61.378 (3)C22—C231.522 (3)
C5—H50.9500C22—C241.523 (3)
C6—C71.385 (3)C23—H23A0.9800
C6—H60.9500C23—H23B0.9800
C7—C81.378 (3)C23—H23C0.9800
C7—H70.9500C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C11—C121.523 (2)C24—H24C0.9800
C11—H11A0.9900
C21—N1—C11114.14 (14)C13—C12—H12109.4
C21—N1—C1115.16 (13)C11—C12—H12109.4
C11—N1—C1111.92 (13)C18—C13—C14119.09 (17)
C22—O1—H1106.6 (16)C18—C13—C12120.83 (17)
C12—O2—H2105.3 (17)C14—C13—C12120.00 (17)
N1—C1—C2114.23 (15)C15—C14—C13120.3 (2)
N1—C1—C3109.50 (13)C15—C14—H14119.9
C2—C1—C3113.34 (15)C13—C14—H14119.9
N1—C1—H11106.4C16—C15—C14120.2 (2)
C2—C1—H11106.4C16—C15—H15119.9
C3—C1—H11106.4C14—C15—H15119.9
C1—C2—H2A109.5C15—C16—C17120.03 (19)
C1—C2—H2B109.5C15—C16—H16120.0
H2A—C2—H2B109.5C17—C16—H16120.0
C1—C2—H2C109.5C18—C17—C16120.0 (2)
H2A—C2—H2C109.5C18—C17—H17120.0
H2B—C2—H2C109.5C16—C17—H17120.0
C4—C3—C8117.97 (17)C17—C18—C13120.42 (19)
C4—C3—C1122.88 (16)C17—C18—H18119.8
C8—C3—C1119.14 (16)C13—C18—H18119.8
C5—C4—C3120.60 (19)N1—C21—C22113.05 (14)
C5—C4—H4119.7N1—C21—H21A109.0
C3—C4—H4119.7C22—C21—H21A109.0
C6—C5—C4120.38 (19)N1—C21—H21B109.0
C6—C5—H5119.8C22—C21—H21B109.0
C4—C5—H5119.8H21A—C21—H21B107.8
C5—C6—C7119.74 (18)O1—C22—C23109.22 (15)
C5—C6—H6120.1O1—C22—C24105.07 (14)
C7—C6—H6120.1C23—C22—C24111.58 (15)
C8—C7—C6119.85 (19)O1—C22—C21109.81 (13)
C8—C7—H7120.1C23—C22—C21111.73 (15)
C6—C7—H7120.1C24—C22—C21109.21 (15)
C7—C8—C3121.45 (19)C22—C23—H23A109.5
C7—C8—H8119.3C22—C23—H23B109.5
C3—C8—H8119.3H23A—C23—H23B109.5
N1—C11—C12112.80 (14)C22—C23—H23C109.5
N1—C11—H11A109.0H23A—C23—H23C109.5
C12—C11—H11A109.0H23B—C23—H23C109.5
N1—C11—H11B109.0C22—C24—H24A109.5
C12—C11—H11B109.0C22—C24—H24B109.5
H11A—C11—H11B107.8H24A—C24—H24B109.5
O2—C12—C13112.05 (14)C22—C24—H24C109.5
O2—C12—C11107.67 (14)H24A—C24—H24C109.5
C13—C12—C11108.99 (14)H24B—C24—H24C109.5
O2—C12—H12109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (3)1.95 (3)2.7717 (19)165 (2)
O2—H2···O1i0.90 (3)1.82 (3)2.7211 (18)175 (2)
Symmetry code: (i) x1/2, y+3/2, z.
(VI_100) 2-[(2-hydroxyethyl)(methyl)amino]-1,2-diphenylethanol top
Crystal data top
C17H21NO2F(000) = 584
Mr = 271.35Dx = 1.208 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5344 reflections
a = 9.5577 (9) Åθ = 2.4–30.4°
b = 9.9481 (9) ŵ = 0.08 mm1
c = 15.9403 (15) ÅT = 100 K
β = 100.136 (2)°Plate, colourless
V = 1492.0 (2) Å30.18 × 0.16 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
2932 independent reflections
Radiation source: fine-focus sealed tube2482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 911
Tmin = 0.986, Tmax = 0.997k = 1211
7956 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.4707P]
where P = (Fo2 + 2Fc2)/3
2932 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H21NO2V = 1492.0 (2) Å3
Mr = 271.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5577 (9) ŵ = 0.08 mm1
b = 9.9481 (9) ÅT = 100 K
c = 15.9403 (15) Å0.18 × 0.16 × 0.04 mm
β = 100.136 (2)°
Data collection top
Bruker SMART 1K
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2482 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.997Rint = 0.022
7956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
2932 reflectionsΔρmin = 0.25 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.13144 (11)0.27954 (10)0.52216 (6)0.0168 (2)
O10.37764 (12)0.44412 (10)0.52060 (7)0.0256 (2)
H1A0.296 (5)0.473 (4)0.501 (2)0.038*0.490 (18)
H1B0.450 (3)0.487 (4)0.504 (2)0.038*0.510 (18)
O20.10814 (12)0.43810 (9)0.53834 (6)0.0216 (2)
H2A0.191 (4)0.472 (4)0.514 (2)0.032*0.490 (18)
H2B0.043 (4)0.460 (3)0.510 (2)0.032*0.510 (18)
C10.38458 (14)0.30256 (13)0.50782 (8)0.0219 (3)
H11A0.48130.26980.53150.026*
H11B0.36540.28270.44600.026*
C20.27655 (13)0.23023 (13)0.55095 (8)0.0193 (3)
H21A0.27990.13280.53880.023*
H21B0.30230.24260.61340.023*
C30.07927 (14)0.24067 (14)0.43373 (8)0.0233 (3)
H3A0.15320.25780.39950.035*
H3B0.00560.29340.41110.035*
H3C0.05530.14480.43130.035*
C40.03329 (13)0.23669 (12)0.57829 (8)0.0163 (3)
H4A0.02550.13650.57500.020*
C50.11683 (13)0.29630 (12)0.54587 (8)0.0171 (3)
H50.15300.25840.48800.021*
C60.06569 (14)0.18334 (14)0.73457 (8)0.0214 (3)
H60.02870.09640.71910.026*
C70.10109 (15)0.21730 (15)0.82022 (8)0.0274 (3)
H70.08880.15410.86300.033*
C80.15458 (15)0.34431 (15)0.84275 (9)0.0283 (3)
H80.17700.36910.90110.034*
C90.17529 (14)0.43510 (14)0.78005 (9)0.0251 (3)
H90.21390.52140.79580.030*
C100.14015 (13)0.40100 (13)0.69453 (8)0.0200 (3)
H100.15470.46380.65200.024*
C110.08351 (13)0.27458 (13)0.67089 (8)0.0172 (3)
C120.21970 (13)0.25736 (13)0.60404 (8)0.0169 (3)
C130.26413 (13)0.34890 (13)0.65996 (8)0.0203 (3)
H130.23190.43930.66120.024*
C140.35558 (14)0.30825 (14)0.71397 (8)0.0248 (3)
H140.38610.37140.75170.030*
C150.40267 (14)0.17624 (15)0.71330 (8)0.0248 (3)
H150.46470.14900.75060.030*
C160.35869 (14)0.08426 (14)0.65787 (8)0.0233 (3)
H160.39020.00640.65730.028*
C170.26856 (13)0.12498 (13)0.60331 (8)0.0199 (3)
H170.23970.06200.56490.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (5)0.0185 (5)0.0156 (5)0.0007 (4)0.0036 (4)0.0009 (4)
O10.0182 (5)0.0206 (5)0.0385 (6)0.0013 (4)0.0070 (4)0.0044 (4)
O20.0200 (5)0.0174 (5)0.0280 (5)0.0015 (4)0.0058 (4)0.0074 (4)
C10.0197 (7)0.0224 (7)0.0243 (7)0.0035 (5)0.0057 (5)0.0018 (5)
C20.0188 (6)0.0188 (6)0.0206 (6)0.0033 (5)0.0042 (5)0.0017 (5)
C30.0225 (7)0.0288 (7)0.0190 (6)0.0000 (5)0.0049 (5)0.0014 (5)
C40.0183 (6)0.0119 (6)0.0189 (6)0.0002 (5)0.0038 (5)0.0010 (5)
C50.0174 (6)0.0156 (6)0.0180 (6)0.0013 (5)0.0018 (5)0.0011 (5)
C60.0202 (6)0.0216 (7)0.0230 (7)0.0022 (5)0.0049 (5)0.0035 (5)
C70.0258 (7)0.0367 (8)0.0202 (7)0.0092 (6)0.0055 (5)0.0086 (6)
C80.0264 (7)0.0396 (9)0.0178 (6)0.0119 (6)0.0003 (5)0.0035 (6)
C90.0203 (7)0.0267 (7)0.0265 (7)0.0047 (6)0.0008 (5)0.0070 (6)
C100.0179 (6)0.0189 (6)0.0230 (7)0.0020 (5)0.0032 (5)0.0001 (5)
C110.0137 (6)0.0191 (6)0.0189 (6)0.0029 (5)0.0034 (5)0.0013 (5)
C120.0139 (6)0.0186 (6)0.0171 (6)0.0005 (5)0.0004 (5)0.0027 (5)
C130.0210 (6)0.0193 (7)0.0202 (6)0.0027 (5)0.0026 (5)0.0001 (5)
C140.0260 (7)0.0283 (7)0.0210 (6)0.0003 (6)0.0065 (5)0.0024 (6)
C150.0218 (7)0.0332 (8)0.0203 (6)0.0054 (6)0.0057 (5)0.0055 (6)
C160.0212 (7)0.0216 (7)0.0255 (7)0.0055 (5)0.0003 (5)0.0060 (5)
C170.0187 (6)0.0180 (6)0.0222 (6)0.0004 (5)0.0012 (5)0.0014 (5)
Geometric parameters (Å, º) top
N1—C31.4621 (16)C6—C71.3892 (19)
N1—C21.4666 (16)C6—C111.3944 (18)
N1—C41.4689 (15)C6—H60.9500
O1—C11.4261 (16)C7—C81.386 (2)
O1—H1A0.83 (5)C7—H70.9500
O1—H1B0.89 (3)C8—C91.387 (2)
O2—C51.4194 (15)C8—H80.9500
O2—H2A0.88 (4)C9—C101.3874 (18)
O2—H2B0.85 (3)C9—H90.9500
C1—C21.5186 (18)C10—C111.3947 (18)
C1—H11A0.9900C10—H100.9500
C1—H11B0.9900C12—C131.3919 (18)
C2—H21A0.9900C12—C171.3967 (18)
C2—H21B0.9900C13—C141.3905 (18)
C3—H3A0.9800C13—H130.9500
C3—H3B0.9800C14—C151.388 (2)
C3—H3C0.9800C14—H140.9500
C4—C111.5172 (17)C15—C161.388 (2)
C4—C51.5545 (17)C15—H150.9500
C4—H4A1.0000C16—C171.3879 (19)
C5—C121.5156 (17)C16—H160.9500
C5—H51.0000C17—H170.9500
C3—N1—C2110.88 (10)C4—C5—H5108.2
C3—N1—C4111.38 (10)C7—C6—C11121.15 (13)
C2—N1—C4112.49 (9)C7—C6—H6119.4
C1—O1—H1A110 (3)C11—C6—H6119.4
C1—O1—H1B112 (2)C8—C7—C6119.42 (13)
H1A—O1—H1B116 (3)C8—C7—H7120.3
C5—O2—H2A111 (2)C6—C7—H7120.3
C5—O2—H2B111 (2)C7—C8—C9119.98 (12)
H2A—O2—H2B111 (3)C7—C8—H8120.0
O1—C1—C2110.53 (11)C9—C8—H8120.0
O1—C1—H11A109.5C8—C9—C10120.54 (13)
C2—C1—H11A109.5C8—C9—H9119.7
O1—C1—H11B109.5C10—C9—H9119.7
C2—C1—H11B109.5C9—C10—C11120.09 (12)
H11A—C1—H11B108.1C9—C10—H10120.0
N1—C2—C1112.38 (10)C11—C10—H10120.0
N1—C2—H21A109.1C6—C11—C10118.79 (12)
C1—C2—H21A109.1C6—C11—C4119.23 (11)
N1—C2—H21B109.1C10—C11—C4121.89 (11)
C1—C2—H21B109.1C13—C12—C17118.88 (11)
H21A—C2—H21B107.9C13—C12—C5121.90 (11)
N1—C3—H3A109.5C17—C12—C5119.20 (11)
N1—C3—H3B109.5C14—C13—C12120.14 (12)
H3A—C3—H3B109.5C14—C13—H13119.9
N1—C3—H3C109.5C12—C13—H13119.9
H3A—C3—H3C109.5C15—C14—C13120.59 (13)
H3B—C3—H3C109.5C15—C14—H14119.7
N1—C4—C11113.20 (10)C13—C14—H14119.7
N1—C4—C5109.75 (9)C16—C15—C14119.65 (12)
C11—C4—C5110.13 (10)C16—C15—H15120.2
N1—C4—H4A107.9C14—C15—H15120.2
C11—C4—H4A107.9C15—C16—C17119.84 (12)
C5—C4—H4A107.9C15—C16—H16120.1
O2—C5—C12111.08 (10)C17—C16—H16120.1
O2—C5—C4110.05 (10)C16—C17—C12120.90 (12)
C12—C5—C4111.06 (10)C16—C17—H17119.6
O2—C5—H5108.2C12—C17—H17119.6
C12—C5—H5108.2
C3—N1—C2—C169.45 (14)C9—C10—C11—C4175.32 (11)
C4—N1—C2—C1165.08 (10)N1—C4—C11—C6139.83 (11)
O1—C1—C2—N155.99 (14)C5—C4—C11—C696.90 (13)
C3—N1—C4—C11179.80 (10)N1—C4—C11—C1043.69 (16)
C2—N1—C4—C1154.61 (14)C5—C4—C11—C1079.58 (14)
C3—N1—C4—C556.72 (13)O2—C5—C12—C1317.12 (16)
C2—N1—C4—C5178.09 (10)C4—C5—C12—C13105.71 (13)
N1—C4—C5—O254.85 (13)O2—C5—C12—C17164.63 (11)
C11—C4—C5—O270.41 (12)C4—C5—C12—C1772.53 (14)
N1—C4—C5—C12178.28 (10)C17—C12—C13—C140.03 (18)
C11—C4—C5—C1253.01 (13)C5—C12—C13—C14178.22 (12)
C11—C6—C7—C80.2 (2)C12—C13—C14—C150.5 (2)
C6—C7—C8—C91.4 (2)C13—C14—C15—C160.4 (2)
C7—C8—C9—C101.3 (2)C14—C15—C16—C170.3 (2)
C8—C9—C10—C110.01 (19)C15—C16—C17—C120.82 (19)
C7—C6—C11—C101.06 (19)C13—C12—C17—C160.69 (18)
C7—C6—C11—C4175.53 (12)C5—C12—C17—C16177.61 (11)
C9—C10—C11—C61.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O1i0.89 (3)1.89 (3)2.771 (2)170 (3)
O1—H1A···O2ii0.83 (5)2.01 (5)2.8353 (16)173 (4)
O2—H2A···O1ii0.88 (4)1.96 (4)2.8353 (16)171 (3)
O2—H2B···O2ii0.85 (3)2.03 (3)2.859 (2)164 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
(VI_300) 2-[(2-hydroxyethyl)(methyl)amino]-1,2-diphenylethanol top
Crystal data top
C17H21NO2F(000) = 584
Mr = 271.35Dx = 1.173 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3073 reflections
a = 9.5879 (5) Åθ = 2.4–28.7°
b = 10.0655 (6) ŵ = 0.08 mm1
c = 16.1252 (9) ÅT = 300 K
β = 99.034 (1)°Plate, colourless
V = 1536.89 (15) Å30.18 × 0.16 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
3025 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 119
Tmin = 0.986, Tmax = 0.997k = 1211
8282 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1373P]
where P = (Fo2 + 2Fc2)/3
3025 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H21NO2V = 1536.89 (15) Å3
Mr = 271.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5879 (5) ŵ = 0.08 mm1
b = 10.0655 (6) ÅT = 300 K
c = 16.1252 (9) Å0.18 × 0.16 × 0.04 mm
β = 99.034 (1)°
Data collection top
Bruker SMART 1K
diffractometer
3025 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2099 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.997Rint = 0.027
8282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
3025 reflectionsΔρmin = 0.16 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.13034 (12)0.28024 (12)0.52004 (7)0.0410 (3)
O10.37554 (17)0.44375 (14)0.51848 (10)0.0698 (4)
H1A0.292 (7)0.477 (5)0.501 (3)0.105*0.51 (2)
H1B0.461 (6)0.502 (6)0.513 (4)0.105*0.49 (2)
O20.10849 (16)0.43621 (12)0.53813 (8)0.0543 (3)
H2A0.190 (6)0.475 (5)0.518 (3)0.081*0.51 (2)
H2B0.041 (5)0.461 (4)0.518 (3)0.081*0.49 (2)
C10.38199 (17)0.30547 (19)0.50519 (12)0.0600 (5)
H11A0.47590.27340.52720.072*
H11B0.36420.28720.44540.072*
C20.27463 (16)0.23294 (16)0.54767 (10)0.0501 (4)
H21A0.27920.13870.53570.060*
H21B0.29830.24460.60800.060*
C30.08071 (19)0.2418 (2)0.43275 (10)0.0630 (5)
H3A0.15300.26030.39940.095*
H3B0.00280.29140.41140.095*
H3C0.05940.14860.43020.095*
C40.03132 (15)0.23746 (14)0.57566 (9)0.0391 (3)
H4A0.02340.14050.57170.047*
C50.11738 (15)0.29667 (15)0.54522 (9)0.0421 (4)
H50.15200.26060.48930.051*
C60.06436 (19)0.18146 (19)0.72902 (11)0.0588 (5)
H60.02860.09750.71400.071*
C70.1006 (2)0.2136 (3)0.81363 (12)0.0817 (7)
H70.08910.15150.85470.098*
C80.1530 (2)0.3369 (3)0.83594 (13)0.0860 (7)
H80.17600.35930.89240.103*
C90.1719 (2)0.4274 (2)0.77537 (12)0.0706 (6)
H90.20930.51070.79090.085*
C100.13587 (17)0.39601 (17)0.69139 (10)0.0524 (4)
H100.14880.45850.65080.063*
C110.08071 (15)0.27249 (15)0.66697 (9)0.0410 (4)
C120.22040 (15)0.25797 (15)0.60285 (9)0.0414 (4)
C130.26360 (17)0.34606 (17)0.65922 (10)0.0525 (4)
H130.23070.43310.66160.063*
C140.3560 (2)0.3055 (2)0.71241 (11)0.0685 (5)
H140.38520.36590.74980.082*
C150.4043 (2)0.1778 (2)0.71042 (12)0.0715 (6)
H150.46550.15130.74670.086*
C160.3627 (2)0.08911 (19)0.65501 (12)0.0659 (5)
H160.39490.00190.65370.079*
C170.27270 (17)0.12926 (17)0.60097 (11)0.0532 (4)
H170.24660.06890.56250.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0377 (7)0.0473 (7)0.0389 (6)0.0005 (5)0.0086 (5)0.0019 (5)
O10.0403 (8)0.0620 (9)0.1083 (11)0.0016 (6)0.0156 (7)0.0194 (7)
O20.0408 (7)0.0498 (7)0.0741 (8)0.0036 (5)0.0144 (6)0.0241 (6)
C10.0414 (10)0.0757 (13)0.0658 (11)0.0097 (8)0.0178 (8)0.0088 (9)
C20.0440 (9)0.0512 (10)0.0569 (10)0.0098 (7)0.0134 (7)0.0056 (7)
C30.0591 (11)0.0854 (13)0.0464 (10)0.0034 (9)0.0139 (8)0.0076 (9)
C40.0402 (8)0.0346 (8)0.0430 (8)0.0018 (6)0.0086 (6)0.0021 (6)
C50.0368 (8)0.0475 (9)0.0415 (8)0.0046 (6)0.0046 (6)0.0047 (7)
C60.0568 (11)0.0676 (12)0.0532 (10)0.0085 (9)0.0125 (8)0.0182 (9)
C70.0769 (14)0.121 (2)0.0493 (11)0.0318 (14)0.0152 (10)0.0301 (12)
C80.0772 (15)0.130 (2)0.0462 (11)0.0363 (15)0.0035 (10)0.0117 (13)
C90.0571 (11)0.0864 (15)0.0635 (12)0.0110 (10)0.0052 (9)0.0226 (11)
C100.0468 (9)0.0577 (11)0.0511 (10)0.0034 (8)0.0029 (7)0.0049 (8)
C110.0334 (8)0.0482 (9)0.0416 (8)0.0064 (6)0.0062 (6)0.0061 (7)
C120.0332 (8)0.0463 (9)0.0431 (8)0.0031 (6)0.0015 (6)0.0065 (7)
C130.0520 (10)0.0550 (10)0.0514 (10)0.0087 (8)0.0112 (8)0.0005 (8)
C140.0703 (13)0.0843 (14)0.0555 (11)0.0065 (11)0.0243 (9)0.0044 (9)
C150.0634 (12)0.0957 (16)0.0591 (11)0.0186 (11)0.0210 (9)0.0162 (11)
C160.0582 (11)0.0608 (12)0.0777 (13)0.0204 (9)0.0075 (10)0.0188 (10)
C170.0452 (9)0.0495 (10)0.0646 (10)0.0076 (8)0.0075 (8)0.0034 (8)
Geometric parameters (Å, º) top
N1—C21.4647 (19)C6—C111.384 (2)
N1—C31.4653 (19)C6—C71.392 (3)
N1—C41.4692 (18)C6—H60.9300
O1—C11.411 (2)C7—C81.366 (3)
O1—H1A0.87 (7)C7—H70.9300
O1—H1B1.02 (6)C8—C91.369 (3)
O2—C51.4129 (19)C8—H80.9300
O2—H2A0.89 (6)C9—C101.381 (2)
O2—H2B0.81 (5)C9—H90.9300
C1—C21.511 (2)C10—C111.384 (2)
C1—H11A0.9700C10—H100.9300
C1—H11B0.9700C12—C131.379 (2)
C2—H21A0.9700C12—C171.388 (2)
C2—H21B0.9700C13—C141.388 (2)
C3—H3A0.9600C13—H130.9300
C3—H3B0.9600C14—C151.364 (3)
C3—H3C0.9600C14—H140.9300
C4—C111.516 (2)C15—C161.367 (3)
C4—C51.552 (2)C15—H150.9300
C4—H4A0.9800C16—C171.379 (2)
C5—C121.510 (2)C16—H160.9300
C5—H50.9800C17—H170.9300
C2—N1—C3110.80 (13)C4—C5—H5108.1
C2—N1—C4112.90 (11)C11—C6—C7121.04 (19)
C3—N1—C4111.44 (12)C11—C6—H6119.5
C1—O1—H1A113 (3)C7—C6—H6119.5
C1—O1—H1B120 (3)C8—C7—C6119.62 (19)
H1A—O1—H1B117 (5)C8—C7—H7120.2
C5—O2—H2A114 (3)C6—C7—H7120.2
C5—O2—H2B114 (3)C7—C8—C9120.10 (19)
H2A—O2—H2B115 (4)C7—C8—H8119.9
O1—C1—C2111.01 (14)C9—C8—H8119.9
O1—C1—H11A109.4C8—C9—C10120.4 (2)
C2—C1—H11A109.4C8—C9—H9119.8
O1—C1—H11B109.4C10—C9—H9119.8
C2—C1—H11B109.4C9—C10—C11120.69 (17)
H11A—C1—H11B108.0C9—C10—H10119.7
N1—C2—C1112.53 (13)C11—C10—H10119.7
N1—C2—H21A109.1C6—C11—C10118.08 (15)
C1—C2—H21A109.1C6—C11—C4119.65 (15)
N1—C2—H21B109.1C10—C11—C4122.18 (13)
C1—C2—H21B109.1C13—C12—C17118.02 (15)
H21A—C2—H21B107.8C13—C12—C5122.21 (14)
N1—C3—H3A109.5C17—C12—C5119.76 (14)
N1—C3—H3B109.5C12—C13—C14120.33 (16)
H3A—C3—H3B109.5C12—C13—H13119.8
N1—C3—H3C109.5C14—C13—H13119.8
H3A—C3—H3C109.5C15—C14—C13120.67 (18)
H3B—C3—H3C109.5C15—C14—H14119.7
N1—C4—C11113.05 (12)C13—C14—H14119.7
N1—C4—C5110.12 (11)C14—C15—C16119.84 (17)
C11—C4—C5110.45 (12)C14—C15—H15120.1
N1—C4—H4A107.7C16—C15—H15120.1
C11—C4—H4A107.7C15—C16—C17119.84 (17)
C5—C4—H4A107.7C15—C16—H16120.1
O2—C5—C12111.09 (13)C17—C16—H16120.1
O2—C5—C4110.07 (12)C16—C17—C12121.29 (17)
C12—C5—C4111.32 (11)C16—C17—H17119.4
O2—C5—H5108.1C12—C17—H17119.4
C12—C5—H5108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O1i1.02 (6)1.81 (6)2.789 (3)160 (5)
O1—H1A···O2ii0.87 (7)1.98 (7)2.849 (2)177 (5)
O2—H2A···O1ii0.89 (6)1.96 (6)2.849 (2)176 (4)
O2—H2B···O2ii0.81 (5)2.09 (4)2.880 (3)168 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC17H21NO2C21H27NO2C17H21NO2C16H27NO2
Mr271.35325.44271.35265.39
Crystal system, space groupMonoclinic, PcOrthorhombic, P212121Monoclinic, P21/nOrthorhombic, P212121
Temperature (K)120120120120
a, b, c (Å)5.8366 (1), 15.3018 (4), 8.1078 (2)8.5024 (4), 11.9480 (5), 17.6485 (7)9.3438 (2), 15.9896 (4), 10.9479 (3)8.6781 (5), 12.8084 (7), 14.5243 (8)
α, β, γ (°)90, 91.444 (1), 9090, 90, 9090, 114.441 (1), 9090, 90, 90
V3)723.88 (3)1792.85 (13)1489.08 (6)1614.41 (16)
Z2444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.080.07
Crystal size (mm)0.40 × 0.20 × 0.100.30 × 0.24 × 0.200.30 × 0.20 × 0.200.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1K
diffractometer
Bruker SMART 1K
diffractometer
Bruker SMART 1K
diffractometer
Bruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.968, 0.9920.977, 0.9850.977, 0.9840.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4958, 1677, 1626 12996, 2712, 2398 10283, 3416, 2508 11540, 2428, 1986
Rint0.0290.0400.0390.039
(sin θ/λ)max1)0.6490.6820.6500.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.06 0.035, 0.083, 1.03 0.044, 0.097, 1.05 0.041, 0.095, 1.06
No. of reflections1677271234162428
No. of parameters190325191185
No. of restraints2000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.190.21, 0.200.26, 0.180.17, 0.18


(V)(VI_100)(VI_300)
Crystal data
Chemical formulaC20H27NO2C17H21NO2C17H21NO2
Mr313.43271.35271.35
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/nMonoclinic, P21/n
Temperature (K)120100300
a, b, c (Å)8.9681 (8), 12.5151 (11), 16.3960 (14)9.5577 (9), 9.9481 (9), 15.9403 (15)9.5879 (5), 10.0655 (6), 16.1252 (9)
α, β, γ (°)90, 90, 9090, 100.136 (2), 9090, 99.034 (1), 90
V3)1840.2 (3)1492.0 (2)1536.89 (15)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.070.080.08
Crystal size (mm)0.25 × 0.20 × 0.100.18 × 0.16 × 0.040.18 × 0.16 × 0.04
Data collection
DiffractometerBruker SMART 1K
diffractometer
Bruker SMART 1K
diffractometer
Bruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.982, 0.9930.986, 0.9970.986, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
13036, 2772, 2376 7956, 2932, 2482 8282, 3025, 2099
Rint0.0450.0220.027
(sin θ/λ)max1)0.6820.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 1.07 0.038, 0.092, 1.07 0.044, 0.113, 1.06
No. of reflections277229323025
No. of parameters219195195
No. of restraints000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.190.24, 0.250.18, 0.16

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)1.97 (3)2.7954 (19)170 (3)
O2—H2···N10.83 (3)2.04 (3)2.6111 (18)126 (2)
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (3)1.99 (3)2.6223 (18)131 (2)
O2—H2···O1i0.85 (3)1.99 (3)2.8404 (17)172 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.87 (2)2.07 (2)2.6765 (15)126.0 (16)
O1—H1···O2i0.88 (2)1.93 (2)2.8101 (15)177 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.80 (3)1.91 (3)2.703 (2)170 (3)
O2—H2···O1i0.89 (3)1.88 (3)2.7713 (18)174 (2)
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (3)1.95 (3)2.7717 (19)165 (2)
O2—H2···O1i0.90 (3)1.82 (3)2.7211 (18)175 (2)
Symmetry code: (i) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) for (VI_100) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O1i0.89 (3)1.89 (3)2.771 (2)170 (3)
O1—H1A···O2ii0.83 (5)2.01 (5)2.8353 (16)173 (4)
O2—H2A···O1ii0.88 (4)1.96 (4)2.8353 (16)171 (3)
O2—H2B···O2ii0.85 (3)2.03 (3)2.859 (2)164 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (VI_300) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O1i1.02 (6)1.81 (6)2.789 (3)160 (5)
O1—H1A···O2ii0.87 (7)1.98 (7)2.849 (2)177 (5)
O2—H2A···O1ii0.89 (6)1.96 (6)2.849 (2)176 (4)
O2—H2B···O2ii0.81 (5)2.09 (4)2.880 (3)168 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds