Download citation
Download citation
link to html
The bis-thiono­oxalamic acid esters trans-(±)-diethyl N,N′-(cyclo­hexane-1,2-di­yl)bis­(2-thio­oxamate), C14H22N2O4S2, and (±)-N,N′-diethyl (1,2-diphenyl­ethane-1,2-di­yl)bis­(2-thioox­amate), C22H24N2O4S2, both consist of conformationally flexible mol­ecules which adopt similar conformations with approximate C2 rotational symmetry. The thio­amide and ester parts of the thio­oxamate group are significantly twisted along the central C—C bond, with the S=C—C=O torsion angles in the range 30.94 (19)–44.77 (19)°. The twisted s-cis conformation of the thiono­oxamide groups facilitates assembly of mol­ecules into a one-dimensional polymeric structure via inter­molecular three-center C=S...NH...O=C hydrogen bonds and C—H...O inter­actions formed between mol­ecules of the opposite chirality.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049797/gd3156sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049797/gd3156Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049797/gd3156IIsup3.hkl
Contains datablock II

CCDC references: 672537; 672538

Comment top

The self-complementary oxamic acid ester functionality is considered as a good supramolecular building block and it is expected to form the R22 (10) hydrogen-bond motif by the interaction of two amide H atoms with two ester carbonyl groups (Blay et al., 2003). However, a survey of the structures collected in the Cambridge Structural Database (Allen, 2002; CSD version 5.8 plus three updates) showed that during the self-assembly process the C(4) chain motif involving only the amide units competes with the cyclic R22(10) motif (Piotrkowska et al., 2007). As the structural data of oxalamic acid esters are scarce, any generalizations about the robustness of their supramolecular synthons seem to be premature, and definitely more information about their supramolecular structures is needed. We focused our interest on bisthionooxamide esters expecting that, on the one hand, replacement of the amide carbonyl O atom by sulfur should enhance the acidity of the amide H atom, making it a stronger hydrogen-bond donor. On the other hand, this modification should promote hydrogen bonding to the ester carbonyl group, and thus also promote the cyclic R22 (10) motif, because the thiocarbonyl group is a weaker hydrogen-bond acceptor than the carbonyl group. Very recently, we have reported the crystal structures of four bisthionooxamide esters (Piotrkowska et al., 2007); in the crystal structures of the homochiral compounds derived from (1S, 2S)-1,2-diaminocyclohexane, S-(I), and (1R,2R)-1,2-diphenylethylenediamine, R-(II), the molecules assembled via the R22 (10) motif, forming right-handed helices and discrete dimeric assemblies, respectively.

In order to compare the self-assembly mode of enantiopure and racemic bisthionooxamide esters the racemic compounds, rac-(I) and rac-(II), were synthesized and their crystal structures were determined (Figs. 1 and 2). In the crystal structures, these symmetrical and conformationally flexible molecules are located at general positions; however, they adopt conformations that do not deviate much from C2 symmetry. In both molecules, the torsion angles N1—C1—C2—N2, C(3,7)—N1—C1—C2 and C1—C2—N2—C(4,11), determining to a large extent the molecular conformation, have similar values (Tables 1 and 3, and Figs. 1 and 2). The last two torsions are responsible for the orientation of the thioamide units relative to the plane of the –CH—CH– spacer. In rac-(II), the orientation of these groups is close to that observed in the homochiral crystals; the two torsion angles are 155.52 (12) and 156.60 (12)° in the racemic form, whereas in R-(II) they are in the range 155.8 (4)–166.4 (4)°. The difference is more pronounced in (I), where the C3—N1—C1—C2 and C1—C2—N2—C4 torsion angles are -151.70 (13) and -153.12 (13)° in rac-(I), whereas in the homochiral crystal S-(I) these angles are -94.5 (2)°, resulting in a nearly perpendicular orientation of the thioamide group relative to the mean cyclohexane ring plane. In the racemic and enantiopure forms of (I) and (II), the thionooxamide groups are significantly twisted, with a dihedral angle between the thioamide and ester parts in the range 23.01 (6)–45.72 (6)°. Surprisingly, in the homochiral crystals these groups were found in the s-trans conformation, whereas in the racemic forms they are always in the s-cis conformation, as indicated by the values of the S C—CO torsion angles (Tables 1 and 3).

As mentioned earlier, in the homochiral crystals of (I) and (II) (Piotrkowska et al., 2007) the hydrogen-bonded assemblies of molecules are formed via the R22 (10) hydrogen-bond motif. However, in the crystal structures of the racemic compounds, the molecules form one-dimensional polymeric structures via two antiparallel C(5) motifs generated by N—H···O interactions between molecules of the opposite chirality (Figs. 3a and 4a). The supramolecular assemblies in the racemic crystals of the two studied compounds are very similar. The N—H···O hydrogen bond is part of a three-center interaction, because each thioamide H atom forms, in addition to a short contact with the carbonyl O atom, a short contact to the thiocarbonyl S atom of the same thionooxamide unit (Tables 2 and 4, and Figs. 3 and 4). The aggregate of the (S,S) and (R,R) enantiomeric molecules is further stabilized by a C—H···O interaction between the carbonyl O atom and the methine CH group of the cyclohexane ring that is located on the same side of the ring as the N—H group. All of these attractive intermolecular interactions between the molecules of different chirality are optimized by a twisting of the thionooxamide groups.

To summarize, in the homo- and heterochiral crystals of symmetrical bis-thionooxalamic acid esters derived from trans-1,2-diaminocyclohexane or 1,2-diphenylethylenediamine, the thioamide H atom is involved in hydrogen bonding to the best acceptor, viz. the ester carbonyl O atom. In the enantiopure crystals this interaction leads to the expected cyclic R22 (10) motif, but in the case of racemic crystals, it generates a C(5) motif, assembling molecules into an achiral one-dimensional polymeric structure.

Related literature top

(type here to add)

For related literature, see: Allen (2002); Blay et al. (2003); Piotrkowska et al. (2007).

Experimental top

For the synthesis of rac-(I), to a solution of trans-(±)-1,2-diaminocyclohexane (1.14 g, 10 mmol) in chloroform (15 ml) were added ethyl chlorooxoacetate (2.3 ml, 20 mmol) and triethylamine (2.8 ml, 20 mmol), and the mixture was kept at room temperature overnight. The reaction mixture was washed with water, diluted hydrochloric acid and saturated aqueous NaHCO3. The organic layer was dried (MgSO4) and then evaporated at reduced pressure. The resulting solid was recrystallized from chloroform–hexane to obtain 2.1 g of the product (m.p. 446–448 K). The above product (2.0 g, 6 mmol) was refluxed with Lawesson's reagent (2.86 g, 7.0 mmol) in toluene (50 ml) for 0.5 h. After removal of the solvent, the residue was purified by column chromatography on silica gel with chloroform–hexane (1:1) as an eluant to give rac-(I) as yellow prisms [needle in CIF?] [yield 1.45 g, 70%; m.p. 384–386 K (toluene–hexane)]. 1H NMR (CDCl3): δ 9.18 (s, NH, 2H), 4.63 (br s, 2H), 4.35 (m, 4H), 2.29 (br s, 2H), 1.89 (br s, 2H), 1.45 (d, J = 7.8 Hz, 4H), 1.39 (t, J = 7.1 Hz, 6H); nmax(KBr, cm-1): 3292, 1702, 1269, 1246. Analysis calculated for C14H22N2O4S2 (346.5): C 48.54, H 6.39, N 8.09, S 18.51%; found: C 48.54, H 6.28, N 8.02, S 18.68%.

For the synthesis of rac-(II), the oxamide (m.p. 464–466 K) prepared in an analogous way from (±)-1,2-diphenylethylenediamine (1.46 g, 3.5 mmol) was refluxed with Lawesson's reagent (1.43 g, 3.5 mmol) in toluene (50 ml) for 0.5 h. The reaction mixture was allowed to cool to room temperature and the yellow precipitate was removed by filtration to give rac-(II) [yield 1.2 g, 77%; m.p. 431–433 K (ethanol)]. 1H NMR (CDCl3): δ 9.67 (br s, NH, 2H), 7.31–7.24 (m, 10H), 6.19 (dd, J = 5.9 and 2.9 Hz, 2H), 4.37 (m, 4H), 1.39 (t, J = 7.1 Hz, 6H); nmax(KBr, cm-1): 3236, 1739, 1725, 1269. Analysis calculated for C22H24N2O4S2 (444.5): C 59.44, H 5.44, N 6.30, S 14.43%; found: C 59.19, H 5.44, N 6.27, S 14.51%.

Refinement top

All H atoms were placed at calculated positions (C—H = 0.95–1.00 Å and N—H = 0.88 Å) and were refined as riding on their carrier atoms [Uiso(H) = 1.2Ueq(C,N), with the exception of methyl groups, where Uiso(H) = 1.5Ueq(C)].

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989) and Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (1S,2S) enantiomer in rac-(I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of the (1S,2S) enantiomer in rac-(II), with 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The crystal structure of rac-(I): (a) a one-dimensional aggregate of molecules formed via intermolecular three-center C S···NH···OC hydrogen bonds; (b) the packing of the molecules, viewed down the a axis. Hydrogen bonds are represented as dashed lines and only H atoms involved in the three-center interaction are shown.
[Figure 4] Fig. 4. The crystal structure of rac-(II): (a) a one-dimensional polymeric structure formed via intermolecular three-center C S···NH···OC hydrogen bonds; (b) the packing of the molecules, viewed down the a axis. Hydrogen bonds are represented as dashed lines and only H atoms involved in the three-center interaction are shown.
(I) trans-(±)-Diethyl N,N'-(1,2-cyclohexane-1,2-diyl)bis(2-thiooxamate) top
Crystal data top
C14H22N2O4S2Z = 2
Mr = 346.46F(000) = 368
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6438 (10) ÅCell parameters from 1822 reflections
b = 9.6656 (11) Åθ = 2–25°
c = 10.3316 (11) ŵ = 0.33 mm1
α = 85.068 (9)°T = 120 K
β = 63.887 (10)°Needle, prism
γ = 77.155 (9)°0.4 × 0.4 × 0.2 mm
V = 843.02 (18) Å3
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 4.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 119
Tmin = 0.840, Tmax = 0.935k = 1111
6232 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.2571P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H22N2O4S2γ = 77.155 (9)°
Mr = 346.46V = 843.02 (18) Å3
Triclinic, P1Z = 2
a = 9.6438 (10) ÅMo Kα radiation
b = 9.6656 (11) ŵ = 0.33 mm1
c = 10.3316 (11) ÅT = 120 K
α = 85.068 (9)°0.4 × 0.4 × 0.2 mm
β = 63.887 (10)°
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2587 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.935Rint = 0.016
6232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2957 reflectionsΔρmin = 0.25 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35976 (4)0.69933 (4)0.46565 (4)0.02187 (12)
S21.19840 (4)0.53228 (4)0.29613 (4)0.02021 (11)
N10.62809 (13)0.69442 (12)0.48528 (13)0.0139 (3)
H1N0.68040.68470.53810.017*
N20.92356 (13)0.50755 (12)0.30340 (13)0.0135 (3)
H2N0.85540.45420.31700.016*
O10.47309 (11)0.72452 (11)0.77377 (11)0.0170 (2)
O20.30209 (12)0.59896 (12)0.77384 (12)0.0245 (3)
O31.02185 (11)0.22440 (10)0.27997 (11)0.0156 (2)
O41.12998 (13)0.23753 (11)0.43211 (12)0.0230 (3)
C10.71027 (16)0.71874 (15)0.33006 (15)0.0140 (3)
H10.66490.67200.27940.017*
C20.88775 (16)0.65738 (15)0.26827 (15)0.0133 (3)
H20.93520.71230.31010.016*
C30.96125 (17)0.67708 (15)0.10400 (16)0.0164 (3)
H3A1.07530.63380.06220.020*
H3B0.91090.62860.06100.020*
C40.93827 (18)0.83488 (16)0.06865 (16)0.0184 (3)
H4A0.98230.84620.03720.022*
H4B0.99640.88140.10470.022*
C50.76336 (18)0.90689 (16)0.13711 (17)0.0214 (3)
H5A0.70870.87120.08920.026*
H5B0.75311.01050.12150.026*
C60.68366 (17)0.87894 (15)0.29946 (17)0.0185 (3)
H6A0.56900.91900.33770.022*
H6B0.72710.92710.34960.022*
C70.47662 (16)0.68664 (15)0.54806 (16)0.0154 (3)
C80.40673 (16)0.66322 (15)0.71070 (16)0.0164 (3)
C90.42059 (18)0.69739 (17)0.92856 (16)0.0201 (3)
H9A0.43500.59400.94610.024*
H9B0.30740.74100.98240.024*
C100.51870 (19)0.7615 (2)0.97764 (18)0.0280 (4)
H10A0.48640.74471.08080.042*
H10B0.50300.86390.96040.042*
H10C0.63040.71760.92360.042*
C111.05620 (16)0.44974 (15)0.31527 (15)0.0150 (3)
C121.07415 (16)0.29256 (15)0.35109 (15)0.0151 (3)
C131.01111 (18)0.07662 (15)0.32092 (17)0.0191 (3)
H13A0.93680.04840.29100.023*
H13B0.96810.06940.42710.023*
C141.16926 (19)0.02452 (16)0.25308 (18)0.0234 (4)
H14A1.15620.12150.28330.035*
H14B1.24260.00160.28410.035*
H14C1.21140.01920.14790.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01266 (19)0.0330 (2)0.0216 (2)0.00552 (16)0.00853 (16)0.00012 (17)
S20.01332 (19)0.0207 (2)0.0287 (2)0.00356 (15)0.01048 (17)0.00263 (16)
N10.0111 (6)0.0183 (6)0.0138 (6)0.0043 (5)0.0062 (5)0.0014 (5)
N20.0113 (6)0.0139 (6)0.0158 (6)0.0040 (5)0.0059 (5)0.0011 (5)
O10.0149 (5)0.0220 (6)0.0146 (5)0.0060 (4)0.0058 (4)0.0002 (4)
O20.0206 (6)0.0333 (6)0.0191 (6)0.0156 (5)0.0034 (5)0.0003 (5)
O30.0176 (5)0.0150 (5)0.0161 (5)0.0044 (4)0.0087 (4)0.0019 (4)
O40.0284 (6)0.0215 (6)0.0239 (6)0.0012 (5)0.0182 (5)0.0015 (5)
C10.0129 (7)0.0165 (7)0.0139 (7)0.0045 (6)0.0065 (6)0.0016 (6)
C20.0127 (7)0.0133 (7)0.0151 (8)0.0040 (6)0.0066 (6)0.0018 (6)
C30.0151 (7)0.0193 (8)0.0143 (8)0.0050 (6)0.0054 (6)0.0001 (6)
C40.0232 (8)0.0189 (8)0.0135 (8)0.0080 (6)0.0071 (6)0.0031 (6)
C50.0251 (8)0.0179 (8)0.0237 (9)0.0062 (6)0.0130 (7)0.0066 (7)
C60.0160 (7)0.0164 (8)0.0216 (8)0.0025 (6)0.0074 (6)0.0016 (6)
C70.0129 (7)0.0125 (7)0.0191 (8)0.0028 (6)0.0052 (6)0.0014 (6)
C80.0122 (7)0.0155 (7)0.0200 (8)0.0004 (6)0.0064 (6)0.0021 (6)
C90.0190 (8)0.0254 (8)0.0142 (8)0.0039 (6)0.0060 (6)0.0011 (6)
C100.0214 (8)0.0410 (10)0.0212 (9)0.0041 (7)0.0085 (7)0.0076 (8)
C110.0136 (7)0.0184 (8)0.0118 (7)0.0013 (6)0.0048 (6)0.0031 (6)
C120.0113 (7)0.0185 (7)0.0132 (7)0.0011 (6)0.0037 (6)0.0023 (6)
C130.0230 (8)0.0147 (7)0.0208 (8)0.0073 (6)0.0097 (7)0.0040 (6)
C140.0273 (9)0.0179 (8)0.0225 (9)0.0015 (7)0.0099 (7)0.0001 (7)
Geometric parameters (Å, º) top
S1—C71.6659 (15)C4—C51.531 (2)
S2—C111.6664 (14)C4—H4A0.9900
N1—C71.3291 (18)C4—H4B0.9900
N1—C11.4678 (18)C5—C61.535 (2)
N1—H1N0.8800C5—H5A0.9900
N2—C111.3312 (18)C5—H5B0.9900
N2—C21.4648 (18)C6—H6A0.9900
N2—H2N0.8800C6—H6B0.9900
O1—C81.3368 (18)C7—C81.528 (2)
O1—C91.4686 (18)C9—C101.508 (2)
O2—C81.2080 (18)C9—H9A0.9900
O3—C121.3362 (17)C9—H9B0.9900
O3—C131.4674 (17)C10—H10A0.9800
O4—C121.2110 (17)C10—H10B0.9800
C1—C21.5300 (19)C10—H10C0.9800
C1—C61.541 (2)C11—C121.522 (2)
C1—H11.0000C13—C141.512 (2)
C2—C31.538 (2)C13—H13A0.9900
C2—H21.0000C13—H13B0.9900
C3—C41.528 (2)C14—H14A0.9800
C3—H3A0.9900C14—H14B0.9800
C3—H3B0.9900C14—H14C0.9800
C7—N1—C1121.67 (12)C1—C6—H6A109.4
C7—N1—H1N119.2C5—C6—H6B109.4
C1—N1—H1N119.2C1—C6—H6B109.4
C11—N2—C2121.92 (12)H6A—C6—H6B108.0
C11—N2—H2N119.0N1—C7—C8115.68 (12)
C2—N2—H2N119.0N1—C7—S1126.01 (12)
C8—O1—C9115.03 (11)C8—C7—S1118.31 (10)
C12—O3—C13116.13 (11)O2—C8—O1124.61 (14)
N1—C1—C2112.62 (11)O2—C8—C7123.49 (13)
N1—C1—C6110.12 (12)O1—C8—C7111.89 (12)
C2—C1—C6109.01 (11)O1—C9—C10107.65 (12)
N1—C1—H1108.3O1—C9—H9A110.2
C2—C1—H1108.3C10—C9—H9A110.2
C6—C1—H1108.3O1—C9—H9B110.2
N2—C2—C1112.54 (11)C10—C9—H9B110.2
N2—C2—C3110.48 (11)H9A—C9—H9B108.5
C1—C2—C3108.87 (11)C9—C10—H10A109.5
N2—C2—H2108.3C9—C10—H10B109.5
C1—C2—H2108.3H10A—C10—H10B109.5
C3—C2—H2108.3C9—C10—H10C109.5
C4—C3—C2110.10 (12)H10A—C10—H10C109.5
C4—C3—H3A109.6H10B—C10—H10C109.5
C2—C3—H3A109.6N2—C11—C12114.68 (12)
C4—C3—H3B109.6N2—C11—S2126.56 (11)
C2—C3—H3B109.6C12—C11—S2118.76 (10)
H3A—C3—H3B108.2O4—C12—O3125.05 (13)
C3—C4—C5111.16 (12)O4—C12—C11124.11 (13)
C3—C4—H4A109.4O3—C12—C11110.83 (12)
C5—C4—H4A109.4O3—C13—C14112.42 (12)
C3—C4—H4B109.4O3—C13—H13A109.1
C5—C4—H4B109.4C14—C13—H13A109.1
H4A—C4—H4B108.0O3—C13—H13B109.1
C4—C5—C6111.90 (12)C14—C13—H13B109.1
C4—C5—H5A109.2H13A—C13—H13B107.9
C6—C5—H5A109.2C13—C14—H14A109.5
C4—C5—H5B109.2C13—C14—H14B109.5
C6—C5—H5B109.2H14A—C14—H14B109.5
H5A—C5—H5B107.9C13—C14—H14C109.5
C5—C6—C1111.12 (12)H14A—C14—H14C109.5
C5—C6—H6A109.4H14B—C14—H14C109.5
C7—N1—C1—C2153.12 (13)C9—O1—C8—O25.7 (2)
C7—N1—C1—C684.98 (16)C9—O1—C8—C7175.52 (11)
C11—N2—C2—C1151.70 (13)N1—C7—C8—O2148.80 (14)
C11—N2—C2—C386.37 (15)S1—C7—C8—O230.94 (19)
N1—C1—C2—N252.61 (15)N1—C7—C8—O132.43 (17)
C6—C1—C2—N2175.14 (11)S1—C7—C8—O1147.83 (10)
N1—C1—C2—C3175.44 (11)C8—O1—C9—C10174.37 (12)
C6—C1—C2—C362.03 (14)C2—N2—C11—C12179.51 (12)
N2—C2—C3—C4174.06 (11)C2—N2—C11—S21.0 (2)
C1—C2—C3—C461.88 (14)C13—O3—C12—O49.3 (2)
C2—C3—C4—C556.87 (16)C13—O3—C12—C11171.39 (11)
C3—C4—C5—C652.72 (17)N2—C11—C12—O4141.38 (14)
C4—C5—C6—C153.51 (16)S2—C11—C12—O438.18 (19)
N1—C1—C6—C5177.87 (11)N2—C11—C12—O339.32 (17)
C2—C1—C6—C558.11 (15)S2—C11—C12—O3141.12 (11)
C1—N1—C7—C8179.09 (12)C12—O3—C13—C1479.71 (16)
C1—N1—C7—S11.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.882.273.0226 (16)144
N1—H1N···S2i0.882.963.6806 (13)141
N2—H2N···O2ii0.882.273.0163 (16)143
N2—H2N···S1ii0.882.873.6093 (13)143
C1—H1···O2ii1.002.643.3820 (18)131
C2—H2···O4i1.002.523.2620 (18)131
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
(II) (±)-N,N'-diethyl (1,2-diphenylethane-1,2-diyl)bis(2-thiooxamate) top
Crystal data top
C22H24N2O4S2F(000) = 936
Mr = 444.55Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4659 reflections
a = 9.2414 (4) Åθ = 4–25°
b = 21.7781 (10) ŵ = 0.27 mm1
c = 11.4322 (6) ÅT = 110 K
β = 100.273 (4)°Plate, orange
V = 2263.96 (19) Å30.30 × 0.30 × 0.08 mm
Z = 4
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
4613 independent reflections
Radiation source: fine-focus sealed tube3649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.906, Tmax = 0.979k = 2527
16375 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.08 w = 1/[\s^2^(Fo^2^) + (0.0469P)^2^ + 0.1761P]
where P = (Fo^2^ + 2Fc^2^)/3'
4613 reflections(Δ/σ)max = 0.003
271 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H24N2O4S2V = 2263.96 (19) Å3
Mr = 444.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2414 (4) ŵ = 0.27 mm1
b = 21.7781 (10) ÅT = 110 K
c = 11.4322 (6) Å0.30 × 0.30 × 0.08 mm
β = 100.273 (4)°
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
4613 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3649 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.979Rint = 0.026
16375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
4613 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.10727 (4)0.577807 (18)0.44121 (3)0.02186 (11)
S20.40946 (4)0.559452 (17)0.65132 (3)0.02230 (11)
O10.96788 (11)0.47620 (5)0.25722 (10)0.0263 (3)
O20.49931 (11)0.42075 (5)0.67245 (10)0.0254 (3)
O30.79147 (10)0.54746 (4)0.19994 (8)0.0195 (2)
O40.70910 (10)0.45238 (4)0.78833 (9)0.0189 (2)
N10.81645 (12)0.57864 (5)0.43173 (10)0.0162 (3)
H1N0.72910.56440.40020.019*
N20.69531 (12)0.55176 (5)0.64079 (10)0.0159 (3)
H2N0.77690.53000.65220.019*
C10.82927 (15)0.62231 (6)0.53043 (12)0.0164 (3)
H10.92210.61310.58740.020*
C20.69867 (15)0.61482 (6)0.59676 (12)0.0163 (3)
H20.60560.62250.53920.020*
C30.93355 (15)0.56004 (6)0.38864 (12)0.0169 (3)
C40.57279 (15)0.52636 (6)0.66405 (12)0.0165 (3)
C50.90036 (15)0.52134 (7)0.27626 (13)0.0189 (3)
C60.58841 (15)0.46044 (7)0.70675 (12)0.0171 (3)
C70.75031 (17)0.51735 (7)0.08505 (13)0.0247 (3)
H7A0.70530.47680.09460.030*
H7B0.83790.51120.04760.030*
C80.73393 (16)0.38900 (7)0.82938 (15)0.0253 (3)
H8A0.73170.36120.76050.030*
H8B0.65570.37620.87310.030*
C90.64184 (19)0.55885 (8)0.01005 (14)0.0316 (4)
H9A0.61140.54050.06880.047*
H9B0.68770.59880.00200.047*
H9C0.55560.56430.04800.047*
C100.88098 (17)0.38546 (8)0.90941 (15)0.0300 (4)
H10A0.89880.34330.93830.045*
H10B0.88240.41320.97710.045*
H10C0.95790.39760.86510.045*
C110.83808 (15)0.68767 (6)0.48626 (12)0.0174 (3)
C120.73369 (17)0.71090 (7)0.39422 (13)0.0246 (3)
H12A0.65580.68540.35630.030*
C130.74327 (19)0.77137 (8)0.35763 (15)0.0315 (4)
H13A0.67180.78710.29460.038*
C140.85608 (19)0.80885 (7)0.41222 (15)0.0310 (4)
H14A0.86230.85010.38650.037*
C150.95956 (18)0.78618 (7)0.50409 (15)0.0288 (4)
H15A1.03670.81190.54240.035*
C160.95072 (16)0.72572 (7)0.54045 (13)0.0227 (3)
H16A1.02270.71020.60330.027*
C170.70980 (15)0.66189 (6)0.69635 (12)0.0164 (3)
C180.82724 (16)0.66136 (7)0.79099 (13)0.0229 (3)
H18A0.89790.62930.79750.028*
C190.84170 (17)0.70749 (7)0.87609 (14)0.0276 (4)
H19A0.92300.70720.94000.033*
C200.73777 (17)0.75398 (7)0.86819 (14)0.0261 (3)
H20A0.74840.78570.92600.031*
C210.61919 (16)0.75392 (7)0.77623 (14)0.0243 (3)
H21A0.54670.78520.77160.029*
C220.60529 (15)0.70818 (7)0.69025 (13)0.0204 (3)
H22A0.52360.70860.62670.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01436 (18)0.0280 (2)0.0234 (2)0.00108 (15)0.00388 (14)0.00000 (16)
S20.01411 (18)0.0219 (2)0.0309 (2)0.00173 (15)0.00417 (15)0.00474 (16)
O10.0281 (6)0.0220 (6)0.0293 (6)0.0089 (5)0.0066 (5)0.0017 (5)
O20.0211 (5)0.0182 (6)0.0354 (6)0.0041 (4)0.0011 (5)0.0002 (5)
O30.0200 (5)0.0191 (6)0.0190 (5)0.0032 (4)0.0023 (4)0.0025 (4)
O40.0198 (5)0.0149 (5)0.0214 (5)0.0022 (4)0.0021 (4)0.0029 (4)
N10.0146 (6)0.0146 (6)0.0198 (6)0.0013 (5)0.0036 (5)0.0021 (5)
N20.0136 (6)0.0141 (6)0.0206 (6)0.0019 (4)0.0045 (5)0.0030 (5)
C10.0150 (7)0.0177 (8)0.0162 (7)0.0003 (5)0.0020 (5)0.0006 (6)
C20.0153 (7)0.0149 (7)0.0191 (7)0.0014 (5)0.0041 (6)0.0027 (6)
C30.0189 (7)0.0133 (7)0.0188 (7)0.0028 (6)0.0042 (6)0.0046 (6)
C40.0174 (7)0.0171 (8)0.0145 (7)0.0015 (6)0.0013 (5)0.0013 (6)
C50.0156 (7)0.0187 (8)0.0234 (8)0.0005 (6)0.0065 (6)0.0031 (6)
C60.0167 (7)0.0180 (8)0.0178 (7)0.0009 (6)0.0063 (6)0.0002 (6)
C70.0277 (8)0.0234 (9)0.0224 (8)0.0022 (6)0.0031 (6)0.0072 (6)
C80.0263 (8)0.0170 (8)0.0332 (9)0.0047 (6)0.0070 (7)0.0089 (7)
C90.0395 (10)0.0318 (10)0.0210 (8)0.0068 (8)0.0008 (7)0.0043 (7)
C100.0341 (9)0.0256 (9)0.0294 (9)0.0095 (7)0.0028 (7)0.0060 (7)
C110.0196 (7)0.0160 (8)0.0184 (7)0.0002 (6)0.0087 (6)0.0013 (6)
C120.0276 (8)0.0226 (8)0.0229 (8)0.0004 (7)0.0027 (6)0.0015 (6)
C130.0417 (10)0.0263 (9)0.0267 (9)0.0083 (8)0.0063 (7)0.0064 (7)
C140.0459 (10)0.0155 (8)0.0373 (9)0.0011 (7)0.0228 (8)0.0019 (7)
C150.0327 (9)0.0217 (9)0.0358 (9)0.0072 (7)0.0158 (8)0.0068 (7)
C160.0232 (8)0.0227 (8)0.0226 (8)0.0028 (6)0.0056 (6)0.0026 (6)
C170.0188 (7)0.0135 (7)0.0185 (7)0.0023 (6)0.0076 (6)0.0024 (6)
C180.0235 (8)0.0219 (8)0.0233 (8)0.0054 (6)0.0039 (6)0.0018 (6)
C190.0294 (8)0.0296 (9)0.0232 (8)0.0014 (7)0.0030 (7)0.0018 (7)
C200.0348 (9)0.0213 (8)0.0245 (8)0.0020 (7)0.0114 (7)0.0053 (7)
C210.0261 (8)0.0175 (8)0.0319 (9)0.0036 (6)0.0125 (7)0.0020 (7)
C220.0190 (7)0.0189 (8)0.0243 (8)0.0002 (6)0.0069 (6)0.0034 (6)
Geometric parameters (Å, º) top
S1—C31.6565 (14)C9—H9B0.9800
S2—C41.6554 (14)C9—H9C0.9800
O1—C51.2048 (17)C10—H10A0.9800
O2—C61.2097 (17)C10—H10B0.9800
O3—C51.3358 (17)C10—H10C0.9800
O3—C71.4566 (17)C11—C161.387 (2)
O4—C61.3318 (16)C11—C121.390 (2)
O4—C81.4626 (17)C12—C131.389 (2)
N1—C31.3296 (17)C12—H12A0.9500
N1—C11.4642 (17)C13—C141.382 (2)
N1—H1N0.8800C13—H13A0.9500
N2—C41.3290 (17)C14—C151.379 (2)
N2—C21.4648 (18)C14—H14A0.9500
N2—H2N0.8800C15—C161.388 (2)
C1—C111.517 (2)C15—H15A0.9500
C1—C21.5443 (18)C16—H16A0.9500
C1—H11.0000C17—C221.3892 (19)
C2—C171.5219 (19)C17—C181.389 (2)
C2—H21.0000C18—C191.388 (2)
C3—C51.521 (2)C18—H18A0.9500
C4—C61.515 (2)C19—C201.387 (2)
C7—C91.500 (2)C19—H19A0.9500
C7—H7A0.9900C20—C211.377 (2)
C7—H7B0.9900C20—H20A0.9500
C8—C101.499 (2)C21—C221.389 (2)
C8—H8A0.9900C21—H21A0.9500
C8—H8B0.9900C22—H22A0.9500
C9—H9A0.9800
C5—O3—C7116.25 (11)H9A—C9—H9B109.5
C6—O4—C8114.39 (11)C7—C9—H9C109.5
C3—N1—C1121.60 (12)H9A—C9—H9C109.5
C3—N1—H1N119.2H9B—C9—H9C109.5
C1—N1—H1N119.2C8—C10—H10A109.5
C4—N2—C2122.01 (11)C8—C10—H10B109.5
C4—N2—H2N119.0H10A—C10—H10B109.5
C2—N2—H2N119.0C8—C10—H10C109.5
N1—C1—C11110.77 (11)H10A—C10—H10C109.5
N1—C1—C2110.30 (11)H10B—C10—H10C109.5
C11—C1—C2110.82 (11)C16—C11—C12119.01 (14)
N1—C1—H1108.3C16—C11—C1119.49 (13)
C11—C1—H1108.3C12—C11—C1121.48 (13)
C2—C1—H1108.3C13—C12—C11120.01 (15)
N2—C2—C17112.16 (11)C13—C12—H12A120.0
N2—C2—C1109.51 (11)C11—C12—H12A120.0
C17—C2—C1109.99 (11)C14—C13—C12120.48 (15)
N2—C2—H2108.4C14—C13—H13A119.8
C17—C2—H2108.4C12—C13—H13A119.8
C1—C2—H2108.4C15—C14—C13119.81 (15)
N1—C3—C5115.26 (12)C15—C14—H14A120.1
N1—C3—S1126.49 (11)C13—C14—H14A120.1
C5—C3—S1118.17 (10)C14—C15—C16119.86 (15)
N2—C4—C6115.05 (12)C14—C15—H15A120.1
N2—C4—S2126.67 (11)C16—C15—H15A120.1
C6—C4—S2118.28 (10)C11—C16—C15120.84 (14)
O1—C5—O3125.70 (13)C11—C16—H16A119.6
O1—C5—C3124.87 (13)C15—C16—H16A119.6
O3—C5—C3109.30 (11)C22—C17—C18119.00 (13)
O2—C6—O4124.71 (14)C22—C17—C2119.84 (13)
O2—C6—C4123.53 (13)C18—C17—C2121.08 (12)
O4—C6—C4111.74 (12)C19—C18—C17120.26 (14)
O3—C7—C9106.53 (12)C19—C18—H18A119.9
O3—C7—H7A110.4C17—C18—H18A119.9
C9—C7—H7A110.4C20—C19—C18120.23 (15)
O3—C7—H7B110.4C20—C19—H19A119.9
C9—C7—H7B110.4C18—C19—H19A119.9
H7A—C7—H7B108.6C21—C20—C19119.78 (15)
O4—C8—C10108.53 (12)C21—C20—H20A120.1
O4—C8—H8A110.0C19—C20—H20A120.1
C10—C8—H8A110.0C20—C21—C22120.10 (14)
O4—C8—H8B110.0C20—C21—H21A119.9
C10—C8—H8B110.0C22—C21—H21A119.9
H8A—C8—H8B108.4C21—C22—C17120.60 (14)
C7—C9—H9A109.5C21—C22—H22A119.7
C7—C9—H9B109.5C17—C22—H22A119.7
C3—N1—C1—C1181.42 (15)C6—O4—C8—C10173.51 (12)
C3—N1—C1—C2155.52 (12)N1—C1—C11—C16128.69 (13)
C4—N2—C2—C1781.00 (16)C2—C1—C11—C16108.54 (14)
C4—N2—C2—C1156.60 (12)N1—C1—C11—C1252.81 (17)
N1—C1—C2—N258.36 (14)C2—C1—C11—C1269.96 (17)
C11—C1—C2—N2178.60 (11)C16—C11—C12—C130.1 (2)
N1—C1—C2—C17177.95 (11)C1—C11—C12—C13178.63 (14)
C11—C1—C2—C1754.91 (15)C11—C12—C13—C140.1 (2)
C1—N1—C3—C5172.35 (12)C12—C13—C14—C150.3 (2)
C1—N1—C3—S14.36 (19)C13—C14—C15—C160.6 (2)
C2—N2—C4—C6178.93 (12)C12—C11—C16—C150.2 (2)
C2—N2—C4—S21.3 (2)C1—C11—C16—C15178.34 (13)
C7—O3—C5—O11.4 (2)C14—C15—C16—C110.6 (2)
C7—O3—C5—C3177.46 (11)N2—C2—C17—C22124.30 (13)
N1—C3—C5—O1138.24 (15)C1—C2—C17—C22113.57 (14)
S1—C3—C5—O144.77 (19)N2—C2—C17—C1858.99 (17)
N1—C3—C5—O345.63 (16)C1—C2—C17—C1863.14 (16)
S1—C3—C5—O3131.37 (11)C22—C17—C18—C191.8 (2)
C8—O4—C6—O24.37 (19)C2—C17—C18—C19174.90 (13)
C8—O4—C6—C4177.43 (11)C17—C18—C19—C200.9 (2)
N2—C4—C6—O2137.14 (14)C18—C19—C20—C210.7 (2)
S2—C4—C6—O243.06 (18)C19—C20—C21—C221.4 (2)
N2—C4—C6—O444.63 (16)C20—C21—C22—C170.5 (2)
S2—C4—C6—O4135.16 (10)C18—C17—C22—C211.1 (2)
C5—O3—C7—C9172.71 (12)C2—C17—C22—C21175.63 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.882.403.1819 (15)147
N2—H2N···S1i0.882.873.5749 (12)139
N1—H1N···O2ii0.882.152.9487 (15)151
N1—H1N···S2ii0.883.003.6875 (12)137
C1—H1···O1i1.002.713.5195 (17)139
C2—H2···O2ii1.002.623.3781 (18)133
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H22N2O4S2C22H24N2O4S2
Mr346.46444.55
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)120110
a, b, c (Å)9.6438 (10), 9.6656 (11), 10.3316 (11)9.2414 (4), 21.7781 (10), 11.4322 (6)
α, β, γ (°)85.068 (9), 63.887 (10), 77.155 (9)90, 100.273 (4), 90
V3)843.02 (18)2263.96 (19)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.330.27
Crystal size (mm)0.4 × 0.4 × 0.20.30 × 0.30 × 0.08
Data collection
DiffractometerKuma KM-4 CCD κ geometry
diffractometer
Kuma KM-4 CCD κ geometry
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.840, 0.9350.906, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6232, 2957, 2587 16375, 4613, 3649
Rint0.0160.026
(sin θ/λ)max1)0.5950.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.07 0.032, 0.084, 1.08
No. of reflections29574613
No. of parameters199271
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.250.26, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation (Siemens, 1989) and Mercury (Version 1.4; Macrae et al., 2006).

Selected torsion angles (º) for (I) top
C7—N1—C1—C2153.12 (13)N1—C1—C2—N252.61 (15)
C7—N1—C1—C684.98 (16)S1—C7—C8—O230.94 (19)
C11—N2—C2—C1151.70 (13)S2—C11—C12—O438.18 (19)
C11—N2—C2—C386.37 (15)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.882.273.0226 (16)144
N1—H1N···S2i0.882.963.6806 (13)141
N2—H2N···O2ii0.882.273.0163 (16)143
N2—H2N···S1ii0.882.873.6093 (13)143
C1—H1···O2ii1.002.643.3820 (18)131
C2—H2···O4i1.002.523.2620 (18)131
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Selected torsion angles (º) for (II) top
C3—N1—C1—C1181.42 (15)N1—C1—C2—N258.36 (14)
C3—N1—C1—C2155.52 (12)S1—C3—C5—O144.77 (19)
C4—N2—C2—C1781.00 (16)S2—C4—C6—O243.06 (18)
C4—N2—C2—C1156.60 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.882.403.1819 (15)147
N2—H2N···S1i0.882.873.5749 (12)139
N1—H1N···O2ii0.882.152.9487 (15)151
N1—H1N···S2ii0.883.003.6875 (12)137
C1—H1···O1i1.002.713.5195 (17)139
C2—H2···O2ii1.002.623.3781 (18)133
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds