Download citation
Download citation
link to html
Bis(2,2,2-trinitro­ethyl) carbonate, C5H4N6O15, is an oxygen-rich compound (61.83% of mol­ecular weight) of interest with respect to energetic materials. The mol­ecule adopts an s–cis–s–cis conformation of the carbonate group. Intra- as well as inter­molecular C—H...O and dipolar nitro-group inter­actions account for its exceptionally high density of 1.975 Mg m−3. As a consequence of the relationship between structure and crystal density, this polymorph contains available oxygen in amounts even superior to liquid oxygen.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107066632/gd3179sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107066632/gd3179Isup2.hkl
Contains datablock I

CCDC reference: 681551

Comment top

To date, many new polynitro aliphatic compounds have been discovered. These compounds, which often are derivatives of trinitromethane, contain available oxygen in amounts never before attained in solid explosive compounds. We are interested in the development and testing of energetic materials. We are determining the structures of a number of high crystal density polynitro compounds as a preliminary step in an investigation of the relationships between structure and crystal density in energetic substances. Density is a critical parameter in the prediction of explosive performance parameters, such as velocity of detonation or detonation pressure.

The structure of the valuable compound bis(2,2,2-trinitroethyl) carbonate, (I), in the solid state has not previously been investigated. We have found that (I) at 100 K has an exceptionally high density of 1.975 Mg m-3, which is significantly higher than the reported value of 1.88 Mg m-3 (Hill, 1956). The asymmetric unit of (I) (Fig. 1) consists of one bis(2,2,2-trinitroethyl) carbonate molecule. The geometry in both trinitroethyl moieties is very similar, with a propeller-type orientation of the nitro groups (C3) bonded to the β-C atoms and the conformation of the substituents of the α- and β-C atoms being staggered. The bond lengths of the trinitroethyl units show unusual values in that the C—N bonds joining the three nitro groups to the β-C atom (Table 1) are significantly longer than the normal C—N bond distance of 1.47 Å (Shannon, 1976); the N—C—N bond angles are smaller (Table 1) than the tetrahedral value, whereas the corresponding N—C—C angles are greater (Table 1), as was similarily observed in the structure determinations of bis(2,2,2-trinitroethyl)urea (Lind, 1970) and 2,2,2-trinitroethanol (Göbel & Klapötke, 2007).

Early investigations into the structural properties of (I) using IR spectroscopy (Hall, 1968) could not settle the question of the molecular geometry adopted by the carbonate, with s–cis–s–cis, s–cis–s–trans or s–trans–s–trans conformations all being possible for organic carbonates. Short intramolecular C—H···O contacts are present (Table 2), associated with the s–cis–s–cis conformation. The bond lengths and angles of the carbonate moiety (Table 1) may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002). The extended structure of (I) involves intermolecular C—H···O hydrogen bonding (Table 2). The resulting bifurcated hydrogen bonding is displayed in Fig. 2.

Short intermolecular O···O distances with values substantially less than 3.04 Å, the sum of the van der Waals radii for O (1.52 Å; Bondi, 1964) are observed as a consequence of noncovalent dipolar nitro-group interactions. Dipolar nitro-group interactions were accepted for N···O contacts shorter than 3.17 Å. This value was chosen as the sum of the van der Waals radii of nitrogen and oxygen (Bondi, 1964) plus a tolerance value of 0.1 Å. Given these values, three dipolar nitro-group contacts were identified. These interactions were found for the N1/O4/O5 nitro group interacting with the N6/O14/O15 nitro group as well as with the N2/O6/O7 and the N3/O8/O9 nitro groups and finally for the N6/O14/O15 nitro group interacting with the N4/O10/O11 nitro group and the N5/O12/O13 nitro group, leading to O···O distances of 2.8317 (11) Å [O4···O7ii; symmetry code: (ii) -x + 3/2, y - 1/2, z], 2.8626 (12) Å [O5···O14iii; symmetry code: (iii) -x + 3/2, -y, z - 1/2] and 2.8381 (12) Å [O14···O12iiii; symmetry code: (iiii) x + 1/2, y, -z + 3/2]. The corresponding values for the N···O contacts are 3.0125 (11) Å (O4···N3ii), 2.9935 (12) Å (O5···N6iii) and 3.1045 (12) Å (O14···N4iiii).

The high oxygen content of (I), together with the intermolecular contacts (dipolar nitro-group interactions and hydrogen bonding) yield a high-crystal-density polymorph that displays an oxygen content of 1.221 Mg m-3, higher than the value 1.140 Mg m-3 (Holleman, 1995) in liquid oxygen at 90 K.

Related literature top

For related literature, see: Allen (2002); Bondi (1964); Göbel & Klapötke (2007); Hall (1968); Hill (1956); Holleman (1995); Lind (1970); Shannon (1976).

Experimental top

Caution: bis(2,2,2-trinitroethyl) carbonate is an energetic material. Proper protective measures [safety glasses, face shields, leather coat, earthing (equipment and person), Kevlar gloves and ear protectors] should be used when handling this material. Bis(2,2,2-trinitroethyl) carbonate (Hill, 1956) was prepared from the reaction of trinitroethanol with phosgene (Hall, 1968). The crystal growth was accomplished by concentration of a saturated CHCl3 solution at ambient temperature, yielding colourless single crystals.

Refinement top

H atoms were directly located in difference maps and then refined freely, giving a range of C—H distances of 0.923 (13)–0.966 (13) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg & Putz, 2005) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), together with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. N2 O atoms are labelled incorrectly
[Figure 2] Fig. 2. A centrosymemtric dimer containing two bis(2,2,2-trinitroethyl) carbonate molecules. The bifurcated hydrogen bonding is indicated by dashed lines. [Symmetry code: (i) -x + 1, -y, -z + 1].]
bis(2,2,2-trinitroethyl) carbonate top
Crystal data top
C5H4N6O15F(000) = 1568
Mr = 388.14Dx = 1.975 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5759 reflections
a = 10.8828 (2) Åθ = 3.7–32.3°
b = 11.4746 (2) ŵ = 0.20 mm1
c = 20.9073 (4) ÅT = 100 K
V = 2610.81 (8) Å3Triangular plate, colourless
Z = 80.18 × 0.17 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
2765 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 30.0°, θmin = 3.7°
ω scansh = 1513
12846 measured reflectionsk = 1611
3795 independent reflectionsl = 2129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
3795 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H4N6O15V = 2610.81 (8) Å3
Mr = 388.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.8828 (2) ŵ = 0.20 mm1
b = 11.4746 (2) ÅT = 100 K
c = 20.9073 (4) Å0.18 × 0.17 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
2765 reflections with I > 2σ(I)
12846 measured reflectionsRint = 0.025
3795 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 0.99Δρmax = 0.38 e Å3
3795 reflectionsΔρmin = 0.24 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.3686 (10)0.2456 (11)0.5439 (6)0.014 (3)*
H2B0.4240 (12)0.1334 (10)0.5126 (6)0.011 (3)*
H4A0.4584 (11)0.1715 (11)0.7031 (6)0.017 (3)*
H4B0.5670 (12)0.1028 (10)0.6729 (6)0.015 (3)*
C10.43634 (9)0.02260 (9)0.60920 (5)0.0123 (2)
C20.36168 (10)0.16376 (9)0.53759 (5)0.0122 (2)
C30.24022 (9)0.14251 (8)0.50397 (5)0.01087 (19)
C40.49053 (11)0.09783 (9)0.69622 (5)0.0142 (2)
C50.51345 (9)0.04047 (9)0.76071 (5)0.0129 (2)
N10.22602 (8)0.01774 (7)0.48014 (4)0.01249 (18)
N20.12991 (8)0.16707 (8)0.54660 (4)0.01453 (18)
N30.22827 (8)0.22014 (7)0.44539 (4)0.01318 (18)
N40.59469 (8)0.06766 (8)0.75644 (4)0.01551 (18)
N50.57242 (9)0.12303 (8)0.80806 (4)0.01640 (19)
N60.39188 (8)0.00038 (8)0.78950 (4)0.01512 (19)
O10.52104 (7)0.00527 (6)0.57650 (4)0.01538 (16)
O20.40148 (7)0.02641 (6)0.66476 (3)0.01448 (16)
O30.35593 (7)0.10894 (6)0.59871 (3)0.01366 (15)
O40.24523 (8)0.05702 (6)0.52031 (4)0.02044 (18)
O50.19703 (7)0.00315 (7)0.42498 (4)0.01894 (17)
O60.04168 (7)0.10346 (7)0.54118 (4)0.0274 (2)
O70.14032 (7)0.25140 (6)0.58146 (4)0.01880 (17)
O80.12754 (7)0.26055 (7)0.43389 (4)0.02010 (18)
O90.32251 (7)0.23232 (6)0.41497 (4)0.01766 (17)
O100.58438 (8)0.12474 (7)0.70779 (4)0.02207 (18)
O110.65962 (8)0.08911 (7)0.80214 (4)0.0253 (2)
O120.64279 (8)0.19342 (7)0.78468 (4)0.02372 (19)
O130.54623 (8)0.11084 (7)0.86410 (4)0.0250 (2)
O140.31547 (7)0.07659 (7)0.79429 (4)0.02226 (18)
O150.38146 (8)0.10227 (7)0.80339 (4)0.02193 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0133 (5)0.0132 (5)0.0105 (5)0.0010 (4)0.0029 (4)0.0021 (4)
C20.0135 (5)0.0132 (5)0.0099 (5)0.0003 (4)0.0006 (4)0.0009 (4)
C30.0125 (5)0.0094 (4)0.0107 (4)0.0006 (4)0.0016 (4)0.0003 (4)
C40.0175 (5)0.0142 (5)0.0109 (5)0.0031 (4)0.0020 (4)0.0003 (4)
C50.0130 (5)0.0144 (5)0.0112 (5)0.0013 (4)0.0007 (4)0.0020 (4)
N10.0117 (4)0.0118 (4)0.0140 (4)0.0004 (3)0.0005 (3)0.0012 (3)
N20.0133 (4)0.0149 (4)0.0154 (4)0.0015 (4)0.0025 (4)0.0015 (3)
N30.0162 (4)0.0106 (4)0.0128 (4)0.0011 (3)0.0025 (3)0.0002 (3)
N40.0153 (4)0.0161 (4)0.0152 (4)0.0006 (4)0.0002 (4)0.0009 (3)
N50.0180 (4)0.0175 (4)0.0137 (5)0.0004 (4)0.0020 (4)0.0035 (3)
N60.0154 (4)0.0210 (4)0.0089 (4)0.0015 (4)0.0007 (3)0.0009 (3)
O10.0165 (4)0.0178 (4)0.0118 (4)0.0034 (3)0.0014 (3)0.0004 (3)
O20.0148 (3)0.0189 (4)0.0098 (3)0.0025 (3)0.0005 (3)0.0024 (3)
O30.0154 (4)0.0165 (3)0.0090 (3)0.0042 (3)0.0001 (3)0.0005 (3)
O40.0303 (4)0.0118 (4)0.0192 (4)0.0005 (3)0.0043 (4)0.0032 (3)
O50.0251 (4)0.0182 (4)0.0135 (4)0.0024 (3)0.0043 (3)0.0034 (3)
O60.0159 (4)0.0273 (5)0.0392 (5)0.0078 (4)0.0079 (4)0.0079 (4)
O70.0226 (4)0.0149 (4)0.0189 (4)0.0022 (3)0.0053 (3)0.0038 (3)
O80.0173 (4)0.0206 (4)0.0224 (4)0.0061 (3)0.0058 (3)0.0025 (3)
O90.0197 (4)0.0175 (4)0.0158 (4)0.0004 (3)0.0048 (3)0.0030 (3)
O100.0261 (4)0.0202 (4)0.0200 (4)0.0035 (3)0.0017 (3)0.0072 (3)
O110.0249 (4)0.0282 (4)0.0228 (4)0.0063 (4)0.0095 (4)0.0014 (4)
O120.0257 (4)0.0220 (4)0.0235 (5)0.0100 (3)0.0012 (4)0.0029 (3)
O130.0291 (5)0.0347 (5)0.0113 (4)0.0045 (4)0.0005 (3)0.0045 (3)
O140.0170 (4)0.0305 (4)0.0193 (4)0.0059 (3)0.0020 (3)0.0001 (3)
O150.0260 (4)0.0205 (4)0.0194 (4)0.0067 (3)0.0042 (3)0.0017 (3)
Geometric parameters (Å, º) top
C1—O11.1915 (12)C5—N41.5262 (14)
C1—O31.3399 (12)C5—N61.5271 (13)
C1—O21.3451 (12)N1—O51.2073 (12)
C2—O31.4255 (12)N1—O41.2185 (11)
C2—C31.5168 (14)N2—O61.2115 (11)
C2—H2A0.951 (12)N2—O71.2167 (11)
C2—H2B0.923 (13)N3—O81.2142 (11)
C3—N31.5201 (13)N3—O91.2148 (11)
C3—N21.5214 (13)N4—O111.2136 (12)
C3—N11.5238 (13)N4—O101.2150 (11)
C4—O21.4294 (13)N5—O131.2138 (12)
C4—C51.5211 (15)N5—O121.2158 (12)
C4—H4A0.926 (13)N6—O151.2101 (12)
C4—H4B0.966 (13)N6—O141.2172 (12)
C5—N51.5131 (13)
O1—C1—O3127.57 (10)N5—C5—N6107.57 (8)
O1—C1—O2126.98 (9)C4—C5—N6109.88 (8)
O3—C1—O2105.46 (8)N4—C5—N6105.99 (8)
O3—C2—C3107.83 (8)O5—N1—O4127.27 (9)
O3—C2—H2A108.3 (8)O5—N1—C3117.98 (8)
C3—C2—H2A107.0 (7)O4—N1—C3114.75 (8)
O3—C2—H2B111.8 (7)O6—N2—O7127.52 (9)
C3—C2—H2B108.5 (7)O6—N2—C3117.32 (9)
H2A—C2—H2B113.1 (10)O7—N2—C3115.14 (8)
C2—C3—N3110.72 (8)O8—N3—O9127.93 (9)
C2—C3—N2112.73 (8)O8—N3—C3117.42 (8)
N3—C3—N2107.22 (8)O9—N3—C3114.64 (8)
C2—C3—N1113.01 (8)O11—N4—O10127.13 (10)
N3—C3—N1106.17 (8)O11—N4—C5117.13 (9)
N2—C3—N1106.59 (8)O10—N4—C5115.71 (8)
O2—C4—C5105.72 (8)O13—N5—O12127.78 (9)
O2—C4—H4A109.8 (8)O13—N5—C5117.37 (9)
C5—C4—H4A108.6 (8)O12—N5—C5114.84 (8)
O2—C4—H4B112.7 (7)O15—N6—O14128.12 (9)
C5—C4—H4B109.4 (7)O15—N6—C5118.19 (9)
H4A—C4—H4B110.4 (10)O14—N6—C5113.68 (8)
N5—C5—C4112.25 (8)C1—O2—C4116.48 (8)
N5—C5—N4107.55 (8)C1—O3—C2116.39 (8)
C4—C5—N4113.26 (8)
O3—C2—C3—N3167.33 (8)N5—C5—N4—O1124.40 (12)
O3—C2—C3—N247.23 (11)C4—C5—N4—O11149.03 (10)
O3—C2—C3—N173.72 (10)N6—C5—N4—O1190.42 (11)
O2—C4—C5—N5161.52 (8)N5—C5—N4—O10157.49 (9)
O2—C4—C5—N476.44 (10)C4—C5—N4—O1032.86 (12)
O2—C4—C5—N641.87 (11)N6—C5—N4—O1087.68 (10)
C2—C3—N1—O5128.80 (10)C4—C5—N5—O13147.46 (9)
N3—C3—N1—O57.25 (11)N4—C5—N5—O1387.31 (11)
N2—C3—N1—O5106.83 (10)N6—C5—N5—O1326.47 (12)
C2—C3—N1—O451.58 (11)C4—C5—N5—O1233.58 (13)
N3—C3—N1—O4173.13 (8)N4—C5—N5—O1291.65 (10)
N2—C3—N1—O472.79 (10)N6—C5—N5—O12154.57 (9)
C2—C3—N2—O6142.90 (9)N5—C5—N6—O15114.25 (10)
N3—C3—N2—O695.01 (10)C4—C5—N6—O15123.29 (10)
N1—C3—N2—O618.35 (12)N4—C5—N6—O150.57 (12)
C2—C3—N2—O738.81 (12)N5—C5—N6—O1467.11 (11)
N3—C3—N2—O783.29 (10)C4—C5—N6—O1455.36 (11)
N1—C3—N2—O7163.35 (8)N4—C5—N6—O14178.07 (8)
C2—C3—N3—O8141.99 (9)O1—C1—O2—C417.35 (15)
N2—C3—N3—O818.65 (11)O3—C1—O2—C4162.59 (8)
N1—C3—N3—O895.00 (10)C5—C4—O2—C1118.99 (9)
C2—C3—N3—O939.17 (11)O1—C1—O3—C29.22 (15)
N2—C3—N3—O9162.51 (8)O2—C1—O3—C2170.84 (8)
N1—C3—N3—O983.84 (10)C3—C2—O3—C1117.22 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.923 (13)2.448 (12)3.2598 (13)146.7 (10)
C4—H4B···O9i0.966 (13)2.651 (13)3.4532 (13)140.7 (9)
C4—H4B···O10.966 (13)2.359 (12)2.7392 (13)102.8 (8)
C2—H2B···O10.923 (13)2.330 (12)2.7261 (13)105.5 (8)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H4N6O15
Mr388.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.8828 (2), 11.4746 (2), 20.9073 (4)
V3)2610.81 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.17 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12846, 3795, 2765
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 0.99
No. of reflections3795
No. of parameters251
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg & Putz, 2005) and publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
C1—O11.1915 (12)C3—N11.5238 (13)
C1—O31.3399 (12)C4—O21.4294 (13)
C1—O21.3451 (12)C5—N51.5131 (13)
C2—O31.4255 (12)C5—N41.5262 (14)
C3—N31.5201 (13)C5—N61.5271 (13)
C3—N21.5214 (13)
O1—C1—O3127.57 (10)N5—C5—C4112.25 (8)
O1—C1—O2126.98 (9)N5—C5—N4107.55 (8)
O3—C1—O2105.46 (8)C4—C5—N4113.26 (8)
C2—C3—N3110.72 (8)N5—C5—N6107.57 (8)
C2—C3—N2112.73 (8)C4—C5—N6109.88 (8)
N3—C3—N2107.22 (8)N4—C5—N6105.99 (8)
C2—C3—N1113.01 (8)C1—O2—C4116.48 (8)
N3—C3—N1106.17 (8)C1—O3—C2116.39 (8)
N2—C3—N1106.59 (8)
O1—C1—O2—C417.35 (15)O1—C1—O3—C29.22 (15)
O3—C1—O2—C4162.59 (8)O2—C1—O3—C2170.84 (8)
C5—C4—O2—C1118.99 (9)C3—C2—O3—C1117.22 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.923 (13)2.448 (12)3.2598 (13)146.7 (10)
C4—H4B···O9i0.966 (13)2.651 (13)3.4532 (13)140.7 (9)
C4—H4B···O10.966 (13)2.359 (12)2.7392 (13)102.8 (8)
C2—H2B···O10.923 (13)2.330 (12)2.7261 (13)105.5 (8)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds