Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the three isomeric salts, all C6H7N2O+·C6HCl2O4, of chloranilic acid (2,5-dichloro-3,6-dihydr­oxy-1,4-benzoquin­one) with 2-, 3- and 4-carbamoylpyridine, namely, 2-car­bamoyl­pyridinium hydrogen chloranilate (systematic name: 2-carbamoylpyridinium 2,5-dichloro-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), (I), 3-carbamoylpyridinium hydrogen chloranilate, (II), and 4-carbamoylpyridinium hydrogen chloranilate, (III), acid–base inter­actions involving H-atom transfer are observed. The shortest inter­actions between the cation and the anion in (I) and (II) are pyridinium N—H...(O,O) bifurcated hydrogen bonds, which act as the primary inter­molecular inter­action in each crystal structure. In (III), an amide N—H...(O,O) bifurcated hydrogen bond, which is much weaker than the bifurcated hydrogen bonds in (I) and (II), connects the cation and the anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010901525X/gd3286sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901525X/gd3286Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901525X/gd3286IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901525X/gd3286IIIsup4.hkl
Contains datablock III

CCDC references: 742175; 742176; 742177

Comment top

Chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone), a strong dibasic acid with hydrogen-bond donor and acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various pyridine derivatives (Ishida & Kashino, 1999a,b,c, 2002; Zaman et al., 1999, 2000, 2001, 2004), and as a model compound for investigating H-atom transfer in O—H···N and N—H···O hydrogen-bond systems (Nihei et al., 2000a,b; Ikeda et al., 2005; Suzuki et al., 2007; Gotoh et al., 2008; Seliger et al., 2009). Furthermore, salts and co-crystals of chloranilic acid with pyridine derivatives have recently attracted much interest with respect to organic ferroelectrics (Horiuchi, Ishii et al., 2005; Horiuchi, Kumai & Tokura, 2005; Asaji et al., 2007; Gotoh et al., 2007; Horiuchi & Tokura, 2008). In the present study, we have prepared three isomeric salts, C6H7N2O+.C6HCl2O4-, of chloranilic acid with picolinamide, nicotinamide and isonicotinamide, namely, 2-carbamoylpyridinium hydrogen chloranilate, (I), 3-carbamoylpyridinium hydrogen chloranilate, (II), and 4-carbamoylpyridinium hydrogen chloranilate, (III), in order to extend our studies of D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in chloranilic acid–substituted-pyridine systems (Tabuchi et al., 2005; Gotoh et al., 2006, 2009).

Compound (I) contains one protonated picolinamide cation and one hydrogen chloranilate monoanion, which are linked by a bifurcated pyridinium N1—H1···(O1,O4) hydrogen bond (Table 1). There is a dihedral angle of 64.42 (6)° between the pyridine N1/C7—C11 ring and the anion C1–C6 ring (Fig. 1). In the cation, the acetamide C12/O5/N2 plane makes a dihedral angle of 11.62 (4)° with the pyridine ring, which is comparable with the equivalent angles of 9.84 (8) and 19.35 (4)° in compounds (II) and (III), respectively. This suggests that the contribution of the intramolecular N—H···O hydrogen bond (N1—H1···O5) to the molecular conformation of (I) is small. Similar angles of 11.44 (6), 2.74 (6) and 10.61 (3)° between the carboxy plane and the pyridine ring are observed in, respectively, 2-carboxypyridinium hydrogen chloranilate (Gotoh et al., 2009), 3-carboxypyridinium hydrogen chloranilate (Ishida, 2009a) and 4-carboxypyridinium hydrogen chloranilate monohydrate (Ishida, 2009b), which also suggests a weak intramolecular N—H···O hydrogen bond between the pyridininum N—H and the carboxy O atom in 2-carboxypyridinium hydrogen chloranilate. The two components in (I) are further connected through a pair of O2—H2···(O3,O5iii) bifurcated hydrogen bonds (symmetry code as in Table 1), to form a centrosymmetric 2+2 aggregate (Fig. 2). One of the amide N—H···O hydrogen bonds (N2—H2B···O4ii; Table 1) connects the aggregates into a chain along the [101] direction (Fig. 3). The second amide N—H···O hydrogen bond (N2—H2A···O1i; Table 1) further connects the chains, forming a three-dimensional network. A weak C—H···(O,O) bifurcated interaction is also present (Table 1).

Although all intermolecular N—H···O and O—H···O hydrogen bonds corresponding to those in (I) are observed in (II) (Table 2), all the D···A distances of the hydrogen bonds in (II) are shorter than those in (I), so that the molecular packing motifs are quite different from each other (Figs. 4–6). In (II), the cations and the anions are separately stacked in columns along the b axis. Between the two components a bifurcated pyridinium N1—H1···(O1,O4) hydrogen bond and an O2—H2···(O3,O5iii) hydrogen bond (symmetry code as in Table 2) are present as the primary interactions, forming a zigzag supramolecular chain along the [111] direction (Fig. 5). The dihedral angle between the pyridine N1/C7—C11 ring and the anion C1–C6 ring is 71.59 (10)°. This packing motif is similar to that of 3-carboxypyridinium hydrogen chloranilate, which crystallizes in the same space group, Pc, and is effectively isostuctural (Tabuchi et al., 2005). The cations and anions are linked by the equivalent hydrogen bonds to form a chain. In 3-carboxypyridinium hydrogen chloranilate, the carboxy group of the cation and the carbonyl O of the anion form an additional strong O—H···O hydrogen bond, which further connects the supramolecular chains related to each other by a c-glide plane to form a three-dimensional hydrogen-bond network. On the other hand, in (II) the amide group of the cation forms two weak N—H···O hydrogen bonds as the secondary interaction. One amide N—H···O hydrogen bond (N2—H2A···O1i; Table 2) connects the neighbouring chains related by a b translation, giving a wavy layer expanding parallel to the (101) plane (Fig. 6). The neighbouring layers related to each other by a c-glide plane are further linked by the second amide N—H···O hydrogen bond (N2—H2B···O4ii; Table 2) to form a three-dimensional hydrogen-bond network.

Compound (III) also crystallizes in a non-centrosymmetric space group, Cc, where the basic hydrogen-bonded structure is quite different from those of (I) and (II). In (III), primary hydrogen bonds are formed between the cations (N1—H1···O5i; symmetry code as in Table 3) and between the anions [O2—H2···(O3,O4iii); Table 3], and each component affords a supramolecular zigzag chain along the [101] direction (Figs. 7 and 8). The cation and anion chains are alternately arranged and linked together through amide N—H···O hydrogen bonds [N2—H2A···(O1,O4) and N2—H2B···O3ii] and C—H···O hydrogen bonds (Table 3), forming a layer parallel to the (101) plane. In the layer, the cation and anion molecules are approximately coplanar, with a dihedral angle of 4.61 (5)° between the N1/C7–C11 and C1–C6 rings. A short Cl···Cl contact [Cl1···Cl2v = 3.1634 (5) Å; symmetry code: (v) x + 1/2, y + 1/2, z] is also observed in the layer. Between the layers, no significant interaction is observed; the shortest contact is C4···C7vi = 3.167 (2) Å [symmetry code: (vi) x + 1/2, y - 1/2, z + 1].

Experimental top

Crystals of (I) and (III) were obtained by slow evaporation from methanol solutions [40 and 100 ml for (I) and (III), respectively] of chloranilic acid with picolinamide or isonicotinamide in a 1:1 molar ratio [0.300 g of chloranilic acid and 0.176 g of picolinamide for (I), and 0.100 g of chloranilic acid and 0.058 g of isonicotinamide for (III)] at room temperature. Crystals of (II) were obtained by slow evaporation from a water–methanol (1:1 v/v) solution (140 ml) of chloranilic acid (0.302 g) and nicotinamide (0.179 g) at room temperature.

Refinement top

H atoms attached to O and N atoms were found in a difference Fourier map and refined isotropically (refined O—H and N—H distances are given in Tables 1–3). Other H atoms were treated as riding, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). For compounds (II) and (III), the correct orientations of the structures with respect to the polar-axis directions were determined by use of the Flack x parameters (Flack, 1983) [0.09 (6) and 0.00 (3) for (II) and (III), respectively]. The Hooft y parameters (Hooft et al., 2008) were evaluated to be 0.14 (2) and -0.008 (18), respectively, for (II) and (III).

Computing details top

For all compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A molecular view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The bifurcated N—H···(O,O) hydrogen bond is indicated by dashed lines.
[Figure 2] Fig. 2. The 2+2 aggregate of (I), formed by N—H···(O,O) and O—H···(O,O) bifurcated hydrogen bonds (dashed lines). [See Table 1 for symmetry code (iii)].
[Figure 3] Fig. 3. A partial packing diagram for (I), viewed approximately along the a axis, showing the hydrogen-bonded chain structure. Dashed lines show N—H···O and O—H···O hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (vi) x + 1, y, z + 1; see Table 1 for symmetry codes (ii) and (iii)].
[Figure 4] Fig. 4. A molecular view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The bifurcated N—H···(O,O) hydrogen bond is indicated by dashed lines.
[Figure 5] Fig. 5. The supramolecular chain of (II), formed by N—H···(O,O) and O—H···(O,O) bifurcated hydrogen bonds (dashed lines). [Symmetry code: (vi) x + 1, y + 1, z + 1; see Table 2 for symmetry code (iii)].
[Figure 6] Fig. 6. A partial packing diagram for (II), viewed approximately along the a axis, showing the hydrogen-bonded layer structure. Dashed lines show N—H···O, O—H···O and C—H···O hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (vii) x, y - 1, z; see Table 2 for symmetry codes (i) and (iii)].
[Figure 7] Fig. 7. A molecular view of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The bifurcated N—H···(O,O) hydrogen bond is indicated by dashed lines.
[Figure 8] Fig. 8. A packing diagram for (III), viewed along the c axis, showing the hydrogen-bonded layer structure. Dashed lines show N—H···O, O—H···O and C—H···O hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (iv) x + 1/2, -y + 3/2, z + 1/2; see Table 3 for symmetry codes (i), (ii) and (iii)].
(I) 2-carbamoylpyridinium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dienolate top
Crystal data top
C6H7N2O+·C6HCl2O4F(000) = 672.00
Mr = 331.11Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 9451 reflections
a = 9.3420 (5) Åθ = 3.3–30.0°
b = 12.4483 (8) ŵ = 0.54 mm1
c = 11.4167 (7) ÅT = 100 K
β = 108.8014 (17)°Platelet, black
V = 1256.83 (13) Å30.27 × 0.25 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2830 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.046
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 1213
Tmin = 0.875, Tmax = 0.902k = 1717
11008 measured reflectionsl = 1616
3596 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2416P]
where P = (Fo2 + 2Fc2)/3
3596 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C6H7N2O+·C6HCl2O4V = 1256.83 (13) Å3
Mr = 331.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3420 (5) ŵ = 0.54 mm1
b = 12.4483 (8) ÅT = 100 K
c = 11.4167 (7) Å0.27 × 0.25 × 0.19 mm
β = 108.8014 (17)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3596 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
2830 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.902Rint = 0.046
11008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.48 e Å3
3596 reflectionsΔρmin = 0.54 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47394 (5)0.18306 (4)0.08442 (4)0.02225 (12)
Cl20.44480 (5)0.58121 (4)0.25351 (4)0.02029 (12)
O10.71431 (14)0.26018 (11)0.14520 (11)0.0184 (3)
O20.24147 (14)0.35825 (11)0.13720 (11)0.0185 (3)
O30.23405 (14)0.52153 (11)0.00192 (12)0.0206 (3)
O40.70566 (14)0.42813 (11)0.28934 (11)0.0184 (3)
O51.02131 (15)0.48625 (12)0.26541 (12)0.0224 (3)
N10.96303 (17)0.31153 (12)0.38111 (14)0.0169 (3)
N21.19419 (18)0.54872 (14)0.44191 (15)0.0200 (3)
C10.60070 (19)0.31695 (14)0.11242 (16)0.0148 (3)
C20.47235 (19)0.29625 (14)0.00183 (16)0.0158 (3)
C30.35756 (18)0.36800 (14)0.03305 (15)0.0152 (3)
C40.34676 (19)0.46261 (14)0.04543 (16)0.0155 (3)
C50.46284 (19)0.47734 (14)0.15914 (15)0.0148 (3)
C60.59349 (19)0.41393 (14)0.19496 (15)0.0152 (3)
C71.08111 (18)0.37466 (15)0.44296 (16)0.0153 (3)
C81.1733 (2)0.34217 (15)0.55865 (16)0.0180 (4)
H81.25670.38510.60430.022*
C91.1421 (2)0.24578 (15)0.60717 (16)0.0185 (4)
H91.20520.22270.68630.022*
C101.0200 (2)0.18294 (15)0.54139 (17)0.0194 (4)
H100.99860.11700.57420.023*
C110.9297 (2)0.21924 (16)0.42613 (17)0.0199 (4)
H110.84450.17850.37940.024*
C121.09694 (19)0.47626 (15)0.37548 (16)0.0169 (3)
H10.898 (3)0.338 (2)0.311 (3)0.037 (7)*
H20.186 (3)0.417 (2)0.138 (3)0.042 (8)*
H2A1.210 (3)0.605 (2)0.407 (2)0.028 (6)*
H2B1.242 (3)0.541 (2)0.519 (2)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0244 (2)0.0201 (2)0.0202 (2)0.00393 (17)0.00431 (17)0.00576 (16)
Cl20.0193 (2)0.0223 (2)0.0184 (2)0.00231 (16)0.00478 (17)0.00651 (16)
O10.0182 (6)0.0175 (6)0.0190 (6)0.0024 (5)0.0053 (5)0.0011 (5)
O20.0175 (6)0.0195 (7)0.0155 (6)0.0009 (5)0.0010 (5)0.0024 (5)
O30.0175 (6)0.0224 (7)0.0192 (6)0.0051 (5)0.0023 (5)0.0007 (5)
O40.0159 (6)0.0218 (7)0.0148 (6)0.0006 (5)0.0013 (5)0.0003 (5)
O50.0257 (7)0.0233 (7)0.0158 (6)0.0040 (6)0.0033 (5)0.0018 (5)
N10.0159 (7)0.0171 (7)0.0156 (6)0.0010 (6)0.0019 (6)0.0002 (6)
N20.0236 (8)0.0188 (8)0.0167 (7)0.0036 (6)0.0053 (6)0.0016 (6)
C10.0157 (8)0.0150 (8)0.0143 (7)0.0001 (6)0.0056 (6)0.0028 (6)
C20.0178 (8)0.0139 (8)0.0152 (7)0.0005 (6)0.0047 (6)0.0022 (6)
C30.0150 (8)0.0173 (8)0.0131 (7)0.0014 (6)0.0044 (6)0.0001 (6)
C40.0167 (8)0.0153 (8)0.0150 (7)0.0016 (6)0.0059 (6)0.0000 (6)
C50.0177 (8)0.0131 (8)0.0137 (7)0.0005 (6)0.0052 (6)0.0023 (6)
C60.0157 (8)0.0166 (8)0.0137 (7)0.0014 (6)0.0054 (6)0.0015 (6)
C70.0130 (7)0.0175 (8)0.0157 (7)0.0001 (6)0.0049 (6)0.0011 (6)
C80.0158 (8)0.0209 (9)0.0155 (7)0.0004 (7)0.0024 (6)0.0027 (7)
C90.0205 (9)0.0181 (9)0.0154 (7)0.0017 (7)0.0035 (7)0.0009 (7)
C100.0195 (9)0.0195 (9)0.0193 (8)0.0002 (7)0.0063 (7)0.0017 (7)
C110.0161 (8)0.0225 (9)0.0195 (8)0.0029 (7)0.0033 (7)0.0004 (7)
C120.0162 (8)0.0169 (8)0.0181 (8)0.0007 (6)0.0065 (7)0.0006 (7)
Geometric parameters (Å, º) top
Cl1—C21.7218 (18)C1—C21.457 (3)
Cl2—C51.7257 (18)C2—C31.353 (3)
O1—C11.229 (2)C3—C41.503 (2)
O2—C31.332 (2)C4—C51.410 (2)
O2—H20.90 (3)C5—C61.399 (3)
O3—C41.248 (2)C7—C81.384 (2)
O4—C61.250 (2)C7—C121.513 (3)
O5—C121.233 (2)C8—C91.391 (3)
N1—C111.336 (2)C8—H80.9500
N1—C71.353 (2)C9—C101.388 (3)
N1—H10.89 (3)C9—H90.9500
N2—C121.330 (2)C10—C111.390 (3)
N2—H2A0.84 (2)C10—H100.9500
N2—H2B0.85 (2)C11—H110.9500
C1—C61.546 (2)
C3—O2—H2104 (2)O4—C6—C5125.59 (16)
C11—N1—C7123.41 (16)C1—C6—C5117.87 (15)
C11—N1—H1119.0 (17)O4—C6—C1116.53 (16)
C7—N1—H1117.1 (17)N1—C7—C8118.69 (17)
C12—N2—H2A118.8 (17)N1—C7—C12114.64 (15)
C12—N2—H2B123.1 (17)C8—C7—C12126.67 (16)
H2A—N2—H2B118 (2)C7—C8—C9119.08 (16)
O1—C1—C2123.44 (16)C7—C8—H8120.5
O1—C1—C6117.80 (15)C9—C8—H8120.5
C2—C1—C6118.75 (15)C10—C9—C8120.79 (16)
Cl1—C2—C1118.95 (13)C10—C9—H9119.6
Cl1—C2—C3121.60 (14)C8—C9—H9119.6
C1—C2—C3119.42 (16)C9—C10—C11118.12 (18)
O2—C3—C2122.87 (16)C9—C10—H10120.9
O2—C3—C4114.33 (15)C11—C10—H10120.9
C2—C3—C4122.75 (15)N1—C11—C10119.90 (17)
O3—C4—C3115.70 (15)N1—C11—H11120.0
O3—C4—C5126.17 (16)C10—C11—H11120.1
C3—C4—C5118.13 (16)O5—C12—N2125.04 (18)
Cl2—C5—C4118.13 (14)O5—C12—C7119.02 (16)
Cl2—C5—C6119.45 (13)N2—C12—C7115.94 (15)
C4—C5—C6122.37 (16)
O1—C1—C2—Cl13.3 (3)C3—C4—C5—Cl2176.18 (13)
O1—C1—C2—C3174.38 (17)C3—C4—C5—C66.5 (3)
C6—C1—C2—Cl1175.43 (13)Cl2—C5—C6—O43.4 (3)
C6—C1—C2—C36.9 (3)Cl2—C5—C6—C1175.92 (13)
O1—C1—C6—O40.7 (2)C4—C5—C6—O4173.89 (17)
O1—C1—C6—C5178.69 (16)C4—C5—C6—C16.8 (3)
C2—C1—C6—O4179.49 (16)C11—N1—C7—C80.4 (3)
C2—C1—C6—C50.1 (2)C11—N1—C7—C12179.28 (16)
Cl1—C2—C3—O22.2 (3)N1—C7—C8—C90.3 (3)
Cl1—C2—C3—C4174.88 (14)C12—C7—C8—C9179.94 (17)
C1—C2—C3—O2175.44 (16)C7—C8—C9—C100.4 (3)
C1—C2—C3—C47.5 (3)C8—C9—C10—C110.2 (3)
O2—C3—C4—O32.2 (2)C7—N1—C11—C101.0 (3)
O2—C3—C4—C5178.25 (16)C9—C10—C11—N10.9 (3)
C2—C3—C4—O3179.45 (17)N1—C7—C12—O511.7 (2)
C2—C3—C4—C51.0 (3)C8—C7—C12—O5168.63 (18)
O3—C4—C5—Cl24.3 (3)N1—C7—C12—N2168.49 (16)
O3—C4—C5—C6173.02 (18)C8—C7—C12—N211.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (3)2.32 (3)3.005 (2)133 (2)
N1—H1···O40.90 (3)2.07 (3)2.713 (2)128 (3)
N1—H1···O50.90 (3)2.32 (3)2.690 (2)105 (2)
N2—H2A···O1i0.84 (2)2.20 (3)3.033 (2)168 (2)
N2—H2B···O4ii0.85 (2)2.12 (2)2.919 (2)156 (3)
O2—H2···O30.90 (3)2.00 (3)2.5942 (19)123 (3)
O2—H2···O5iii0.90 (3)2.35 (3)3.098 (2)142 (3)
C10—H10···O3iv0.952.383.026 (2)125
C10—H10···O5v0.952.483.310 (2)146
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
(II) 3-carbamoylpyridinium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dienolate top
Crystal data top
C6H7N2O+·C6HCl2O4F(000) = 336.00
Mr = 331.11Dx = 1.702 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71075 Å
Hall symbol: P -2ycCell parameters from 5350 reflections
a = 9.9861 (5) Åθ = 3.3–29.9°
b = 6.1438 (3) ŵ = 0.53 mm1
c = 11.6027 (5) ÅT = 100 K
β = 114.8583 (16)°Platelet, black
V = 645.90 (5) Å30.38 × 0.27 × 0.08 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2991 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.019
ω scansθmax = 29.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1413
Tmin = 0.753, Tmax = 0.959k = 88
5606 measured reflectionsl = 1616
3191 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.1346P)2 + 0.041P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3191 reflectionsΔρmax = 0.45 e Å3
206 parametersΔρmin = 0.34 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1354 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (6)
Crystal data top
C6H7N2O+·C6HCl2O4V = 645.90 (5) Å3
Mr = 331.11Z = 2
Monoclinic, PcMo Kα radiation
a = 9.9861 (5) ŵ = 0.53 mm1
b = 6.1438 (3) ÅT = 100 K
c = 11.6027 (5) Å0.38 × 0.27 × 0.08 mm
β = 114.8583 (16)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2991 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.959Rint = 0.019
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149Δρmax = 0.45 e Å3
S = 1.01Δρmin = 0.34 e Å3
3191 reflectionsAbsolute structure: Flack (1983), with 1354 Friedel pairs
206 parametersAbsolute structure parameter: 0.09 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22309 (7)0.16092 (10)0.27861 (6)0.02023 (18)
Cl20.21745 (6)0.66069 (10)0.05064 (5)0.02024 (18)
O10.0159 (3)0.1613 (3)0.3310 (2)0.0165 (4)
O20.4633 (2)0.0115 (4)0.0309 (2)0.0195 (4)
O30.4588 (3)0.3384 (3)0.0955 (2)0.0201 (5)
O40.0276 (2)0.5097 (3)0.1963 (2)0.0178 (4)
O50.2959 (3)0.9866 (3)0.7990 (2)0.0192 (4)
N10.2091 (3)0.5482 (4)0.4386 (2)0.0161 (4)
N20.1189 (3)1.0973 (4)0.6108 (2)0.0217 (5)
C10.0932 (3)0.1973 (5)0.2316 (2)0.0118 (5)
C20.2246 (3)0.0611 (4)0.1873 (3)0.0159 (5)
C30.3419 (3)0.1077 (5)0.0779 (3)0.0160 (5)
C40.3420 (3)0.3060 (4)0.0000 (3)0.0145 (5)
C50.2134 (3)0.4371 (4)0.0417 (3)0.0148 (5)
C60.0904 (3)0.3968 (4)0.1522 (3)0.0143 (5)
C70.1760 (3)0.7230 (4)0.4914 (3)0.0168 (5)
H70.09200.80890.44280.020*
C80.2640 (3)0.7784 (4)0.6164 (3)0.0143 (5)
C90.3863 (3)0.6481 (4)0.6843 (3)0.0163 (5)
H90.44730.68030.77070.020*
C100.4192 (3)0.4712 (5)0.6260 (3)0.0204 (5)
H100.50390.38450.67140.024*
C110.3276 (3)0.4232 (4)0.5019 (3)0.0194 (5)
H110.34820.30190.46120.023*
C120.2275 (3)0.9650 (4)0.6827 (2)0.0145 (5)
H10.147 (6)0.513 (7)0.366 (5)0.030 (11)*
H20.528 (6)0.043 (8)0.046 (6)0.038 (12)*
H2A0.068 (5)1.065 (6)0.530 (4)0.016 (8)*
H2B0.092 (8)1.220 (9)0.647 (7)0.055 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0191 (3)0.0185 (3)0.0185 (3)0.0036 (2)0.0034 (3)0.0064 (2)
Cl20.0216 (4)0.0187 (3)0.0161 (3)0.0033 (2)0.0037 (2)0.0062 (2)
O10.0161 (10)0.0164 (10)0.0140 (9)0.0004 (7)0.0034 (8)0.0007 (7)
O20.0146 (9)0.0210 (10)0.0184 (9)0.0045 (8)0.0024 (8)0.0034 (8)
O30.0181 (11)0.0227 (11)0.0148 (9)0.0013 (8)0.0021 (8)0.0036 (7)
O40.0154 (9)0.0178 (10)0.0160 (9)0.0061 (8)0.0026 (7)0.0008 (7)
O50.0187 (9)0.0209 (9)0.0138 (9)0.0009 (8)0.0028 (7)0.0014 (7)
N10.0162 (10)0.0165 (9)0.0132 (9)0.0002 (9)0.0038 (8)0.0015 (8)
N20.0237 (12)0.0220 (12)0.0155 (11)0.0097 (10)0.0043 (10)0.0010 (10)
C10.0101 (12)0.0137 (10)0.0110 (10)0.0009 (9)0.0037 (9)0.0003 (9)
C20.0174 (12)0.0133 (10)0.0175 (11)0.0003 (10)0.0079 (10)0.0016 (10)
C30.0170 (13)0.0172 (11)0.0135 (11)0.0023 (11)0.0061 (10)0.0025 (10)
C40.0163 (14)0.0142 (10)0.0123 (11)0.0022 (10)0.0052 (10)0.0011 (10)
C50.0151 (12)0.0157 (11)0.0119 (10)0.0005 (10)0.0040 (10)0.0021 (10)
C60.0170 (12)0.0133 (10)0.0115 (10)0.0002 (10)0.0049 (9)0.0023 (10)
C70.0175 (11)0.0144 (10)0.0158 (11)0.0001 (9)0.0043 (9)0.0019 (9)
C80.0105 (12)0.0150 (10)0.0167 (10)0.0003 (10)0.0050 (9)0.0018 (10)
C90.0098 (11)0.0217 (12)0.0132 (10)0.0043 (9)0.0006 (9)0.0019 (9)
C100.0198 (13)0.0221 (12)0.0161 (12)0.0088 (11)0.0043 (10)0.0034 (10)
C110.0222 (13)0.0182 (11)0.0174 (12)0.0010 (10)0.0080 (10)0.0011 (10)
C120.0126 (11)0.0162 (11)0.0124 (10)0.0001 (9)0.0032 (9)0.0001 (8)
Geometric parameters (Å, º) top
Cl1—C21.723 (3)C1—C61.541 (4)
Cl2—C51.732 (3)C2—C31.347 (5)
O1—C11.229 (3)C3—C41.517 (4)
O2—C31.322 (4)C4—C51.418 (4)
O2—H20.92 (6)C5—C61.375 (5)
O3—C41.242 (4)C7—C81.386 (4)
O4—C61.275 (4)C7—H70.9500
O5—C121.237 (3)C8—C91.394 (3)
N1—C111.341 (4)C8—C121.508 (3)
N1—C71.345 (3)C9—C101.391 (4)
N1—H10.84 (6)C9—H90.9500
N2—C121.331 (4)C10—C111.374 (4)
N2—H2A0.88 (4)C10—H100.9500
N2—H2B0.96 (7)C11—H110.9500
C1—C21.456 (4)
C3—O2—H2110 (4)O4—C6—C5126.1 (3)
C11—N1—C7122.5 (2)C1—C6—C5117.9 (3)
C11—N1—H1121 (3)O4—C6—C1116.0 (3)
C7—N1—H1116 (3)N1—C7—C8120.3 (2)
C12—N2—H2A119 (3)N1—C7—H7119.9
C12—N2—H2B121 (4)C8—C7—H7119.9
H2A—N2—H2B120 (5)C7—C8—C9118.0 (2)
O1—C1—C2122.7 (3)C7—C8—C12122.6 (2)
O1—C1—C6118.2 (3)C9—C8—C12119.4 (2)
C2—C1—C6119.1 (2)C10—C9—C8120.2 (3)
Cl1—C2—C3121.8 (2)C10—C9—H9119.9
C1—C2—C3120.5 (3)C8—C9—H9119.9
Cl1—C2—C1117.7 (2)C11—C10—C9119.2 (3)
O2—C3—C2123.7 (3)C11—C10—H10120.4
O2—C3—C4115.4 (3)C9—C10—H10120.4
C2—C3—C4121.0 (3)N1—C11—C10119.8 (3)
O3—C4—C3115.2 (3)N1—C11—H11120.1
O3—C4—C5126.2 (3)C10—C11—H11120.1
C3—C4—C5118.7 (3)O5—C12—N2123.3 (3)
Cl2—C5—C6119.9 (2)O5—C12—C8119.8 (2)
C4—C5—C6122.8 (3)N2—C12—C8116.9 (2)
Cl2—C5—C4117.2 (2)
O1—C1—C2—Cl11.0 (4)C3—C4—C5—Cl2179.5 (2)
O1—C1—C2—C3179.7 (3)C3—C4—C5—C62.4 (5)
C6—C1—C2—Cl1179.8 (2)Cl2—C5—C6—O40.7 (5)
C6—C1—C2—C30.5 (4)Cl2—C5—C6—C1179.3 (2)
O1—C1—C6—O40.6 (4)C4—C5—C6—O4178.7 (3)
O1—C1—C6—C5179.4 (3)C4—C5—C6—C11.2 (4)
C2—C1—C6—O4179.8 (3)C11—N1—C7—C81.1 (4)
C2—C1—C6—C50.2 (4)N1—C7—C8—C90.1 (4)
Cl1—C2—C3—O20.8 (5)N1—C7—C8—C12176.5 (2)
Cl1—C2—C3—C4179.0 (2)C7—C8—C9—C101.3 (4)
C1—C2—C3—O2178.5 (3)C12—C8—C9—C10178.0 (3)
C1—C2—C3—C41.7 (5)C8—C9—C10—C111.7 (4)
O2—C3—C4—O33.3 (4)C7—N1—C11—C100.8 (4)
O2—C3—C4—C5177.6 (3)C9—C10—C11—N10.7 (4)
C2—C3—C4—O3176.5 (3)C7—C8—C12—O5168.7 (3)
C2—C3—C4—C52.7 (5)C9—C8—C12—O57.9 (4)
O3—C4—C5—Cl21.5 (4)C7—C8—C12—N210.0 (4)
O3—C4—C5—C6176.7 (3)C9—C8—C12—N2173.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.84 (5)2.47 (5)2.984 (3)121 (4)
N1—H1···O40.84 (5)1.82 (5)2.638 (3)164 (4)
N2—H2A···O1i0.88 (4)2.22 (4)2.991 (3)146 (4)
N2—H2B···O4ii0.96 (7)1.95 (6)2.899 (3)172 (6)
O2—H2···O30.92 (6)2.11 (5)2.613 (3)114 (5)
O2—H2···O5iii0.92 (6)1.95 (6)2.754 (3)146 (5)
C7—H7···O1i0.952.473.282 (3)143
C11—H11···O2iv0.952.473.206 (4)134
C11—H11···O5v0.952.483.370 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1/2; (iii) x1, y1, z1; (iv) x+1, y, z+1/2; (v) x, y+1, z1/2.
(III) 4-carbamoylpyridinium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dienolate top
Crystal data top
C6H7N2O+·C6HCl2O4F(000) = 672.00
Mr = 331.11Dx = 1.780 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 5726 reflections
a = 12.9482 (4) Åθ = 3.0–30.0°
b = 13.4993 (5) ŵ = 0.55 mm1
c = 7.0726 (3) ÅT = 100 K
β = 92.0130 (11)°Platelet, brown
V = 1235.47 (8) Å30.30 × 0.15 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3029 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.016
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1817
Tmin = 0.767, Tmax = 0.936k = 1818
5840 measured reflectionsl = 99
3185 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.1632P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3185 reflectionsΔρmax = 0.32 e Å3
206 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1411 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C6H7N2O+·C6HCl2O4V = 1235.47 (8) Å3
Mr = 331.11Z = 4
Monoclinic, CcMo Kα radiation
a = 12.9482 (4) ŵ = 0.55 mm1
b = 13.4993 (5) ÅT = 100 K
c = 7.0726 (3) Å0.30 × 0.15 × 0.12 mm
β = 92.0130 (11)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3185 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3029 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.936Rint = 0.016
5840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.32 e Å3
S = 1.08Δρmin = 0.23 e Å3
3185 reflectionsAbsolute structure: Flack (1983), with 1411 Friedel pairs
206 parametersAbsolute structure parameter: 0.00 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82353 (3)0.49898 (2)0.62098 (4)0.01496 (8)
Cl20.52574 (3)0.12870 (2)0.67726 (4)0.01469 (8)
O10.60208 (10)0.48768 (9)0.50689 (19)0.0168 (2)
O20.87005 (8)0.30674 (8)0.80235 (16)0.0135 (2)
O30.74709 (8)0.14775 (9)0.80503 (15)0.0135 (2)
O40.47454 (9)0.33097 (8)0.50806 (15)0.0144 (2)
O50.42357 (9)0.68220 (9)0.45444 (16)0.0169 (2)
N10.08597 (10)0.72797 (10)0.13127 (18)0.0137 (2)
N20.38330 (11)0.52215 (10)0.3900 (2)0.0156 (2)
C10.63604 (11)0.40974 (11)0.5729 (2)0.0109 (3)
C20.74192 (11)0.39932 (11)0.6435 (2)0.0111 (3)
C30.77542 (11)0.31451 (11)0.72668 (19)0.0103 (3)
C40.70662 (11)0.22381 (11)0.73503 (19)0.0109 (3)
C50.60406 (11)0.23260 (11)0.6640 (2)0.0114 (3)
C60.56272 (11)0.31904 (11)0.5798 (2)0.0110 (3)
C70.16801 (12)0.78916 (11)0.1567 (2)0.0137 (3)
H70.16300.85680.12020.016*
C80.25895 (12)0.75244 (11)0.2362 (2)0.0127 (3)
H80.31720.79460.25520.015*
C90.26472 (11)0.65279 (11)0.28849 (19)0.0103 (3)
C100.17939 (12)0.59147 (11)0.2575 (2)0.0132 (3)
H100.18270.52320.29020.016*
C110.08945 (13)0.63181 (11)0.1781 (2)0.0156 (3)
H110.03020.59120.15690.019*
C120.36499 (11)0.61842 (11)0.3846 (2)0.0114 (3)
H10.030 (2)0.7538 (18)0.066 (3)0.026 (6)*
H20.881 (2)0.247 (2)0.851 (4)0.036 (7)*
H2A0.445 (2)0.497 (2)0.444 (4)0.031 (7)*
H2B0.343 (2)0.482 (2)0.343 (4)0.037 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01137 (15)0.01028 (15)0.02300 (17)0.00293 (11)0.00284 (12)0.00281 (12)
Cl20.01059 (15)0.00918 (14)0.02406 (17)0.00280 (12)0.00274 (12)0.00177 (13)
O10.0139 (5)0.0105 (5)0.0255 (6)0.0001 (4)0.0053 (4)0.0036 (4)
O20.0087 (5)0.0119 (5)0.0197 (5)0.0006 (4)0.0038 (4)0.0027 (4)
O30.0123 (5)0.0088 (5)0.0194 (5)0.0002 (4)0.0014 (4)0.0018 (4)
O40.0101 (5)0.0123 (5)0.0204 (5)0.0001 (4)0.0060 (4)0.0001 (4)
O50.0145 (5)0.0135 (5)0.0223 (5)0.0028 (4)0.0058 (4)0.0014 (4)
N10.0102 (6)0.0150 (6)0.0158 (5)0.0036 (4)0.0022 (5)0.0008 (5)
N20.0112 (6)0.0112 (6)0.0238 (6)0.0014 (5)0.0064 (5)0.0006 (5)
C10.0101 (6)0.0104 (6)0.0121 (6)0.0006 (5)0.0010 (5)0.0002 (5)
C20.0096 (6)0.0088 (6)0.0148 (6)0.0027 (5)0.0021 (5)0.0004 (5)
C30.0083 (6)0.0110 (6)0.0114 (6)0.0001 (5)0.0009 (5)0.0016 (5)
C40.0112 (6)0.0095 (6)0.0120 (6)0.0011 (5)0.0008 (5)0.0011 (5)
C50.0093 (6)0.0084 (6)0.0164 (6)0.0027 (5)0.0005 (5)0.0001 (5)
C60.0095 (6)0.0103 (7)0.0131 (6)0.0001 (5)0.0007 (5)0.0011 (5)
C70.0161 (7)0.0101 (6)0.0149 (6)0.0024 (5)0.0002 (5)0.0013 (5)
C80.0133 (6)0.0105 (6)0.0144 (6)0.0004 (5)0.0005 (5)0.0000 (5)
C90.0097 (6)0.0103 (6)0.0106 (6)0.0013 (5)0.0016 (5)0.0005 (5)
C100.0110 (6)0.0116 (7)0.0168 (6)0.0002 (5)0.0020 (5)0.0013 (5)
C110.0124 (7)0.0139 (7)0.0204 (7)0.0015 (5)0.0026 (6)0.0017 (5)
C120.0085 (6)0.0135 (7)0.0120 (6)0.0007 (5)0.0011 (5)0.0008 (5)
Geometric parameters (Å, º) top
Cl1—C21.7216 (15)C1—C21.449 (2)
Cl2—C51.7353 (15)C2—C31.352 (2)
O1—C11.2263 (19)C3—C41.517 (2)
O2—C31.3239 (18)C4—C51.408 (2)
O2—H20.89 (3)C5—C61.407 (2)
O3—C41.2473 (19)C7—C81.379 (2)
O4—C61.2435 (18)C7—H70.9500
O5—C121.2388 (18)C8—C91.396 (2)
N1—C111.340 (2)C8—H80.9500
N1—C71.353 (2)C9—C101.392 (2)
N1—H10.92 (2)C9—C121.5168 (19)
N2—C121.321 (2)C10—C111.386 (2)
N2—H2A0.94 (3)C10—H100.9500
N2—H2B0.82 (3)C11—H110.9500
C1—C61.551 (2)
C3—O2—H2111.2 (17)O4—C6—C5127.60 (14)
C11—N1—C7122.63 (13)C1—C6—C5116.34 (12)
C11—N1—H1120.8 (15)O4—C6—C1116.05 (13)
C7—N1—H1116.1 (15)N1—C7—C8119.34 (13)
C12—N2—H2A120.9 (16)N1—C7—H7120.3
C12—N2—H2B122 (2)C8—C7—H7120.3
H2A—N2—H2B117 (3)C7—C8—C9119.43 (14)
O1—C1—C6118.52 (13)C7—C8—H8120.3
C2—C1—C6119.02 (13)C9—C8—H8120.3
O1—C1—C2122.45 (14)C10—C9—C8119.76 (13)
Cl1—C2—C3120.90 (11)C10—C9—C12123.42 (13)
C1—C2—C3121.16 (13)C8—C9—C12116.77 (13)
Cl1—C2—C1117.94 (11)C11—C10—C9118.75 (14)
O2—C3—C2121.42 (13)C11—C10—H10120.6
O2—C3—C4117.19 (12)C9—C10—H10120.6
C2—C3—C4121.39 (13)N1—C11—C10120.07 (14)
O3—C4—C3116.16 (12)N1—C11—H11120.0
O3—C4—C5126.07 (14)C10—C11—H11120.0
C3—C4—C5117.77 (13)O5—C12—N2124.42 (14)
Cl2—C5—C6118.61 (11)O5—C12—C9117.94 (13)
C4—C5—C6124.11 (13)N2—C12—C9117.63 (13)
Cl2—C5—C4117.27 (11)
O1—C1—C2—Cl13.5 (2)C3—C4—C5—Cl2179.19 (10)
O1—C1—C2—C3175.66 (15)C3—C4—C5—C62.4 (2)
C6—C1—C2—Cl1176.17 (10)Cl2—C5—C6—O41.3 (2)
C6—C1—C2—C34.7 (2)Cl2—C5—C6—C1179.67 (10)
O1—C1—C6—O43.4 (2)C4—C5—C6—O4177.12 (14)
O1—C1—C6—C5177.43 (14)C4—C5—C6—C11.9 (2)
C2—C1—C6—O4176.29 (13)C11—N1—C7—C80.9 (2)
C2—C1—C6—C52.87 (19)N1—C7—C8—C90.1 (2)
Cl1—C2—C3—O23.6 (2)C7—C8—C9—C100.9 (2)
Cl1—C2—C3—C4175.63 (10)C7—C8—C9—C12176.85 (13)
C1—C2—C3—O2175.57 (13)C8—C9—C10—C111.2 (2)
C1—C2—C3—C45.2 (2)C12—C9—C10—C11176.37 (14)
O2—C3—C4—O33.29 (19)C7—N1—C11—C100.5 (2)
O2—C3—C4—C5176.74 (12)C9—C10—C11—N10.5 (2)
C2—C3—C4—O3175.95 (13)C10—C9—C12—O5159.29 (15)
C2—C3—C4—C54.0 (2)C8—C9—C12—O518.4 (2)
O3—C4—C5—Cl20.9 (2)C10—C9—C12—N219.9 (2)
O3—C4—C5—C6177.57 (14)C8—C9—C12—N2162.45 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.92 (2)1.79 (2)2.6966 (18)173 (2)
N2—H2A···O10.94 (3)2.07 (3)2.9598 (19)158 (2)
N2—H2A···O40.94 (3)2.32 (3)2.9469 (18)124 (2)
N2—H2B···O3ii0.82 (3)2.16 (3)2.9424 (18)161 (3)
O2—H2···O30.89 (3)2.21 (3)2.6728 (16)112 (2)
O2—H2···O4iii0.89 (3)1.93 (3)2.6953 (15)144 (2)
C7—H7···O1i0.952.373.2959 (19)164
C10—H10···O3ii0.952.453.3599 (19)159
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H7N2O+·C6HCl2O4C6H7N2O+·C6HCl2O4C6H7N2O+·C6HCl2O4
Mr331.11331.11331.11
Crystal system, space groupMonoclinic, P21/cMonoclinic, PcMonoclinic, Cc
Temperature (K)100100100
a, b, c (Å)9.3420 (5), 12.4483 (8), 11.4167 (7)9.9861 (5), 6.1438 (3), 11.6027 (5)12.9482 (4), 13.4993 (5), 7.0726 (3)
β (°) 108.8014 (17) 114.8583 (16) 92.0130 (11)
V3)1256.83 (13)645.90 (5)1235.47 (8)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.540.530.55
Crystal size (mm)0.27 × 0.25 × 0.190.38 × 0.27 × 0.080.30 × 0.15 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.875, 0.9020.753, 0.9590.767, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
11008, 3596, 2830 5606, 3191, 2991 5840, 3185, 3029
Rint0.0460.0190.016
(sin θ/λ)max1)0.7030.7020.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.11 0.033, 0.149, 1.01 0.022, 0.061, 1.08
No. of reflections359631913185
No. of parameters206206206
No. of restraints022
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.540.45, 0.340.32, 0.23
Absolute structure?Flack (1983), with 1354 Friedel pairsFlack (1983), with 1411 Friedel pairs
Absolute structure parameter?0.09 (6)0.00 (3)

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (3)2.32 (3)3.005 (2)133 (2)
N1—H1···O40.90 (3)2.07 (3)2.713 (2)128 (3)
N1—H1···O50.90 (3)2.32 (3)2.690 (2)105 (2)
N2—H2A···O1i0.84 (2)2.20 (3)3.033 (2)168 (2)
N2—H2B···O4ii0.85 (2)2.12 (2)2.919 (2)156 (3)
O2—H2···O30.90 (3)2.00 (3)2.5942 (19)123 (3)
O2—H2···O5iii0.90 (3)2.35 (3)3.098 (2)142 (3)
C10—H10···O3iv0.952.383.026 (2)125
C10—H10···O5v0.952.483.310 (2)146
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.84 (5)2.47 (5)2.984 (3)121 (4)
N1—H1···O40.84 (5)1.82 (5)2.638 (3)164 (4)
N2—H2A···O1i0.88 (4)2.22 (4)2.991 (3)146 (4)
N2—H2B···O4ii0.96 (7)1.95 (6)2.899 (3)172 (6)
O2—H2···O30.92 (6)2.11 (5)2.613 (3)114 (5)
O2—H2···O5iii0.92 (6)1.95 (6)2.754 (3)146 (5)
C7—H7···O1i0.952.473.282 (3)143
C11—H11···O2iv0.952.473.206 (4)134
C11—H11···O5v0.952.483.370 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1/2; (iii) x1, y1, z1; (iv) x+1, y, z+1/2; (v) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.92 (2)1.79 (2)2.6966 (18)173 (2)
N2—H2A···O10.94 (3)2.07 (3)2.9598 (19)158 (2)
N2—H2A···O40.94 (3)2.32 (3)2.9469 (18)124 (2)
N2—H2B···O3ii0.82 (3)2.16 (3)2.9424 (18)161 (3)
O2—H2···O30.89 (3)2.21 (3)2.6728 (16)112 (2)
O2—H2···O4iii0.89 (3)1.93 (3)2.6953 (15)144 (2)
C7—H7···O1i0.952.373.2959 (19)164
C10—H10···O3ii0.952.453.3599 (19)159
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds