Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C14H12Br2Se2, (I), C14H12Cl2Se2, (II), and C14H14O2Se2, (III), feature a diselenide bridge between two o-benzyl bromide [in (I)], two o-benzyl chloride [in (II)] or two o-benzyl alcohol units [in (III)]. In the mol­ecular structure of (I) and in both independent mol­ecules of (II), close contacts are observed between the halogen centres and the diselenide unit. In the case of modification (IIIa), strong hydrogen bonds between the -OH groups dominate, whereas the molecular structures of modification (IIIb) and bis­{2-[(dimethyl­amino)meth­yl]phen­yl} diselenide, C18H24N2Se2, (IV), are comparable with those of (I) and (II). A correlation between the strength of the contacts and the angle between the benzene planes and the Se-Se units is found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109025682/gd3293sup1.cif
Contains datablocks I, II, IIIa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025682/gd3293Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025682/gd3293IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025682/gd3293IIIasup4.hkl
Contains datablock IIIa

CCDC references: 746084; 746085; 746086

Comment top

Organic selenides and diselenides tend to form close contacts with centres such as halogens (Iwaoka et al., 2000, 2005; Iwaoka, Katsuda et al., 2002; Iwaoka, Komatsu et al., 2002; Nakanishi et al., 1998) and chalcogens (Bleiholder et al., 2006, 2007; Gleiter et al., 2003, 2005; Mundt et al., 2006; Schulte et al., 2003; Werz et al., 2002a,b, 2008; Lari et al., 2009).

In bis[2-(bromomethyl)phenyl] diselenide, (I), and bis[2-(chloromethyl)phenyl] diselenide, (II), the halogen centres are properly situated to form contacts with the diselenide unit. Such an arrangement of an oxygen centre and a diselenide unit has also been reported for the structure of 2,2'-(diselenodi-ophenylene)dimethanol, (IIIb) (Tripathi et al., 2005). Similarly, an almost linear arrangement of two dimethylamine units and a diselenide bridge was reported for bis{2-[(dimethylamino)methyl]phenyl} diselenide, (IV) (Kaur et al., 1996). Common to all the conformations with contacts between the donor atoms and the diselenide unit is a rather small torsion angle between the benzene plane and the Se—Se vector. In addition to the selenium contacts, the OH groups of the 2,2'-diselenodibenzyl alcohol (III) provide the opportunity [have the potential?] to form intermolecular hydrogen bonds; such hydrogen bonds were found in the new modification (IIIa).

The molecular structures of (I) and (II) (Figs. 1 and 2, Tables 1 and 2) have in common a central Se1—Se2 unit which interacts with peripheral donor centres, Br in in (I) or Cl in in (II). A new modification of (III), denoted (IIIa) (Fig. 3, Table 3), was obtained when (III) was crystallized from a light petroleum/dichloromethane mixture, whereas the known modification (IIIb) (P21/n, Z = 4; Tripathi et al., 2005) was crystallized from toluene.

For (IIIa) we found no significant interactions between selenium and oxygen. The intramolecular Se···O distances are 3.687 (2) and 4.586 (2) Å, considerably longer than the sum of the van der Waals radii of Se and O. Interesting features of the solid-state structure of (IIIa) are not only O—H···O hydrogen bonds with O···O distances of 2.747 (3) Å, but also a short intermolecular Se···Se contact and an intermolecular Se···H contact involving a benzylic H atom (Table 3). These interactions cause a pairing of molecules (Fig. 3), and these pairs are linked into chains by a second pair of hydrogen bonds [O···O 2.790 (3) Å].

Table 4 presents a comparison of the geometric parameters related to the Se···X contacts of the three structures plus the data for the previously published structures (IIIb) (Tripathi et al., 2005) and (IV) (Kaur et al., 1996). For (I) and (II) one notices rather short Se···halogen contacts and an almost linear arrangement of this interaction with the Se1—Se2 bond direction. In the case of (IIIb) only one of the oxygen centres forms a short contact with the Se1—Se2 unit, with an almost linear Se1—Se2···O2 array. The other oxygen is situated at a distance of 4.637 (3) Å, which is much further than the van der Waals distance of 3.42 Å (Bondi, 1964). In the case of (IV) one finds short Se···N contacts and an almost linear arrangement of the N···Se—Se···N centres again. We notice a close relationship between the angles between the benzene planes and the Se–Se units and the strength of the contacts. In cases where these angles are near 90°, there are no contacts; for angles around 40° the contacts are in the range of the van der Waals distances; whereas smaller angles in the range of 20° to 10° result in even shorter contacts. We ascribe this to the fact that only a small torsion angle allows the donor atoms to approach the diselenide unit in the direction opposite to the Se—Se bond. We assume an attractive Se···X interaction composed of dispersion forces and directed forces between the lone pairs of the donor atoms with the σ*-acceptor orbital of the Se—Se bond (Bleiholder et al., 2006, 2007). However, the Se—Se distances do not seem to be affected by the interaction. If there is an effect on the Se—Se bond length it is compensated for by other influences.

The torsion angles between Se—C bonds along the Se—Se axis (C11—Se1—Se2—C21) are close to 90° in all cases. This conformation of the diselenide units is preferred due to the repulsion of the 4p lone pairs at the Se centres.

Related literature top

For related literature, see: Bleiholder et al. (2006, 2007); Bondi (1964); Gleiter & Werz (2005); Gleiter et al. (2003); Iwaoka et al. (2000, 2005); Iwaoka, Katsuda, Tomoda, Harada & Ogawa (2002); Iwaoka, Komatsu, Katsuda & Tomoda (2002); Kaur et al. (1996); Lari et al. (2009); Mundt et al. (2006); Nakanishi et al. (1998); Schulte et al. (2003); Tripathi et al. (2005); Werz et al. (2008); Werz et al. (2002a,b).

Experimental top

Compounds (I) and (II) were synthesized according to Iwaoka et al. (2005). Single crystals of (I) and (II) were obtained from a mixture of light petroleum and dichloromethane. The synthesis of (III) was carried out following the procedure described by Tripathi et al. (2005). Yellow crystals of (IIIa) crystallized in the triclinic space group P1.

Refinement top

H atoms were treated appropriate riding models for (I), (II), and (IIIa), except for the H atoms of the hydroxy groups of III a, which were refined isotropically. Both O–H distances refine to 0.74 (3) Å. Three reflections with very low Fobs, that were probably caught by the beam stop, were omitted for (I), and one such reflection was omitted for (II).

Computing details top

Data collection: SMART (Bruker, 2001) for (I); SMART (Bruker, 1995) for (II), (IIIa). Cell refinement: SAINT (Bruker, 2001) for (I); SAINT (Bruker, 1995) for (II), (IIIa). Data reduction: SAINT (Bruker, 2001) for (I); SAINT (Bruker, 1995) for (II), (IIIa). For all compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXTL (Sheldrick, 2008a); molecular graphics: SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). The Br–Se contacts are indicated as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two independent molecules of (II). The Cl–Se contacts are indicated as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of a pair of (IIIa). The upper molecule is generated by inversion across (0, 1, 0.5). Intermolecular Se···Se and Se···H contacts as well as the OH···O hydrogen bridges are indicated by dotted lines. The outward directed hydrogen bridges produce a chain of pairs. Displacement ellipsoids are drawn at the 50% probability level. Only selected H atoms are displayed.
(I) bis[2-(bromomethyl)phenyl] diselenide top
Crystal data top
C14H12Br2Se2F(000) = 1872
Mr = 497.98Dx = 2.157 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2113 reflections
a = 11.4093 (11) Åθ = 2.8–21.1°
b = 11.3589 (11) ŵ = 10.02 mm1
c = 24.176 (2) ÅT = 296 K
β = 101.861 (2)°Polyhedron, yellow
V = 3066.2 (5) Å30.13 × 0.11 × 0.04 mm
Z = 8
Data collection top
Bruker APEX CCD
diffractometer
2811 independent reflections
Radiation source: sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1313
Tmin = 0.346, Tmax = 0.670k = 1313
12556 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.033P)2 + 2.2551P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C14H12Br2Se2V = 3066.2 (5) Å3
Mr = 497.98Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.4093 (11) ŵ = 10.02 mm1
b = 11.3589 (11) ÅT = 296 K
c = 24.176 (2) Å0.13 × 0.11 × 0.04 mm
β = 101.861 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2811 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
1907 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.670Rint = 0.048
12556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
2811 reflectionsΔρmin = 0.46 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.69989 (5)0.09986 (5)0.79237 (3)0.0709 (2)
Se20.66190 (5)0.16135 (6)0.69936 (2)0.0667 (2)
Br10.76165 (6)0.06700 (6)0.95336 (3)0.0796 (2)
Br20.59633 (6)0.20433 (6)0.54549 (3)0.0829 (2)
C110.8094 (4)0.2200 (4)0.8287 (2)0.0488 (12)
C120.8942 (4)0.2660 (4)0.8022 (2)0.0571 (14)
H120.90020.23890.76660.069*
C130.9706 (4)0.3525 (5)0.8282 (2)0.0609 (14)
H131.02770.38400.81000.073*
C140.9630 (5)0.3922 (5)0.8805 (3)0.0643 (15)
H141.01500.45040.89790.077*
C150.8788 (5)0.3461 (5)0.9073 (2)0.0593 (14)
H150.87380.37390.94290.071*
C160.8012 (4)0.2594 (4)0.8823 (2)0.0505 (12)
C170.7082 (5)0.2129 (5)0.9124 (2)0.0621 (15)
H17A0.63470.19800.88510.074*
H17B0.69160.27170.93880.074*
C210.7897 (4)0.0882 (4)0.6696 (2)0.0493 (12)
C220.8508 (5)0.0075 (5)0.6956 (2)0.0603 (14)
H220.83370.03700.72900.072*
C230.9383 (5)0.0599 (5)0.6716 (3)0.0684 (17)
H230.97950.12520.68880.082*
C240.9644 (5)0.0162 (6)0.6229 (3)0.0742 (18)
H241.02360.05120.60710.089*
C250.9029 (5)0.0795 (5)0.5973 (2)0.0658 (15)
H250.92050.10830.56400.079*
C260.8150 (4)0.1344 (5)0.6200 (2)0.0543 (13)
C270.7543 (5)0.2406 (5)0.5922 (2)0.0719 (16)
H27A0.80410.27590.56860.086*
H27B0.74500.29750.62090.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0735 (4)0.0786 (4)0.0668 (4)0.0331 (3)0.0289 (3)0.0171 (3)
Se20.0494 (3)0.0867 (4)0.0625 (4)0.0136 (3)0.0081 (3)0.0183 (3)
Br10.0979 (5)0.0742 (4)0.0716 (4)0.0073 (4)0.0287 (4)0.0099 (3)
Br20.0640 (4)0.1060 (5)0.0743 (4)0.0093 (3)0.0042 (3)0.0123 (4)
C110.044 (3)0.047 (3)0.056 (3)0.009 (2)0.013 (2)0.005 (2)
C120.057 (3)0.059 (3)0.059 (3)0.008 (3)0.021 (3)0.009 (3)
C130.046 (3)0.060 (4)0.077 (4)0.012 (3)0.014 (3)0.003 (3)
C140.053 (3)0.055 (3)0.077 (4)0.008 (3)0.003 (3)0.014 (3)
C150.059 (3)0.059 (3)0.055 (3)0.000 (3)0.000 (3)0.010 (3)
C160.049 (3)0.057 (3)0.047 (3)0.006 (3)0.012 (2)0.001 (3)
C170.061 (4)0.072 (4)0.055 (3)0.004 (3)0.016 (3)0.002 (3)
C210.040 (3)0.052 (3)0.052 (3)0.001 (2)0.002 (2)0.017 (3)
C220.051 (3)0.070 (4)0.058 (3)0.010 (3)0.006 (3)0.003 (3)
C230.058 (4)0.058 (4)0.081 (5)0.012 (3)0.006 (3)0.014 (3)
C240.050 (4)0.083 (4)0.092 (5)0.001 (3)0.020 (3)0.032 (4)
C250.053 (3)0.082 (4)0.066 (4)0.007 (3)0.019 (3)0.019 (3)
C260.046 (3)0.054 (3)0.061 (3)0.001 (2)0.008 (3)0.005 (3)
C270.067 (4)0.071 (4)0.077 (4)0.011 (3)0.012 (3)0.001 (3)
Geometric parameters (Å, º) top
Se1—C111.935 (5)C17—H17A0.9700
Se1—Se22.3090 (9)C17—H17B0.9700
Se2—C211.941 (5)C21—C221.373 (7)
Br1—C171.963 (5)C21—C261.391 (7)
Br2—C271.964 (5)C22—C231.388 (7)
C11—C121.369 (6)C22—H220.9300
C11—C161.394 (7)C23—C241.366 (8)
C12—C131.377 (7)C23—H230.9300
C12—H120.9300C24—C251.370 (8)
C13—C141.360 (7)C24—H240.9300
C13—H130.9300C25—C261.386 (7)
C14—C151.369 (7)C25—H250.9300
C14—H140.9300C26—C271.482 (7)
C15—C161.378 (7)C27—H27A0.9700
C15—H150.9300C27—H27B0.9700
C16—C171.499 (7)
C11—Se1—Se2101.69 (15)H17A—C17—H17B108.0
C21—Se2—Se1103.12 (16)C22—C21—C26121.2 (5)
C12—C11—C16120.2 (5)C22—C21—Se2121.2 (4)
C12—C11—Se1120.7 (4)C26—C21—Se2117.6 (4)
C16—C11—Se1119.2 (4)C21—C22—C23119.3 (5)
C11—C12—C13120.0 (5)C21—C22—H22120.4
C11—C12—H12120.0C23—C22—H22120.4
C13—C12—H12120.0C24—C23—C22120.5 (5)
C14—C13—C12120.4 (5)C24—C23—H23119.7
C14—C13—H13119.8C22—C23—H23119.7
C12—C13—H13119.8C23—C24—C25119.7 (5)
C13—C14—C15119.9 (5)C23—C24—H24120.2
C13—C14—H14120.1C25—C24—H24120.2
C15—C14—H14120.1C24—C25—C26121.5 (6)
C14—C15—C16121.1 (5)C24—C25—H25119.2
C14—C15—H15119.5C26—C25—H25119.2
C16—C15—H15119.5C25—C26—C21117.8 (5)
C15—C16—C11118.5 (5)C25—C26—C27119.7 (5)
C15—C16—C17119.6 (5)C21—C26—C27122.5 (5)
C11—C16—C17121.9 (5)C26—C27—Br2112.3 (4)
C16—C17—Br1111.4 (3)C26—C27—H27A109.2
C16—C17—H17A109.4Br2—C27—H27A109.2
Br1—C17—H17A109.4C26—C27—H27B109.2
C16—C17—H17B109.4Br2—C27—H27B109.2
Br1—C17—H17B109.4H27A—C27—H27B107.9
C11—Se1—Se2—C2187.6 (2)Se1—Se2—C21—C2220.6 (4)
Se2—Se1—C11—C1237.8 (4)Se1—Se2—C21—C26161.1 (3)
Se2—Se1—C11—C16142.2 (4)C26—C21—C22—C230.8 (7)
C16—C11—C12—C130.8 (8)Se2—C21—C22—C23177.5 (4)
Se1—C11—C12—C13179.2 (4)C21—C22—C23—C240.6 (8)
C11—C12—C13—C140.5 (8)C22—C23—C24—C250.5 (8)
C12—C13—C14—C150.2 (8)C23—C24—C25—C260.6 (8)
C13—C14—C15—C160.3 (8)C24—C25—C26—C210.8 (8)
C14—C15—C16—C110.7 (8)C24—C25—C26—C27177.5 (5)
C14—C15—C16—C17178.6 (5)C22—C21—C26—C250.9 (7)
C12—C11—C16—C150.9 (7)Se2—C21—C26—C25177.4 (4)
Se1—C11—C16—C15179.1 (4)C22—C21—C26—C27177.4 (5)
C12—C11—C16—C17178.8 (5)Se2—C21—C26—C274.3 (6)
Se1—C11—C16—C171.2 (7)C25—C26—C27—Br2100.3 (5)
C15—C16—C17—Br197.0 (5)C21—C26—C27—Br281.5 (6)
C11—C16—C17—Br185.1 (5)
(II) bis[2-(chloromethyl)phenyl] diselenide top
Crystal data top
C14H12Cl2Se2Z = 4
Mr = 409.06F(000) = 792
Triclinic, P1Dx = 1.851 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9160 (2) ÅCell parameters from 5803 reflections
b = 8.0215 (1) Åθ = 1.8–23.0°
c = 23.4689 (4) ŵ = 5.38 mm1
α = 98.388 (1)°T = 200 K
β = 95.287 (1)°Platte, yellow
γ = 90.610 (1)°0.21 × 0.20 × 0.06 mm
V = 1467.58 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
6651 independent reflections
Radiation source: sealed tube4403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1010
Tmin = 0.390, Tmax = 0.724k = 1010
14837 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
6651 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C14H12Cl2Se2γ = 90.610 (1)°
Mr = 409.06V = 1467.58 (5) Å3
Triclinic, P1Z = 4
a = 7.9160 (2) ÅMo Kα radiation
b = 8.0215 (1) ŵ = 5.38 mm1
c = 23.4689 (4) ÅT = 200 K
α = 98.388 (1)°0.21 × 0.20 × 0.06 mm
β = 95.287 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6651 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
4403 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.724Rint = 0.056
14837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
6651 reflectionsΔρmin = 0.51 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se1A0.02252 (6)0.35676 (7)0.19834 (2)0.03901 (14)
Se2A0.13781 (7)0.47430 (6)0.28967 (2)0.04203 (15)
Cl1A0.09164 (17)0.24958 (19)0.04805 (6)0.0543 (4)
Cl2A0.20042 (18)0.60849 (17)0.44710 (6)0.0523 (4)
C11A0.2160 (5)0.2568 (6)0.1628 (2)0.0301 (11)
C12A0.3819 (6)0.2981 (6)0.1857 (2)0.0407 (12)
H12A0.40340.37390.22080.049*
C13A0.5159 (6)0.2280 (7)0.1571 (2)0.0456 (14)
H13A0.62910.25640.17280.055*
C14A0.4872 (6)0.1179 (7)0.1062 (2)0.0460 (14)
H14A0.57990.07030.08710.055*
C15A0.3223 (6)0.0774 (6)0.0833 (2)0.0415 (13)
H15A0.30200.00280.04790.050*
C16A0.1853 (6)0.1443 (6)0.1114 (2)0.0327 (11)
C17A0.0095 (6)0.0901 (7)0.0864 (2)0.0435 (13)
H17A0.05910.06850.11780.052*
H17B0.01390.01640.05930.052*
C21A0.1105 (5)0.2876 (6)0.33259 (19)0.0289 (10)
C22A0.1474 (6)0.1258 (6)0.3081 (2)0.0351 (11)
H22A0.18730.10680.27070.042*
C23A0.1261 (6)0.0078 (6)0.3380 (2)0.0381 (12)
H23A0.15140.11880.32140.046*
C24A0.0678 (6)0.0204 (6)0.3924 (2)0.0403 (12)
H24A0.05260.07170.41280.048*
C25A0.0315 (6)0.1814 (6)0.4170 (2)0.0361 (12)
H25A0.00810.19940.45440.043*
C26A0.0525 (5)0.3181 (6)0.3875 (2)0.0292 (10)
C27A0.0092 (6)0.4921 (6)0.4144 (2)0.0375 (12)
H27A0.06990.48420.44430.045*
H27B0.04790.55250.38440.045*
Se1B0.68828 (7)0.77512 (6)0.30381 (2)0.03980 (15)
Se2B0.71591 (6)0.76686 (7)0.20615 (2)0.04104 (15)
Cl1B0.68193 (18)0.82519 (19)0.45300 (6)0.0540 (4)
Cl2B0.69297 (17)0.70381 (17)0.04715 (6)0.0483 (3)
C11B0.6416 (5)1.0089 (5)0.3296 (2)0.0291 (10)
C12B0.6884 (6)1.1366 (6)0.2988 (2)0.0365 (12)
H12B0.74181.10990.26410.044*
C13B0.6549 (6)1.3042 (6)0.3201 (2)0.0426 (13)
H13B0.68401.39160.29920.051*
C14B0.5808 (6)1.3432 (6)0.3706 (2)0.0444 (13)
H14B0.56171.45760.38510.053*
C15B0.5337 (6)1.2169 (6)0.4006 (2)0.0417 (13)
H15B0.48081.24530.43530.050*
C16B0.5628 (6)1.0478 (6)0.3805 (2)0.0324 (11)
C17B0.5059 (6)0.9132 (7)0.4134 (2)0.0428 (13)
H17C0.44510.82200.38600.051*
H17D0.42550.96180.44090.051*
C21B0.4835 (5)0.7380 (6)0.1730 (2)0.0296 (10)
C22B0.3531 (6)0.8109 (6)0.2016 (2)0.0339 (11)
H22B0.37750.87780.23840.041*
C23B0.1868 (6)0.7887 (6)0.1776 (2)0.0395 (12)
H23B0.09740.83830.19810.047*
C24B0.1515 (6)0.6931 (6)0.1233 (2)0.0413 (13)
H24B0.03760.67740.10640.050*
C25B0.2825 (6)0.6210 (6)0.0942 (2)0.0388 (12)
H25B0.25740.55630.05700.047*
C26B0.4505 (6)0.6412 (6)0.1179 (2)0.0300 (11)
C27B0.5867 (6)0.5579 (6)0.0850 (2)0.0389 (12)
H27C0.53640.46270.05660.047*
H27D0.67080.51170.11200.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se1A0.0349 (3)0.0478 (3)0.0358 (3)0.0118 (2)0.0053 (2)0.0090 (2)
Se2A0.0623 (4)0.0267 (3)0.0375 (3)0.0023 (2)0.0091 (3)0.0032 (2)
Cl1A0.0450 (8)0.0666 (10)0.0486 (9)0.0124 (7)0.0071 (6)0.0058 (7)
Cl2A0.0594 (9)0.0407 (8)0.0529 (9)0.0092 (7)0.0060 (7)0.0058 (7)
C11A0.027 (2)0.034 (3)0.033 (3)0.000 (2)0.004 (2)0.015 (2)
C12A0.040 (3)0.041 (3)0.042 (3)0.001 (2)0.004 (2)0.009 (2)
C13A0.025 (3)0.060 (4)0.057 (4)0.001 (2)0.002 (2)0.026 (3)
C14A0.037 (3)0.056 (4)0.052 (4)0.016 (3)0.019 (3)0.022 (3)
C15A0.047 (3)0.043 (3)0.038 (3)0.009 (3)0.012 (3)0.011 (3)
C16A0.037 (3)0.032 (3)0.033 (3)0.002 (2)0.004 (2)0.013 (2)
C17A0.039 (3)0.053 (3)0.038 (3)0.004 (3)0.003 (2)0.007 (3)
C21A0.031 (3)0.027 (3)0.028 (3)0.003 (2)0.001 (2)0.005 (2)
C22A0.034 (3)0.032 (3)0.039 (3)0.007 (2)0.008 (2)0.001 (2)
C23A0.038 (3)0.022 (3)0.053 (4)0.002 (2)0.000 (3)0.007 (2)
C24A0.039 (3)0.036 (3)0.048 (3)0.004 (2)0.001 (2)0.018 (3)
C25A0.032 (3)0.045 (3)0.032 (3)0.004 (2)0.000 (2)0.008 (2)
C26A0.026 (2)0.030 (3)0.030 (3)0.005 (2)0.002 (2)0.001 (2)
C27A0.040 (3)0.041 (3)0.031 (3)0.005 (2)0.007 (2)0.000 (2)
Se1B0.0517 (3)0.0272 (3)0.0367 (3)0.0092 (2)0.0087 (2)0.0008 (2)
Se2B0.0255 (3)0.0530 (3)0.0389 (3)0.0042 (2)0.0017 (2)0.0116 (3)
Cl1B0.0565 (9)0.0628 (9)0.0477 (9)0.0171 (7)0.0076 (7)0.0223 (7)
Cl2B0.0480 (8)0.0542 (9)0.0431 (8)0.0032 (7)0.0135 (6)0.0027 (6)
C11B0.032 (3)0.021 (2)0.032 (3)0.0024 (19)0.011 (2)0.002 (2)
C12B0.034 (3)0.036 (3)0.037 (3)0.001 (2)0.004 (2)0.004 (2)
C13B0.044 (3)0.034 (3)0.048 (3)0.000 (2)0.012 (3)0.009 (3)
C14B0.040 (3)0.030 (3)0.058 (4)0.003 (2)0.006 (3)0.004 (3)
C15B0.033 (3)0.045 (3)0.043 (3)0.004 (2)0.004 (2)0.010 (3)
C16B0.028 (2)0.032 (3)0.034 (3)0.005 (2)0.004 (2)0.001 (2)
C17B0.039 (3)0.050 (3)0.042 (3)0.005 (2)0.006 (2)0.014 (3)
C21B0.026 (2)0.031 (3)0.031 (3)0.001 (2)0.001 (2)0.003 (2)
C22B0.031 (3)0.031 (3)0.038 (3)0.004 (2)0.005 (2)0.001 (2)
C23B0.026 (3)0.043 (3)0.051 (3)0.001 (2)0.010 (2)0.007 (3)
C24B0.031 (3)0.044 (3)0.048 (3)0.006 (2)0.008 (2)0.010 (3)
C25B0.045 (3)0.036 (3)0.034 (3)0.004 (2)0.007 (2)0.006 (2)
C26B0.034 (3)0.028 (3)0.029 (3)0.001 (2)0.004 (2)0.006 (2)
C27B0.050 (3)0.035 (3)0.030 (3)0.001 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Se1A—C11A1.937 (4)Se1B—C11B1.935 (4)
Se1A—Se2A2.3124 (8)Se1B—Se2B2.3140 (8)
Se2A—C21A1.944 (4)Se2B—C21B1.928 (4)
Cl1A—C17A1.819 (5)Cl1B—C17B1.810 (5)
Cl2A—C27A1.816 (5)Cl2B—C27B1.813 (5)
C11A—C12A1.391 (6)C11B—C16B1.396 (6)
C11A—C16A1.397 (7)C11B—C12B1.402 (6)
C12A—C13A1.389 (7)C12B—C13B1.401 (7)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.376 (8)C13B—C14B1.368 (7)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.383 (7)C14B—C15B1.382 (7)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.392 (6)C15B—C16B1.398 (6)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.494 (7)C16B—C17B1.504 (7)
C17A—H17A0.9900C17B—H17C0.9900
C17A—H17B0.9900C17B—H17D0.9900
C21A—C22A1.387 (6)C21B—C22B1.372 (6)
C21A—C26A1.397 (6)C21B—C26B1.409 (6)
C22A—C23A1.382 (6)C22B—C23B1.382 (6)
C22A—H22A0.9500C22B—H22B0.9500
C23A—C24A1.385 (7)C23B—C24B1.391 (7)
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.381 (7)C24B—C25B1.381 (7)
C24A—H24A0.9500C24B—H24B0.9500
C25A—C26A1.396 (6)C25B—C26B1.393 (6)
C25A—H25A0.9500C25B—H25B0.9500
C26A—C27A1.502 (6)C26B—C27B1.491 (6)
C27A—H27A0.9900C27B—H27C0.9900
C27A—H27B0.9900C27B—H27D0.9900
C11A—Se1A—Se2A103.20 (14)C11B—Se1B—Se2B103.60 (14)
C21A—Se2A—Se1A100.96 (14)C21B—Se2B—Se1B102.10 (14)
C12A—C11A—C16A119.9 (4)C16B—C11B—C12B120.7 (4)
C12A—C11A—Se1A122.1 (4)C16B—C11B—Se1B118.1 (3)
C16A—C11A—Se1A118.1 (3)C12B—C11B—Se1B121.2 (4)
C13A—C12A—C11A119.6 (5)C13B—C12B—C11B118.8 (5)
C13A—C12A—H12A120.2C13B—C12B—H12B120.6
C11A—C12A—H12A120.2C11B—C12B—H12B120.6
C14A—C13A—C12A121.1 (5)C14B—C13B—C12B120.7 (5)
C14A—C13A—H13A119.5C14B—C13B—H13B119.7
C12A—C13A—H13A119.5C12B—C13B—H13B119.7
C13A—C14A—C15A119.3 (5)C13B—C14B—C15B120.3 (5)
C13A—C14A—H14A120.3C13B—C14B—H14B119.9
C15A—C14A—H14A120.3C15B—C14B—H14B119.9
C14A—C15A—C16A120.9 (5)C14B—C15B—C16B120.9 (5)
C14A—C15A—H15A119.5C14B—C15B—H15B119.6
C16A—C15A—H15A119.5C16B—C15B—H15B119.6
C15A—C16A—C11A119.2 (5)C11B—C16B—C15B118.6 (4)
C15A—C16A—C17A118.9 (5)C11B—C16B—C17B121.9 (4)
C11A—C16A—C17A121.9 (4)C15B—C16B—C17B119.5 (5)
C16A—C17A—Cl1A111.5 (3)C16B—C17B—Cl1B112.2 (3)
C16A—C17A—H17A109.3C16B—C17B—H17C109.2
Cl1A—C17A—H17A109.3Cl1B—C17B—H17C109.2
C16A—C17A—H17B109.3C16B—C17B—H17D109.2
Cl1A—C17A—H17B109.3Cl1B—C17B—H17D109.2
H17A—C17A—H17B108.0H17C—C17B—H17D107.9
C22A—C21A—C26A120.9 (4)C22B—C21B—C26B120.4 (4)
C22A—C21A—Se2A119.5 (3)C22B—C21B—Se2B121.5 (4)
C26A—C21A—Se2A119.5 (3)C26B—C21B—Se2B118.1 (3)
C23A—C22A—C21A119.8 (5)C21B—C22B—C23B121.0 (5)
C23A—C22A—H22A120.1C21B—C22B—H22B119.5
C21A—C22A—H22A120.1C23B—C22B—H22B119.5
C22A—C23A—C24A119.9 (5)C22B—C23B—C24B119.5 (5)
C22A—C23A—H23A120.0C22B—C23B—H23B120.3
C24A—C23A—H23A120.0C24B—C23B—H23B120.3
C25A—C24A—C23A120.4 (5)C25B—C24B—C23B119.7 (5)
C25A—C24A—H24A119.8C25B—C24B—H24B120.1
C23A—C24A—H24A119.8C23B—C24B—H24B120.1
C24A—C25A—C26A120.5 (5)C24B—C25B—C26B121.5 (5)
C24A—C25A—H25A119.7C24B—C25B—H25B119.2
C26A—C25A—H25A119.7C26B—C25B—H25B119.2
C25A—C26A—C21A118.4 (4)C25B—C26B—C21B117.9 (4)
C25A—C26A—C27A119.9 (4)C25B—C26B—C27B119.2 (4)
C21A—C26A—C27A121.7 (4)C21B—C26B—C27B122.9 (4)
C26A—C27A—Cl2A110.2 (3)C26B—C27B—Cl2B111.6 (3)
C26A—C27A—H27A109.6C26B—C27B—H27C109.3
Cl2A—C27A—H27A109.6Cl2B—C27B—H27C109.3
C26A—C27A—H27B109.6C26B—C27B—H27D109.3
Cl2A—C27A—H27B109.6Cl2B—C27B—H27D109.3
H27A—C27A—H27B108.1H27C—C27B—H27D108.0
C11A—Se1A—Se2A—C21A90.15 (19)C11B—Se1B—Se2B—C21B85.08 (19)
Se2A—Se1A—C11A—C12A15.4 (4)Se2B—Se1B—C11B—C16B158.7 (3)
Se2A—Se1A—C11A—C16A166.7 (3)Se2B—Se1B—C11B—C12B22.5 (4)
C16A—C11A—C12A—C13A0.5 (7)C16B—C11B—C12B—C13B0.2 (7)
Se1A—C11A—C12A—C13A177.3 (4)Se1B—C11B—C12B—C13B178.6 (3)
C11A—C12A—C13A—C14A0.0 (8)C11B—C12B—C13B—C14B1.2 (7)
C12A—C13A—C14A—C15A0.3 (8)C12B—C13B—C14B—C15B1.7 (8)
C13A—C14A—C15A—C16A1.0 (8)C13B—C14B—C15B—C16B1.0 (8)
C14A—C15A—C16A—C11A1.4 (7)C12B—C11B—C16B—C15B0.9 (7)
C14A—C15A—C16A—C17A177.1 (4)Se1B—C11B—C16B—C15B177.9 (3)
C12A—C11A—C16A—C15A1.2 (7)C12B—C11B—C16B—C17B177.9 (4)
Se1A—C11A—C16A—C15A176.7 (3)Se1B—C11B—C16B—C17B3.3 (6)
C12A—C11A—C16A—C17A177.3 (4)C14B—C15B—C16B—C11B0.4 (7)
Se1A—C11A—C16A—C17A4.9 (6)C14B—C15B—C16B—C17B178.5 (4)
C15A—C16A—C17A—Cl1A102.3 (5)C11B—C16B—C17B—Cl1B75.0 (5)
C11A—C16A—C17A—Cl1A79.3 (5)C15B—C16B—C17B—Cl1B106.2 (5)
Se1A—Se2A—C21A—C22A42.9 (4)Se1B—Se2B—C21B—C22B34.6 (4)
Se1A—Se2A—C21A—C26A136.5 (3)Se1B—Se2B—C21B—C26B146.2 (3)
C26A—C21A—C22A—C23A0.3 (7)C26B—C21B—C22B—C23B1.3 (7)
Se2A—C21A—C22A—C23A179.1 (4)Se2B—C21B—C22B—C23B179.6 (4)
C21A—C22A—C23A—C24A0.1 (7)C21B—C22B—C23B—C24B1.0 (7)
C22A—C23A—C24A—C25A0.3 (7)C22B—C23B—C24B—C25B0.3 (7)
C23A—C24A—C25A—C26A0.2 (7)C23B—C24B—C25B—C26B0.2 (7)
C24A—C25A—C26A—C21A0.1 (7)C24B—C25B—C26B—C21B0.0 (7)
C24A—C25A—C26A—C27A178.8 (4)C24B—C25B—C26B—C27B178.9 (4)
C22A—C21A—C26A—C25A0.4 (7)C22B—C21B—C26B—C25B0.7 (7)
Se2A—C21A—C26A—C25A179.0 (3)Se2B—C21B—C26B—C25B179.9 (3)
C22A—C21A—C26A—C27A179.0 (4)C22B—C21B—C26B—C27B179.6 (4)
Se2A—C21A—C26A—C27A0.4 (6)Se2B—C21B—C26B—C27B1.3 (6)
C25A—C26A—C27A—Cl2A99.6 (4)C25B—C26B—C27B—Cl2B99.3 (4)
C21A—C26A—C27A—Cl2A81.8 (5)C21B—C26B—C27B—Cl2B81.8 (5)
(IIIa) 2,2'-(diselenodi-ophenylene)dimethanol top
Crystal data top
C14H14O2Se2Z = 2
Mr = 372.17F(000) = 364
Triclinic, P1Dx = 1.829 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4461 (2) ÅCell parameters from 4727 reflections
b = 8.9003 (3) Åθ = 2.2–21.0°
c = 9.7427 (3) ŵ = 5.46 mm1
α = 72.904 (1)°T = 200 K
β = 78.950 (1)°Polyhedron, yellow
γ = 76.978 (1)°0.24 × 0.16 × 0.10 mm
V = 675.81 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
3051 independent reflections
Radiation source: sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1010
Tmin = 0.336, Tmax = 0.581k = 1111
6951 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.1634P]
where P = (Fo2 + 2Fc2)/3
3051 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C14H14O2Se2γ = 76.978 (1)°
Mr = 372.17V = 675.81 (4) Å3
Triclinic, P1Z = 2
a = 8.4461 (2) ÅMo Kα radiation
b = 8.9003 (3) ŵ = 5.46 mm1
c = 9.7427 (3) ÅT = 200 K
α = 72.904 (1)°0.24 × 0.16 × 0.10 mm
β = 78.950 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3051 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
2667 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.581Rint = 0.029
6951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.60 e Å3
3051 reflectionsΔρmin = 0.52 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.32970 (3)0.83372 (3)0.42870 (2)0.02635 (9)
Se20.09747 (3)0.97156 (3)0.31659 (2)0.02662 (9)
O10.0427 (3)0.4895 (2)0.7814 (2)0.0342 (4)
O20.1712 (3)1.3434 (2)0.0417 (2)0.0379 (5)
H20.149 (5)1.374 (5)0.033 (4)0.059 (13)*
C110.3137 (3)0.6194 (3)0.4352 (2)0.0234 (5)
C120.4015 (3)0.5537 (3)0.3245 (3)0.0300 (6)
H120.46780.61460.24790.036*
C130.3932 (3)0.4003 (3)0.3251 (3)0.0375 (7)
H130.45350.35570.24910.045*
C140.2973 (3)0.3125 (3)0.4361 (3)0.0357 (6)
H140.29210.20690.43660.043*
C150.2078 (3)0.3768 (3)0.5477 (3)0.0293 (5)
H150.14100.31510.62300.035*
C160.2153 (3)0.5299 (3)0.5500 (2)0.0224 (5)
C170.1211 (3)0.6030 (3)0.6692 (3)0.0299 (5)
H17A0.19690.64310.71010.036*
H17B0.03750.69500.62880.036*
C210.1801 (3)0.9551 (3)0.1218 (2)0.0228 (5)
C220.1505 (3)0.8264 (3)0.0839 (3)0.0289 (5)
H220.09480.74940.15370.035*
C230.2023 (3)0.8097 (3)0.0559 (3)0.0361 (6)
H230.18320.72100.08160.043*
C240.2818 (3)0.9230 (4)0.1574 (3)0.0367 (7)
H240.31520.91340.25370.044*
C250.3128 (3)1.0502 (3)0.1191 (3)0.0312 (6)
H250.36871.12650.18970.037*
C260.2637 (3)1.0691 (3)0.0212 (2)0.0235 (5)
C270.3022 (3)1.2092 (3)0.0571 (3)0.0310 (6)
H27A0.32691.17580.15820.037*
H27B0.40151.24150.00720.037*
H10.022 (4)0.540 (4)0.819 (3)0.036 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03383 (15)0.02426 (14)0.02238 (13)0.00941 (11)0.00424 (10)0.00485 (10)
Se20.03208 (15)0.02168 (14)0.02143 (13)0.00077 (10)0.00146 (10)0.00489 (10)
O10.0405 (11)0.0269 (10)0.0270 (10)0.0066 (9)0.0078 (8)0.0019 (8)
O20.0521 (13)0.0267 (10)0.0314 (11)0.0019 (9)0.0067 (9)0.0082 (8)
C110.0276 (12)0.0205 (11)0.0225 (11)0.0008 (10)0.0080 (9)0.0060 (9)
C120.0303 (13)0.0370 (14)0.0228 (12)0.0042 (11)0.0015 (10)0.0105 (10)
C130.0395 (15)0.0384 (16)0.0397 (15)0.0066 (13)0.0110 (12)0.0246 (13)
C140.0417 (15)0.0255 (13)0.0458 (16)0.0011 (12)0.0137 (13)0.0185 (12)
C150.0335 (13)0.0212 (12)0.0340 (13)0.0045 (10)0.0079 (11)0.0064 (10)
C160.0249 (11)0.0212 (11)0.0209 (11)0.0012 (9)0.0060 (9)0.0057 (9)
C170.0386 (14)0.0267 (13)0.0242 (12)0.0090 (11)0.0024 (10)0.0081 (10)
C210.0246 (12)0.0214 (12)0.0209 (11)0.0008 (9)0.0041 (9)0.0050 (9)
C220.0304 (13)0.0254 (13)0.0310 (13)0.0068 (10)0.0043 (10)0.0062 (10)
C230.0377 (15)0.0376 (15)0.0407 (15)0.0031 (12)0.0103 (12)0.0213 (13)
C240.0349 (14)0.0494 (17)0.0261 (13)0.0055 (13)0.0065 (11)0.0188 (12)
C250.0271 (13)0.0381 (15)0.0237 (12)0.0018 (11)0.0015 (10)0.0052 (11)
C260.0209 (11)0.0237 (12)0.0227 (11)0.0001 (9)0.0042 (9)0.0033 (9)
C270.0310 (13)0.0280 (14)0.0326 (14)0.0076 (11)0.0036 (11)0.0048 (11)
Geometric parameters (Å, º) top
Se1—C111.924 (2)C15—C161.385 (3)
Se1—Se22.3441 (3)C15—H150.9500
Se2—C211.929 (2)C16—C171.504 (3)
Se2—Se2i3.7646 (5)C17—H17A0.9900
Se2—H17Bi3.0920C17—H17B0.9900
O1—O2i2.747 (3)C21—C221.387 (3)
O1—O2ii2.790 (3)C21—C261.400 (3)
O1—C171.424 (3)C22—C231.389 (4)
O1—H10.74 (3)C22—H220.9500
O2—C271.427 (3)C23—C241.382 (4)
O2—H20.74 (4)C23—H230.9500
C11—C121.387 (3)C24—C251.381 (4)
C11—C161.413 (3)C24—H240.9500
C12—C131.381 (4)C25—C261.399 (3)
C12—H120.9500C25—H250.9500
C13—C141.375 (4)C26—C271.505 (4)
C13—H130.9500C27—H27A0.9900
C14—C151.392 (4)C27—H27B0.9900
C14—H140.9500
C11—Se1—Se298.92 (7)C16—C17—H17B109.4
C21—Se2—Se199.06 (7)H17A—C17—H17B108.0
C21—Se2—Se2i174.82 (7)C22—C21—C26121.0 (2)
C17—O1—H1103 (3)C22—C21—Se2117.09 (18)
C27—O2—H2113 (3)C26—C21—Se2121.91 (17)
C12—C11—C16120.3 (2)C21—C22—C23120.1 (2)
C12—C11—Se1118.61 (19)C21—C22—H22119.9
C16—C11—Se1121.07 (17)C23—C22—H22119.9
C13—C12—C11120.4 (2)C24—C23—C22119.7 (3)
C13—C12—H12119.8C24—C23—H23120.2
C11—C12—H12119.8C22—C23—H23120.2
C14—C13—C12119.7 (2)C25—C24—C23120.1 (2)
C14—C13—H13120.2C25—C24—H24119.9
C12—C13—H13120.2C23—C24—H24119.9
C13—C14—C15120.7 (2)C24—C25—C26121.5 (3)
C13—C14—H14119.7C24—C25—H25119.3
C15—C14—H14119.7C26—C25—H25119.3
C16—C15—C14120.6 (3)C25—C26—C21117.6 (2)
C16—C15—H15119.7C25—C26—C27119.2 (2)
C14—C15—H15119.7C21—C26—C27123.3 (2)
C15—C16—C11118.3 (2)O2—C27—C26113.0 (2)
C15—C16—C17122.1 (2)O2—C27—H27A109.0
C11—C16—C17119.6 (2)C26—C27—H27A109.0
O1—C17—C16111.1 (2)O2—C27—H27B109.0
O1—C17—H17A109.4C26—C27—H27B109.0
C16—C17—H17A109.4H27A—C27—H27B107.8
O1—C17—H17B109.4
C11—Se1—Se2—C2174.30 (10)Se1—Se2—C21—C2292.33 (18)
Se2—Se1—C11—C1294.89 (18)Se1—Se2—C21—C2688.82 (18)
Se2—Se1—C11—C1685.27 (18)C26—C21—C22—C230.7 (4)
C16—C11—C12—C130.2 (4)Se2—C21—C22—C23178.10 (19)
Se1—C11—C12—C13179.92 (19)C21—C22—C23—C240.7 (4)
C11—C12—C13—C140.0 (4)C22—C23—C24—C251.4 (4)
C12—C13—C14—C150.3 (4)C23—C24—C25—C260.7 (4)
C13—C14—C15—C160.8 (4)C24—C25—C26—C210.7 (4)
C14—C15—C16—C111.0 (4)C24—C25—C26—C27179.4 (2)
C14—C15—C16—C17179.7 (2)C22—C21—C26—C251.4 (3)
C12—C11—C16—C150.7 (3)Se2—C21—C26—C25177.37 (17)
Se1—C11—C16—C15179.43 (17)C22—C21—C26—C27178.7 (2)
C12—C11—C16—C17179.9 (2)Se2—C21—C26—C272.5 (3)
Se1—C11—C16—C170.1 (3)C25—C26—C27—O294.1 (3)
C15—C16—C17—O16.4 (3)C21—C26—C27—O285.7 (3)
C11—C16—C17—O1174.3 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z+1.

Experimental details

(I)(II)(IIIa)
Crystal data
Chemical formulaC14H12Br2Se2C14H12Cl2Se2C14H14O2Se2
Mr497.98409.06372.17
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Triclinic, P1
Temperature (K)296200200
a, b, c (Å)11.4093 (11), 11.3589 (11), 24.176 (2)7.9160 (2), 8.0215 (1), 23.4689 (4)8.4461 (2), 8.9003 (3), 9.7427 (3)
α, β, γ (°)90, 101.861 (2), 9098.388 (1), 95.287 (1), 90.610 (1)72.904 (1), 78.950 (1), 76.978 (1)
V3)3066.2 (5)1467.58 (5)675.81 (4)
Z842
Radiation typeMo KαMo KαMo Kα
µ (mm1)10.025.385.46
Crystal size (mm)0.13 × 0.11 × 0.040.21 × 0.20 × 0.060.24 × 0.16 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Bruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Multi-scan
(SADABS; Sheldrick, 2008b)
Multi-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.346, 0.6700.390, 0.7240.336, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
12556, 2811, 1907 14837, 6651, 4403 6951, 3051, 2667
Rint0.0480.0560.029
(sin θ/λ)max1)0.6030.6480.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.082, 1.02 0.050, 0.100, 1.04 0.026, 0.071, 1.09
No. of reflections281166513051
No. of parameters163325171
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.460.49, 0.510.60, 0.52

Computer programs: SMART (Bruker, 2001), SMART (Bruker, 1995), SAINT (Bruker, 2001), SAINT (Bruker, 1995), SHELXTL (Sheldrick, 2008a).

Selected geometric parameters (Å, º) for (I) top
Se1—C111.935 (5)Se2—C211.941 (5)
Se1—Se22.3090 (9)
C11—Se1—Se2101.69 (15)C21—Se2—Se1103.12 (16)
C11—Se1—Se2—C2187.6 (2)
Selected geometric parameters (Å, º) for (II) top
Se1A—C11A1.937 (4)Se1B—C11B1.935 (4)
Se1A—Se2A2.3124 (8)Se1B—Se2B2.3140 (8)
Se2A—C21A1.944 (4)Se2B—C21B1.928 (4)
C11A—Se1A—Se2A103.20 (14)C11B—Se1B—Se2B103.60 (14)
C21A—Se2A—Se1A100.96 (14)C21B—Se2B—Se1B102.10 (14)
C11A—Se1A—Se2A—C21A90.15 (19)C11B—Se1B—Se2B—C21B85.08 (19)
Selected geometric parameters (Å, º) for (IIIa) top
Se1—C111.924 (2)Se2—H17Bi3.0920
Se1—Se22.3441 (3)O1—O2i2.747 (3)
Se2—C211.929 (2)O1—O2ii2.790 (3)
Se2—Se2i3.7646 (5)
C11—Se1—Se298.92 (7)C21—Se2—Se2i174.82 (7)
C21—Se2—Se199.06 (7)
C11—Se1—Se2—C2174.30 (10)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z+1.
Geometric parameters (Å, °) related to the Se—Se···X contacts of (I) (X = Br), (II) (X = Cl), (IIIa) and (IIIb) (X = O), and (IV) (X = N); also given in each case is the sum of the van der Waals radii rW (Bondi, 1964). top
Contacts(I)(II)(IIIa)(IIIb)(IV)
Se1···X13.828 (1)3.537 (2)/3.471 (2)nonenone2.856 (3)
Se2···X23.673 (1)3.681 (2)/3.679 (2)none3.008 (3)2.863 (4)
rW(Se) + rW(X)3.753.653.423.423.45
Angles
Se2—Se1···X1167.97 (3)166.39 (4) / 173.35 (4)--174.0 (1)
Se1—Se2···X2170.02 (3)162.51 (3) / 169.83 (3)-166.1 (1)172.7 (1)
Interplanar angles
Ph–C11/Se1/Se237.8 (2)14.3 (1)/21.7 (1)85.06 (6)77.1 (1)17.3
Ph–C21/Se2/Se119.7 (3)43.2(1 /34.1 (1)88.32 (6)11.1 (1)26.0
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds