Download citation
Download citation
link to html
In the title coordination compound, [Zn(C12H6O4)(C14H14N4)]n, the two ZnII centers exhibit different coordination environments. One ZnII center is four-coordinated in a distorted tetra­hedral environment surrounded by two carboxyl­ate O atoms from two different naphthalene-1,4-dicarboxyl­ate (1,4-ndc) anions and two N atoms from two distinct 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) ligands. The coordination of the second ZnII center comprises two N atoms from two different 1,4-bix ligands and three carboxyl­ate O atoms from two different 1,4-ndc ligands in a highly distorted square-pyramidal environment. The 1,4-bix ligand and the 1,4-ndc anion link adjacent ZnII centers into a two-dimensional four-connected (4,4) network. The two (4,4) networks are inter­penetrated in a parallel mode.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109029084/gd3296sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109029084/gd3296Isup2.hkl
Contains datablock I

CCDC reference: 749687

Comment top

The current interest in polymeric coordination networks is rapidly expanding not only for their potential applications in medical chemistry, host–guest chemistry, ion exchange, gas storage and nonlinear optics, but also for their intriguing variety of topologies (Carlucci et al., 2003; Eddaoudi et al., 2001). It is well known that structural diversity in coordination polymers can occur as a result of various processes, including supramolecular isomerism and interpenetration. In this regard, interpenetrating networks, as an important subject in the area of entanglement, have provided a long-standing fascination for chemists (Batten & Robson, 1998; Ockwig et al., 2005). Generally, the topology of a coordination polymer can often be controlled and modified by selecting the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand chosen (Batten, 2001). Flexible N-donor ligands are good candidates for the assembly of versatile entangled structures, owing to their propensity to form large voids, of which bis(imidazole) ligands are a good choice. Using these ligands, many intriguing varieties of interpenetrating architectures and topologies have been constructed (Sun et al., 2009). Among the bis(imidazole) ligands, 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) is particularly interesting. For example, the flexible bridging 1,4-bix gives an unusual infinite two-dimensional polyrotaxane network when it is reacted with CdII sulfate hexahydrate (Carlucci et al., 2005). An unusual triply interpenetrating α-polonium topology is produced when it is reacted with CdII nitrate hexahydrate (Abrahams et al., 2002). In the present study, 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) assembles with zinc naphthalene-1,4-dicarboxylate (1,4-ndc) to furnish a 1:1 adduct, [Zn(1,4-bix)(1,4-ndc)]2n (I), which exists as a twofold interpenetrating (4,4) topology.

The asymmetric unit of (I) (Fig. 1 and Table 1) contains two crystallographically independent ZnII atoms, two unique 1,4-ndc anions and two unique 1,4-bix ligands. The two ZnII atoms show different coordination spheres. Atom Zn1 is four-coordinated in a distorted tetrahedral environment surrounded by two carboxylate O atoms from two different 1,4-ndc anions and two N atoms from two distinct 1,4-bix ligands. The coordination of atom Zn2 is completed by two N atoms from two different 1,4-bix ligands, and three carboxylate O atoms from two different 1,4-ndc ligands in a distorted square-pyramidal enironment. One N atom (N5) and three O atoms (O1, O7ii and O8ii) constitute the base of the square-pyramid, whereas one N atom (N8iii) occupies the apical position with a Zn—N8iii distance of 2.046 (3) Å. The average Zn—O and Zn—N distances in (I) (Table 1) are comparable to those observed for [Zn(TITMB)(OAc)](OH).8.5H2O [TITMB is 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and OAc is the acetate anion; Fan et al., 2003]. As depicted in Fig. 2, each ZnII center is bridged by the 1,4-ndc dianions and 1,4-bix ligands to give a two-dimensional four-connected (4,4) network. Along the c axis, the adjacent ZnII centers are linked via the two carboxylate groups of the 1,4-ndc ligands to form one-dimensional chains. The 1,4-bix ligands further extend these chains along the b axis, yielding the final two-dimensional (4,4) network. Interestingly, the two (4,4) networks are interpenetrated in a parallel mode in the (110) plane (Fig. 3). The two interpenetrating networks are individually generated by translation and they are related by inversion.

It is noteworthy that the structure of (I) is entirely different from those of the two related structures [Cu(1,3-bdc)2(1,4-bix)][Cu(1,4-bix)2(H2O)2].4H2O (1,3-bdc is 1,3-benzenedicarboxylate) and [Cu(1,4-ndc)(1,2-bix)2].2H2O (Yang et al., 2008). The reported complex [Cu(1,3-bdc)2(1,4-bix)][Cu(1,4-bix)2(H2O)2].4H2O consists of two types of coordination polymers, namely two-dimensional (4,4) grids of [Cu(1,4-bix)2(H2O)2]2+, and linear chains of [Cu(1,3-bdc)2(1,4-bix)]2-. The reported structure [Cu(1,4-ndc)(1,2-bix)2].2H2O contains two-dimensional (4,4) networks. However, this structure does not exhibit interpenetration. The structure of (I) is also entirely different from that of the related polymer [Zn(bis)1.5(H2O)(SO4)].6H2O [bis is 1,1'-(1,4-butanediyl)bis(imidazole); Ma et al., 2000]. In that structure, the networks are interpenetrated in an inclined mode by symmetry-related, identical networks to give an interlocked three-dimensional structure.

Related literature top

For related literature, see: Abrahams et al. (2002); Batten (2001); Batten & Robson (1998); Carlucci et al. (2003, 2005); Eddaoudi et al. (2001); Fan et al. (2003); Ma et al. (2000); Ockwig et al. (2005); Sun et al. (2009); Yang et al. (2008).

Experimental top

Zinc chloride (0.068 g, 0.5 mmol), naphthalene-1,4-dicarboxylatic acid (0.108 g, 0.5 mmol) and 1,4-bis(imidazol-1-ylmethyl)benzene (0.119 g, 0.5 mmol) were placed in water (12 ml), and triethylamine was added until the pH value of the solution was 5.8. The solution was heated in a 25 ml Teflon-lined stainless-steel autoclave at 450 K for 5 d. The autoclave was allowed to cool to room temperature over several hours. Colourless blocks were isolated in about 42% yield.

Refinement top

The H atoms were treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 and 0.97 Å, and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the ZnII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y - 1, z; (ii) x, y, 1 + z; (iii) x + 1, y + 1, z.]
[Figure 2] Fig. 2. A view of the two-dimensional (4,4) network in the (110) plane.
[Figure 3] Fig. 3. A view of the parallel interpenetrating (4,4) networks of (I) in the (110) plane.
poly[[µ2-1,4-bis(imidazol-1-ylmethyl)benzene](µ2-naphthalene-1,4- dicarboxylato)zinc(II)] top
Crystal data top
[Zn(C12H6O4)(C14H14N4)]Z = 4
Mr = 517.83F(000) = 1064
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4112 (5) ÅCell parameters from 9159 reflections
b = 11.5745 (5) Åθ = 3.0–26.4°
c = 19.1907 (9) ŵ = 1.13 mm1
α = 96.319 (4)°T = 293 K
β = 93.869 (5)°Block, colourless
γ = 100.628 (4)°0.33 × 0.27 × 0.22 mm
V = 2249.95 (18) Å3
Data collection top
Bruker APEX
diffractometer
9159 independent reflections
Radiation source: sealed tube4749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.680, Tmax = 0.775k = 1114
22060 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
9159 reflections(Δ/σ)max = 0.001
631 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn(C12H6O4)(C14H14N4)]γ = 100.628 (4)°
Mr = 517.83V = 2249.95 (18) Å3
Triclinic, P1Z = 4
a = 10.4112 (5) ÅMo Kα radiation
b = 11.5745 (5) ŵ = 1.13 mm1
c = 19.1907 (9) ÅT = 293 K
α = 96.319 (4)°0.33 × 0.27 × 0.22 mm
β = 93.869 (5)°
Data collection top
Bruker APEX
diffractometer
9159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4749 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.775Rint = 0.051
22060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.83Δρmax = 0.74 e Å3
9159 reflectionsΔρmin = 0.44 e Å3
631 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2626 (4)0.3646 (4)0.5233 (2)0.0351 (10)
C20.2869 (3)0.3098 (3)0.45137 (19)0.0302 (9)
C30.3643 (4)0.3798 (4)0.4111 (2)0.0418 (11)
H30.40720.45530.43050.050*
C40.3796 (4)0.3392 (4)0.3412 (2)0.0412 (11)
H40.43520.38710.31550.049*
C50.3147 (4)0.2308 (4)0.31005 (19)0.0338 (10)
C60.3308 (5)0.1920 (4)0.2336 (2)0.0372 (10)
C70.2391 (4)0.1540 (3)0.35079 (19)0.0321 (9)
C80.1765 (4)0.0361 (4)0.3232 (2)0.0481 (11)
H80.17960.01080.27580.058*
C90.1127 (4)0.0403 (4)0.3637 (2)0.0514 (12)
H90.07150.11620.34390.062*
C100.1090 (4)0.0044 (4)0.4353 (2)0.0467 (11)
H100.06980.05820.46380.056*
C110.1621 (4)0.1084 (4)0.4638 (2)0.0376 (10)
H110.15550.13120.51120.045*
C120.2271 (3)0.1920 (3)0.42316 (19)0.0308 (9)
C130.3942 (4)0.2548 (4)0.02233 (19)0.0308 (9)
C140.3324 (3)0.2869 (3)0.04431 (18)0.0276 (9)
C150.4038 (4)0.3724 (4)0.0767 (2)0.0378 (10)
H150.48350.41470.05470.045*
C160.3590 (4)0.3981 (4)0.1435 (2)0.0473 (11)
H160.40860.45860.16400.057*
C170.2454 (4)0.3362 (4)0.1782 (2)0.0396 (11)
C180.2046 (5)0.3659 (6)0.2510 (3)0.0648 (16)
C190.1625 (4)0.2497 (3)0.14372 (19)0.0301 (9)
C200.0360 (4)0.1912 (4)0.1743 (2)0.0457 (12)
H200.00930.20080.22020.055*
C210.0468 (4)0.1210 (4)0.1372 (2)0.0496 (12)
H210.12930.08280.15770.059*
C220.0072 (4)0.1068 (4)0.0683 (2)0.0441 (11)
H220.06500.06160.04240.053*
C230.1147 (4)0.1582 (3)0.0386 (2)0.0346 (10)
H230.13950.14650.00710.042*
C240.2049 (3)0.2290 (3)0.07573 (19)0.0273 (9)
C250.7383 (4)0.2540 (3)0.15535 (19)0.0290 (9)
H250.71090.32390.17040.035*
C260.7387 (4)0.0760 (3)0.11086 (19)0.0338 (10)
H260.71040.00130.08910.041*
C270.8634 (4)0.1259 (4)0.1338 (2)0.0373 (10)
H270.93630.09030.13090.045*
C280.9778 (4)0.3254 (4)0.1959 (2)0.0395 (10)
H28A1.04110.28270.21500.047*
H28B0.95100.37350.23490.047*
C291.0433 (4)0.4059 (3)0.1467 (2)0.0320 (9)
C300.9818 (4)0.4899 (4)0.1200 (2)0.0363 (10)
H300.89550.49160.12900.044*
C311.0448 (4)0.5704 (3)0.0808 (2)0.0350 (10)
H311.00120.62580.06330.042*
C321.1730 (4)0.5699 (3)0.06681 (19)0.0318 (9)
C331.2333 (4)0.4839 (4)0.0904 (2)0.0406 (11)
H331.31850.48100.07960.049*
C341.1706 (4)0.4024 (3)0.1293 (2)0.0358 (10)
H341.21300.34430.14430.043*
C351.2479 (4)0.6655 (3)0.0295 (2)0.0372 (10)
H35A1.31200.63330.00280.045*
H35B1.18760.69150.00350.045*
C361.3479 (4)0.8788 (3)0.06507 (19)0.0306 (9)
H361.32970.90200.02120.037*
C371.4127 (4)0.8816 (4)0.1728 (2)0.0439 (11)
H371.44880.90820.21870.053*
C381.3572 (4)0.7693 (4)0.1486 (2)0.0489 (12)
H381.34850.70470.17390.059*
C390.1608 (4)0.3296 (4)0.5787 (2)0.0410 (10)
H390.13890.31090.53320.049*
C400.1474 (4)0.3919 (4)0.6870 (2)0.0575 (14)
H400.11410.42450.73250.069*
C410.2746 (4)0.3482 (5)0.6666 (2)0.0666 (15)
H410.34420.34660.69470.080*
C420.4026 (4)0.2510 (4)0.5520 (2)0.0574 (13)
H42A0.37910.21610.50750.069*
H42B0.45300.31090.54230.069*
C430.4853 (4)0.1565 (4)0.5865 (2)0.0448 (11)
C440.4556 (4)0.0454 (4)0.5854 (2)0.0492 (12)
H440.38670.02660.56090.059*
C450.5281 (5)0.0383 (4)0.6207 (2)0.0503 (12)
H450.50710.11310.61980.060*
C460.6316 (4)0.0125 (4)0.6573 (2)0.0401 (10)
C470.6602 (4)0.0979 (4)0.6577 (2)0.0483 (12)
H470.73000.11620.68170.058*
C480.5889 (4)0.1820 (4)0.6238 (2)0.0461 (11)
H480.60970.25700.62560.055*
C490.7005 (5)0.0992 (4)0.7018 (2)0.0532 (12)
H49A0.63540.12140.73360.064*
H49B0.75740.06020.73020.064*
C500.7537 (4)0.3163 (4)0.6613 (2)0.0377 (10)
H500.67790.33320.68300.045*
C510.9397 (4)0.3331 (4)0.6034 (2)0.0433 (11)
H511.01880.36590.57700.052*
C520.8975 (4)0.2183 (4)0.6244 (2)0.0513 (12)
H520.94050.15700.61550.062*
N10.6596 (3)0.1573 (3)0.12458 (15)0.0268 (7)
N20.8624 (3)0.2393 (3)0.16229 (15)0.0303 (8)
N31.3158 (3)0.7682 (3)0.07956 (16)0.0308 (7)
N41.4084 (3)0.9518 (3)0.11971 (16)0.0305 (8)
N50.0744 (3)0.3814 (3)0.63125 (17)0.0373 (8)
N60.2822 (3)0.3068 (3)0.59723 (17)0.0424 (9)
N70.7797 (3)0.2080 (3)0.66147 (16)0.0379 (8)
N80.8493 (3)0.3961 (3)0.62635 (16)0.0333 (8)
O10.1452 (3)0.3404 (3)0.53991 (13)0.0447 (7)
O20.3522 (3)0.4298 (3)0.56122 (15)0.0543 (8)
O30.2339 (3)0.1529 (3)0.19147 (14)0.0507 (8)
O40.4494 (3)0.2037 (3)0.21793 (13)0.0457 (7)
O50.3688 (2)0.1459 (2)0.03180 (13)0.0363 (6)
O60.4696 (3)0.3310 (3)0.06274 (14)0.0459 (7)
O70.2240 (5)0.4703 (4)0.2604 (2)0.1041 (16)
O80.1547 (4)0.2877 (4)0.29806 (18)0.0896 (14)
Zn20.12582 (4)0.42540 (4)0.63090 (2)0.03215 (14)
Zn10.46017 (4)0.13060 (4)0.12193 (2)0.02786 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (3)0.037 (3)0.028 (2)0.012 (2)0.002 (2)0.0020 (19)
C20.026 (2)0.038 (3)0.025 (2)0.0062 (19)0.0006 (17)0.0000 (19)
C30.048 (3)0.033 (3)0.043 (3)0.006 (2)0.010 (2)0.001 (2)
C40.046 (3)0.041 (3)0.038 (3)0.007 (2)0.014 (2)0.008 (2)
C50.037 (2)0.039 (3)0.028 (2)0.012 (2)0.0073 (18)0.005 (2)
C60.053 (3)0.029 (2)0.034 (2)0.014 (2)0.012 (2)0.0092 (19)
C70.038 (2)0.034 (2)0.025 (2)0.005 (2)0.0127 (18)0.0042 (19)
C80.057 (3)0.045 (3)0.039 (3)0.003 (2)0.008 (2)0.000 (2)
C90.063 (3)0.039 (3)0.046 (3)0.008 (2)0.012 (2)0.000 (2)
C100.050 (3)0.045 (3)0.046 (3)0.004 (2)0.019 (2)0.012 (2)
C110.038 (2)0.042 (3)0.032 (2)0.006 (2)0.0105 (19)0.004 (2)
C120.026 (2)0.035 (3)0.031 (2)0.0046 (19)0.0044 (17)0.0029 (19)
C130.025 (2)0.043 (3)0.026 (2)0.011 (2)0.0037 (17)0.003 (2)
C140.030 (2)0.028 (2)0.026 (2)0.0066 (18)0.0042 (17)0.0078 (17)
C150.032 (2)0.040 (3)0.041 (3)0.003 (2)0.0014 (19)0.010 (2)
C160.053 (3)0.044 (3)0.056 (3)0.017 (2)0.024 (2)0.027 (2)
C170.048 (3)0.053 (3)0.029 (2)0.033 (2)0.009 (2)0.013 (2)
C180.070 (4)0.099 (5)0.050 (3)0.057 (4)0.033 (3)0.032 (3)
C190.037 (2)0.031 (2)0.025 (2)0.015 (2)0.0038 (18)0.0008 (18)
C200.053 (3)0.055 (3)0.031 (2)0.026 (3)0.012 (2)0.004 (2)
C210.040 (3)0.048 (3)0.055 (3)0.005 (2)0.006 (2)0.007 (2)
C220.033 (2)0.029 (2)0.069 (3)0.002 (2)0.004 (2)0.008 (2)
C230.037 (2)0.032 (2)0.037 (2)0.010 (2)0.0002 (19)0.0088 (19)
C240.030 (2)0.023 (2)0.031 (2)0.0092 (18)0.0054 (17)0.0052 (17)
C250.031 (2)0.027 (2)0.030 (2)0.0064 (19)0.0082 (17)0.0057 (18)
C260.039 (2)0.026 (2)0.037 (2)0.008 (2)0.0082 (19)0.0001 (18)
C270.034 (2)0.040 (3)0.042 (3)0.014 (2)0.0081 (19)0.006 (2)
C280.035 (2)0.043 (3)0.036 (2)0.003 (2)0.0012 (19)0.004 (2)
C290.031 (2)0.024 (2)0.034 (2)0.0051 (19)0.0032 (18)0.0052 (18)
C300.025 (2)0.044 (3)0.039 (2)0.008 (2)0.0079 (19)0.002 (2)
C310.033 (2)0.030 (2)0.040 (2)0.0061 (19)0.0008 (19)0.001 (2)
C320.033 (2)0.024 (2)0.034 (2)0.0012 (19)0.0013 (18)0.0047 (18)
C330.025 (2)0.035 (3)0.063 (3)0.004 (2)0.016 (2)0.007 (2)
C340.028 (2)0.028 (2)0.049 (3)0.0015 (19)0.0008 (19)0.007 (2)
C350.041 (2)0.032 (2)0.034 (2)0.002 (2)0.0041 (19)0.0014 (19)
C360.037 (2)0.030 (2)0.023 (2)0.0001 (19)0.0021 (17)0.0044 (18)
C370.060 (3)0.039 (3)0.026 (2)0.003 (2)0.012 (2)0.006 (2)
C380.074 (3)0.035 (3)0.033 (3)0.002 (2)0.010 (2)0.014 (2)
C390.047 (3)0.044 (3)0.030 (2)0.002 (2)0.009 (2)0.006 (2)
C400.044 (3)0.071 (4)0.043 (3)0.014 (3)0.006 (2)0.019 (2)
C410.044 (3)0.092 (4)0.051 (3)0.010 (3)0.017 (2)0.016 (3)
C420.043 (3)0.073 (4)0.047 (3)0.013 (3)0.010 (2)0.023 (3)
C430.039 (3)0.049 (3)0.040 (3)0.009 (2)0.014 (2)0.015 (2)
C440.036 (3)0.058 (3)0.050 (3)0.006 (2)0.002 (2)0.000 (3)
C450.061 (3)0.041 (3)0.048 (3)0.013 (3)0.006 (2)0.008 (2)
C460.050 (3)0.037 (3)0.029 (2)0.002 (2)0.007 (2)0.004 (2)
C470.044 (3)0.039 (3)0.060 (3)0.006 (2)0.000 (2)0.008 (2)
C480.043 (3)0.037 (3)0.055 (3)0.002 (2)0.005 (2)0.012 (2)
C490.072 (3)0.044 (3)0.034 (3)0.010 (3)0.004 (2)0.008 (2)
C500.031 (2)0.045 (3)0.039 (2)0.009 (2)0.0007 (19)0.016 (2)
C510.030 (2)0.050 (3)0.049 (3)0.005 (2)0.0093 (19)0.013 (2)
C520.048 (3)0.048 (3)0.061 (3)0.013 (3)0.006 (2)0.021 (2)
N10.0260 (17)0.0250 (19)0.0287 (17)0.0017 (16)0.0035 (14)0.0056 (15)
N20.0292 (19)0.031 (2)0.0293 (18)0.0015 (16)0.0057 (14)0.0056 (15)
N30.0324 (18)0.027 (2)0.0312 (19)0.0006 (15)0.0030 (14)0.0053 (15)
N40.0291 (18)0.0274 (19)0.0330 (19)0.0000 (15)0.0001 (15)0.0060 (16)
N50.0355 (19)0.038 (2)0.034 (2)0.0030 (17)0.0036 (16)0.0019 (16)
N60.032 (2)0.049 (2)0.040 (2)0.0090 (17)0.0001 (16)0.0070 (18)
N70.041 (2)0.036 (2)0.033 (2)0.0015 (17)0.0034 (16)0.0122 (16)
N80.0280 (18)0.040 (2)0.0295 (18)0.0014 (17)0.0013 (15)0.0065 (16)
O10.0410 (17)0.065 (2)0.0262 (15)0.0090 (16)0.0081 (13)0.0039 (14)
O20.0513 (19)0.059 (2)0.0440 (18)0.0029 (17)0.0034 (15)0.0128 (16)
O30.059 (2)0.060 (2)0.0321 (17)0.0118 (17)0.0008 (15)0.0033 (15)
O40.0512 (19)0.057 (2)0.0329 (16)0.0155 (16)0.0173 (14)0.0052 (14)
O50.0422 (16)0.0345 (18)0.0314 (15)0.0035 (14)0.0045 (12)0.0116 (13)
O60.0459 (17)0.0438 (18)0.0438 (18)0.0069 (15)0.0142 (14)0.0014 (15)
O70.166 (4)0.107 (4)0.073 (3)0.072 (3)0.043 (3)0.062 (3)
O80.084 (3)0.164 (4)0.034 (2)0.058 (3)0.0053 (19)0.015 (2)
Zn20.0352 (3)0.0368 (3)0.0231 (3)0.0039 (2)0.0028 (2)0.0030 (2)
Zn10.0278 (2)0.0307 (3)0.0237 (3)0.0017 (2)0.00036 (19)0.0051 (2)
Geometric parameters (Å, º) top
C1—O21.223 (5)C31—C321.380 (5)
C1—O11.272 (4)C31—H310.9300
C1—C21.513 (5)C32—C331.371 (5)
C2—C31.372 (5)C32—C351.509 (5)
C2—C121.421 (5)C33—C341.368 (5)
C3—C41.402 (5)C33—H330.9300
C3—H30.9300C34—H340.9300
C4—C51.362 (5)C35—N31.477 (5)
C4—H40.9300C35—H35A0.9700
C5—C71.414 (5)C35—H35B0.9700
C5—C61.516 (5)C36—N41.316 (4)
C6—O31.231 (5)C36—N31.326 (5)
C6—O41.277 (5)C36—H360.9300
C7—C81.426 (5)C37—C381.339 (6)
C7—C121.431 (5)C37—N41.375 (5)
C8—C91.353 (6)C37—H370.9300
C8—H80.9300C38—N31.363 (5)
C9—C101.397 (6)C38—H380.9300
C9—H90.9300C39—N51.316 (5)
C10—C111.358 (5)C39—N61.323 (5)
C10—H100.9300C39—H390.9300
C11—C121.414 (5)C40—C411.342 (6)
C11—H110.9300C40—N51.361 (5)
C13—O61.228 (4)C40—H400.9300
C13—O51.275 (5)C41—N61.356 (5)
C13—C141.506 (5)C41—H410.9300
C14—C151.358 (5)C42—N61.474 (5)
C14—C241.432 (5)C42—C431.505 (6)
C15—C161.415 (6)C42—H42A0.9700
C15—H150.9300C42—H42B0.9700
C16—C171.354 (6)C43—C441.376 (6)
C16—H160.9300C43—C481.392 (6)
C17—C191.445 (6)C44—C451.382 (6)
C17—C181.527 (6)C44—H440.9300
C18—O81.220 (7)C45—C461.386 (6)
C18—O71.222 (6)C45—H450.9300
C19—C241.409 (5)C46—C471.363 (6)
C19—C201.420 (6)C46—C491.502 (6)
C20—C211.365 (6)C47—C481.364 (6)
C20—H200.9300C47—H470.9300
C21—C221.394 (6)C48—H480.9300
C21—H210.9300C49—N71.476 (5)
C22—C231.356 (5)C49—H49A0.9700
C22—H220.9300C49—H49B0.9700
C23—C241.412 (5)C50—N81.315 (5)
C23—H230.9300C50—N71.330 (5)
C25—N11.313 (4)C50—H500.9300
C25—N21.334 (4)C51—C521.328 (6)
C25—H250.9300C51—N81.371 (5)
C26—C271.343 (5)C51—H510.9300
C26—N11.377 (4)C52—N71.354 (5)
C26—H260.9300C52—H520.9300
C27—N21.367 (5)Zn1—O41.960 (3)
C27—H270.9300Zn1—O51.958 (2)
C28—N21.472 (5)Zn1—N12.038 (3)
C28—C291.507 (5)Zn1—N4i2.035 (3)
C28—H28A0.9700Zn2—O11.950 (2)
C28—H28B0.9700Zn2—O7ii2.224 (4)
C29—C301.384 (5)Zn2—O8ii2.256 (4)
C29—C341.395 (5)Zn2—N52.053 (3)
C30—C311.363 (5)Zn2—N8iii2.046 (3)
C30—H300.9300
O2—C1—O1123.8 (4)C32—C35—H35A109.3
O2—C1—C2120.3 (4)N3—C35—H35B109.3
O1—C1—C2115.9 (4)C32—C35—H35B109.3
C3—C2—C12119.6 (3)H35A—C35—H35B108.0
C3—C2—C1117.9 (4)N4—C36—N3112.5 (3)
C12—C2—C1122.4 (3)N4—C36—H36123.8
C2—C3—C4121.0 (4)N3—C36—H36123.8
C2—C3—H3119.5C38—C37—N4109.9 (4)
C4—C3—H3119.5C38—C37—H37125.1
C5—C4—C3121.3 (4)N4—C37—H37125.1
C5—C4—H4119.4C37—C38—N3106.6 (4)
C3—C4—H4119.4C37—C38—H38126.7
C4—C5—C7119.3 (4)N3—C38—H38126.7
C4—C5—C6119.5 (4)N5—C39—N6113.1 (3)
C7—C5—C6121.1 (4)N5—C39—H39123.5
O3—C6—O4124.5 (4)N6—C39—H39123.5
O3—C6—C5120.5 (4)C41—C40—N5110.0 (4)
O4—C6—C5115.0 (4)C41—C40—H40125.0
C5—C7—C8122.4 (4)N5—C40—H40125.0
C5—C7—C12120.1 (4)C40—C41—N6106.8 (4)
C8—C7—C12117.5 (3)C40—C41—H41126.6
C9—C8—C7122.3 (4)N6—C41—H41126.6
C9—C8—H8118.9N6—C42—C43111.2 (3)
C7—C8—H8118.9N6—C42—H42A109.4
C8—C9—C10119.6 (4)C43—C42—H42A109.4
C8—C9—H9120.2N6—C42—H42B109.4
C10—C9—H9120.2C43—C42—H42B109.4
C11—C10—C9120.6 (4)H42A—C42—H42B108.0
C11—C10—H10119.7C44—C43—C48118.6 (4)
C9—C10—H10119.7C44—C43—C42120.8 (4)
C10—C11—C12121.7 (4)C48—C43—C42120.6 (4)
C10—C11—H11119.2C43—C44—C45120.1 (4)
C12—C11—H11119.2C43—C44—H44120.0
C11—C12—C2123.4 (4)C45—C44—H44120.0
C11—C12—C7118.1 (4)C44—C45—C46121.0 (4)
C2—C12—C7118.4 (3)C44—C45—H45119.5
O6—C13—O5123.3 (4)C46—C45—H45119.5
O6—C13—C14119.9 (4)C47—C46—C45118.3 (4)
O5—C13—C14116.7 (3)C47—C46—C49120.8 (4)
C15—C14—C24119.1 (3)C45—C46—C49120.5 (4)
C15—C14—C13117.8 (3)C46—C47—C48121.6 (4)
C24—C14—C13123.0 (3)C46—C47—H47119.2
C14—C15—C16121.2 (4)C48—C47—H47119.2
C14—C15—H15119.4C47—C48—C43120.5 (4)
C16—C15—H15119.4C47—C48—H48119.7
C17—C16—C15121.2 (4)C43—C48—H48119.7
C17—C16—H16119.4N7—C49—C46114.5 (3)
C15—C16—H16119.4N7—C49—H49A108.6
C16—C17—C19119.4 (4)C46—C49—H49A108.6
C16—C17—C18118.6 (5)N7—C49—H49B108.6
C19—C17—C18122.0 (4)C46—C49—H49B108.6
O8—C18—O7121.5 (5)H49A—C49—H49B107.6
O8—C18—C17120.8 (6)N8—C50—N7110.9 (3)
O7—C18—C17117.8 (6)N8—C50—H50124.5
C24—C19—C20119.1 (4)N7—C50—H50124.5
C24—C19—C17118.9 (4)C52—C51—N8110.0 (4)
C20—C19—C17121.9 (4)C52—C51—H51125.0
C21—C20—C19120.8 (4)N8—C51—H51125.0
C21—C20—H20119.6C51—C52—N7106.4 (4)
C19—C20—H20119.6C51—C52—H52126.8
C20—C21—C22119.7 (4)N7—C52—H52126.8
C20—C21—H21120.1C25—N1—C26105.6 (3)
C22—C21—H21120.1C25—N1—Zn1123.8 (2)
C23—C22—C21120.7 (4)C26—N1—Zn1129.1 (2)
C23—C22—H22119.6C25—N2—C27107.0 (3)
C21—C22—H22119.6C25—N2—C28127.6 (3)
C22—C23—C24121.4 (4)C27—N2—C28125.3 (3)
C22—C23—H23119.3C36—N3—C38106.7 (3)
C24—C23—H23119.3C36—N3—C35125.6 (3)
C19—C24—C23118.0 (3)C38—N3—C35127.7 (3)
C19—C24—C14119.7 (3)C36—N4—C37104.4 (3)
C23—C24—C14122.1 (3)C36—N4—Zn1iii124.8 (3)
N1—C25—N2111.5 (3)C37—N4—Zn1iii130.5 (3)
N1—C25—H25124.2C39—N5—C40104.0 (3)
N2—C25—H25124.2C39—N5—Zn2127.9 (3)
C27—C26—N1109.2 (3)C40—N5—Zn2127.9 (3)
C27—C26—H26125.4C39—N6—C41106.0 (3)
N1—C26—H26125.4C39—N6—C42127.6 (4)
C26—C27—N2106.7 (3)C41—N6—C42126.4 (4)
C26—C27—H27126.7C50—N7—C52107.6 (4)
N2—C27—H27126.7C50—N7—C49125.3 (4)
N2—C28—C29113.7 (3)C52—N7—C49126.7 (4)
N2—C28—H28A108.8C50—N8—C51105.1 (3)
C29—C28—H28A108.8C50—N8—Zn2i124.8 (3)
N2—C28—H28B108.8C51—N8—Zn2i128.2 (3)
C29—C28—H28B108.8C1—O1—Zn2111.4 (2)
H28A—C28—H28B107.7C6—O4—Zn1111.6 (3)
C30—C29—C34117.6 (4)C13—O5—Zn1107.7 (2)
C30—C29—C28121.2 (3)C18—O7—Zn2iv91.5 (4)
C34—C29—C28121.2 (4)C18—O8—Zn2iv90.1 (4)
C31—C30—C29121.6 (4)O5—Zn1—O4131.58 (11)
C31—C30—H30119.2O5—Zn1—N4i98.42 (12)
C29—C30—H30119.2O4—Zn1—N4i108.08 (12)
C30—C31—C32120.4 (4)O5—Zn1—N1115.50 (11)
C30—C31—H31119.8O4—Zn1—N197.48 (12)
C32—C31—H31119.8N4i—Zn1—N1102.78 (12)
C33—C32—C31118.7 (4)O1—Zn2—N8iii111.14 (12)
C33—C32—C35120.4 (3)O1—Zn2—N599.11 (12)
C31—C32—C35120.8 (4)N8iii—Zn2—N5100.87 (13)
C34—C33—C32121.3 (4)O1—Zn2—O7ii140.89 (14)
C34—C33—H33119.4N8iii—Zn2—O7ii86.96 (15)
C32—C33—H33119.4N5—Zn2—O7ii111.53 (15)
C33—C34—C29120.4 (4)O1—Zn2—O8ii100.20 (14)
C33—C34—H34119.8N8iii—Zn2—O8ii143.68 (15)
C29—C34—H34119.8N5—Zn2—O8ii91.51 (14)
N3—C35—C32111.6 (3)O7ii—Zn2—O8ii56.80 (15)
N3—C35—H35A109.3
O2—C1—C2—C341.9 (5)C43—C44—C45—C460.3 (7)
O1—C1—C2—C3136.7 (4)C44—C45—C46—C470.1 (6)
O2—C1—C2—C12141.6 (4)C44—C45—C46—C49173.4 (4)
O1—C1—C2—C1239.8 (5)C45—C46—C47—C480.6 (6)
C12—C2—C3—C43.5 (6)C49—C46—C47—C48172.7 (4)
C1—C2—C3—C4173.1 (4)C46—C47—C48—C431.1 (7)
C2—C3—C4—C52.4 (6)C44—C43—C48—C470.8 (6)
C3—C4—C5—C75.4 (6)C42—C43—C48—C47177.1 (4)
C3—C4—C5—C6178.1 (4)C47—C46—C49—N7117.3 (4)
C4—C5—C6—O3129.8 (4)C45—C46—C49—N769.5 (5)
C7—C5—C6—O353.8 (5)N8—C51—C52—N70.4 (5)
C4—C5—C6—O450.0 (5)N2—C25—N1—C260.2 (4)
C7—C5—C6—O4126.5 (4)N2—C25—N1—Zn1167.0 (2)
C4—C5—C7—C8175.2 (4)C27—C26—N1—C250.0 (4)
C6—C5—C7—C81.3 (6)C27—C26—N1—Zn1166.2 (3)
C4—C5—C7—C122.5 (6)N1—C25—N2—C270.3 (4)
C6—C5—C7—C12179.0 (3)N1—C25—N2—C28177.9 (3)
C5—C7—C8—C9174.8 (4)C26—C27—N2—C250.3 (4)
C12—C7—C8—C93.0 (6)C26—C27—N2—C28178.0 (3)
C7—C8—C9—C101.1 (7)C29—C28—N2—C2588.0 (5)
C8—C9—C10—C113.9 (7)C29—C28—N2—C2794.2 (4)
C9—C10—C11—C122.5 (6)N4—C36—N3—C380.5 (4)
C10—C11—C12—C2178.3 (4)N4—C36—N3—C35179.6 (3)
C10—C11—C12—C71.7 (6)C37—C38—N3—C360.1 (5)
C3—C2—C12—C11170.5 (4)C37—C38—N3—C35179.8 (3)
C1—C2—C12—C1113.2 (6)C32—C35—N3—C36154.0 (3)
C3—C2—C12—C76.1 (5)C32—C35—N3—C3825.8 (5)
C1—C2—C12—C7170.3 (3)N3—C36—N4—C370.9 (4)
C5—C7—C12—C11173.6 (4)N3—C36—N4—Zn1iii174.6 (2)
C8—C7—C12—C114.2 (5)C38—C37—N4—C360.9 (5)
C5—C7—C12—C23.2 (5)C38—C37—N4—Zn1iii174.2 (3)
C8—C7—C12—C2179.0 (3)N6—C39—N5—C400.0 (5)
O6—C13—C14—C1533.3 (5)N6—C39—N5—Zn2176.0 (3)
O5—C13—C14—C15143.4 (3)C41—C40—N5—C390.9 (5)
O6—C13—C14—C24148.8 (3)C41—C40—N5—Zn2176.9 (3)
O5—C13—C14—C2434.5 (5)N5—C39—N6—C410.9 (5)
C24—C14—C15—C165.2 (6)N5—C39—N6—C42179.4 (4)
C13—C14—C15—C16172.7 (3)C40—C41—N6—C391.4 (6)
C14—C15—C16—C171.8 (6)C40—C41—N6—C42179.9 (4)
C15—C16—C17—C195.6 (6)C43—C42—N6—C39133.6 (5)
C15—C16—C17—C18178.2 (4)C43—C42—N6—C4148.2 (7)
C16—C17—C18—O8140.4 (5)N8—C50—N7—C520.4 (4)
C19—C17—C18—O843.5 (6)N8—C50—N7—C49173.3 (3)
C16—C17—C18—O739.4 (6)C51—C52—N7—C500.5 (5)
C19—C17—C18—O7136.7 (5)C51—C52—N7—C49173.1 (4)
C16—C17—C19—C242.3 (5)C46—C49—N7—C50112.5 (4)
C18—C17—C19—C24178.3 (4)C46—C49—N7—C5274.9 (6)
C16—C17—C19—C20173.2 (4)N7—C50—N8—C510.1 (4)
C18—C17—C19—C202.8 (6)N7—C50—N8—Zn2i165.0 (2)
C24—C19—C20—C213.7 (6)C52—C51—N8—C500.2 (5)
C17—C19—C20—C21171.8 (4)C52—C51—N8—Zn2i164.6 (3)
C19—C20—C21—C220.3 (6)O2—C1—O1—Zn22.5 (5)
C20—C21—C22—C232.6 (6)C2—C1—O1—Zn2176.0 (2)
C21—C22—C23—C241.0 (6)O3—C6—O4—Zn18.4 (5)
C20—C19—C24—C235.2 (5)C5—C6—O4—Zn1171.9 (2)
C17—C19—C24—C23170.5 (3)O6—C13—O5—Zn13.8 (4)
C20—C19—C24—C14179.7 (3)C14—C13—O5—Zn1179.6 (2)
C17—C19—C24—C144.6 (5)O8—C18—O7—Zn2iv4.1 (5)
C22—C23—C24—C192.9 (5)C17—C18—O7—Zn2iv176.0 (3)
C22—C23—C24—C14177.9 (3)O7—C18—O8—Zn2iv4.1 (5)
C15—C14—C24—C198.4 (5)C17—C18—O8—Zn2iv176.1 (4)
C13—C14—C24—C19169.4 (3)C1—O1—Zn2—N8iii67.2 (3)
C15—C14—C24—C23166.5 (3)C1—O1—Zn2—N5172.7 (3)
C13—C14—C24—C2315.6 (5)C1—O1—Zn2—O7ii45.5 (4)
N1—C26—C27—N20.1 (4)C1—O1—Zn2—O8ii94.1 (3)
N2—C28—C29—C3068.1 (5)C39—N5—Zn2—O110.9 (4)
N2—C28—C29—C34115.1 (4)C40—N5—Zn2—O1164.2 (4)
C34—C29—C30—C313.0 (6)C39—N5—Zn2—N8iii102.9 (4)
C28—C29—C30—C31173.8 (4)C40—N5—Zn2—N8iii82.0 (4)
C29—C30—C31—C320.1 (6)C39—N5—Zn2—O7ii166.1 (3)
C30—C31—C32—C332.9 (6)C40—N5—Zn2—O7ii9.0 (4)
C30—C31—C32—C35174.1 (4)C39—N5—Zn2—O8ii111.5 (4)
C31—C32—C33—C342.5 (6)C40—N5—Zn2—O8ii63.7 (4)
C35—C32—C33—C34174.6 (4)C13—O5—Zn1—O458.9 (3)
C32—C33—C34—C290.7 (6)C13—O5—Zn1—N4i177.7 (2)
C30—C29—C34—C333.4 (6)C13—O5—Zn1—N169.1 (2)
C28—C29—C34—C33173.4 (4)C6—O4—Zn1—O550.7 (3)
C33—C32—C35—N388.3 (4)C6—O4—Zn1—N4i69.0 (3)
C31—C32—C35—N388.7 (4)C6—O4—Zn1—N1175.1 (3)
N4—C37—C38—N30.6 (5)C25—N1—Zn1—O5104.5 (3)
N5—C40—C41—N61.4 (6)C26—N1—Zn1—O591.5 (3)
N6—C42—C43—C4480.0 (5)C25—N1—Zn1—O439.1 (3)
N6—C42—C43—C4896.2 (5)C26—N1—Zn1—O4124.9 (3)
C48—C43—C44—C450.1 (6)C25—N1—Zn1—N4i149.6 (3)
C42—C43—C44—C45176.4 (4)C26—N1—Zn1—N4i14.4 (3)
Symmetry codes: (i) x1, y1, z; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C12H6O4)(C14H14N4)]
Mr517.83
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4112 (5), 11.5745 (5), 19.1907 (9)
α, β, γ (°)96.319 (4), 93.869 (5), 100.628 (4)
V3)2249.95 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
22060, 9159, 4749
Rint0.051
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.096, 0.83
No. of reflections9159
No. of parameters631
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.44

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Zn1—O41.960 (3)Zn2—O7ii2.224 (4)
Zn1—O51.958 (2)Zn2—O8ii2.256 (4)
Zn1—N12.038 (3)Zn2—N52.053 (3)
Zn1—N4i2.035 (3)Zn2—N8iii2.046 (3)
O5—Zn1—O4131.58 (11)N8iii—Zn2—N5100.87 (13)
O5—Zn1—N4i98.42 (12)O1—Zn2—O7ii140.89 (14)
O4—Zn1—N4i108.08 (12)N8iii—Zn2—O7ii86.96 (15)
O5—Zn1—N1115.50 (11)N5—Zn2—O7ii111.53 (15)
O4—Zn1—N197.48 (12)O1—Zn2—O8ii100.20 (14)
N4i—Zn1—N1102.78 (12)N8iii—Zn2—O8ii143.68 (15)
O1—Zn2—N8iii111.14 (12)N5—Zn2—O8ii91.51 (14)
O1—Zn2—N599.11 (12)O7ii—Zn2—O8ii56.80 (15)
Symmetry codes: (i) x1, y1, z; (ii) x, y, z+1; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds