Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two salts of acyclic Schiff base cationic ligands, namely N,N'-­bis­(2-nitro­benzyl)­propane-1,3-diammonium dichloride monohydrate, C17H22N4O42+·2Cl-·H2O, (I), and 2-hydr­oxy-N,N'-bis­(2-nitro­benzyl)­propane-1,3-diammonium dichloride, C17H22N4O52+·2Cl-, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen-bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010704156X/gd3137sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010704156X/gd3137Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010704156X/gd3137IIsup3.hkl
Contains datablock II

CCDC references: 665509; 665510

Comment top

The Schiff base acyclic cations in the title salts, (I) and (II), are chemical precursors for a variety of acyclic and macrocyclic multidentate ligands and their metal complexes. The cations in compounds (I) and (II) are closely related, compound (II) formally resulting from (I) after substitution of an H atom by an OH functionality. The hydroxyl group is known to be an efficient donor and acceptor group for hydrogen bonding, and the introduction of this functional group is thus expected to induce significant changes in the crystal structure. However, an unexpected conformational modification was also observed for the cations. Moreover, compound (I) crystallizes as a hydrate, while compound (II) is unsolvated.

The cation in compound (II) approximates to Cs point group symmetry (Fig. 2), while in compound (I) the cation is clearly asymmetric (Fig. 1). The aryl rings make significantly different dihedral angles in each cation, 35.2 (1)° for compound (I) and 63.8 (2)° for compound (II). The nitro groups are twisted out of the planes of the adjacent aryl rings, with dihedral angles NO2/arene of 12.0 (2) and 27.3 (2)° for the nitro groups containing atoms N1 and N4 in compound (I), and 31.7 (3) and 24.2 (5)° for the corresponding groups in compound (II). This twisted arrangement for nitro groups is a common feature in molecules including a nitrobenzene fragment [e.g. 40.5° (Peseke et al., 1999), 34.4° (Qiu et al., 2006), and 23.3 and 17.6° (Obregón-Solís et al., 2001)].

The conformation of the central chain linking the nitrophenyl groups for both ligands is described by the C—C—N—C and N—C—C—C torsion angles (Tables 1 and 2). As can be seen, the conformation stabilized for compound (II) is the expected all-trans chain commonly found in aliphatic systems, while compound (I) presents a synclinal conformation for the C7/N2/C8/C9 section, defining a transgauchetranstranstrans conformation for the complete C6–C12 chain. These observations suggest that compounds (I) and (II) are highly flexible cations, with quite a free rotation about all σ bonds, assuming that no hindrance occurs with peripheral nitrobenzene groups. This flexible behaviour, probably retained or even increased in solution, makes compounds (I) and (II) good candidates for coordinating transition metals.

In both compounds, the cations and anions are engaged in hydrogen-bond networks, two-dimensional in compound (I) and one-dimensional in compound (II), involving NH2+ or O—H functionalities as donor groups and Cl or nitro groups as acceptor. In the case of compound (II), the O—H group is disordered over two sites with occupancies of 0.785 (8) and 0.215 (8) for atoms O3A and O3B, respectively (see Experimental). The major component of the disordered hydroxyl group forms a hydrogen bond with a Cl anion in the asymmetric unit, and two Cl anions are also connected to NH2+ groups, one within the asymmetric unit and the other a symmetry-related one. The minor component of the disordered hydroxyl group forms a weaker bond with a symmetry-related Cl anion. Finally, two strong intermolecular N—H···Cl bonds form a two-dimensional network stabilizing the crystal structure (Table 4 and Fig. 4). For compound (I), as the hydroxyl donor group is no longer present in the cation, a water molecule is inserted in the lattice, which participates in efficient O—H···Cl contacts (Table 3 and Fig. 3).

Experimental top

The title acyclic cationic ligands, (I) and (II), were obtained by a three-step reaction procedure. The condensation between 1,2-diaminoethane, for compound (I), or 1,3-diamino-2-hydroxypropane, for compound (II), with 2-nitrobenzyl chloride produced the corresponding imines. Selective reduction of the imines with sodium borohydride in methanol gave the corresponding amines, which were isolated as oils. They were converted to their chloride salts, using HCl dissolved in ethanol [yields: 70% for compound (I) and 47% for compound (II)]. Suitable colourless crystals of compounds (I) and (II) were obtained by slow evaporation of ethanol solutions at 298 K.

Refinement top

The geometry of the water molecule in compound (I) was regularized using two restraints; O—H = 0.85 (2) Å. Other H atoms were placed in idealized positions and refined using a riding approximation, with C—H bond lengths set to 0.93 (aromatic CH) or 0.97 Å (methylene CH2), and with Uiso(H) = 1.2Ueq(carrier C). For compound (II), the hydroxyl O atom was found to be disordered over two positions and the corresponding site occupation factors were refined, with their sum constrained to 1; the occupancies converged to 0.785 (8) (atom O3A) and 0.215 (8) (atom O3B). In order to obtain a sensible geometry, C—O bond lengths were restrained to 1.45 (1) Å. Site O3A was refined anisotropically, with restrictions on its Uij parameters approximating isotropic behaviour. Site O3B was refined isotropically, due to its limited occupancy. Hydroxyl H atom H3AA bonded to atom O3A was included in a calculated position and refined using a riding model (O—H constrained to 0.85 Å), but allowing free rotation about the C—O axis. The other hydroxyl H atom, H3AB, was included in a calculated position and refined as riding on atom O3B. Other H atoms were placed in idealized positions and all were refined as riding on their carrier atoms, with bond lengths fixed to 0.90 (ammonium NH), 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.98 Å (methine CH). In compound (II), all H atoms were refined with fixed isotropic displacement parameters calculated as Uiso(H) = xUeq(carrier atom), where x = 1.5 for hydroxyl groups and x = 1.2 otherwise. For compound (II), 1557 measured Friedel pairs were used for the refinement of the Flack parameter (Flack, 1983), using this parameter only for crystal chirality determination.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1999); cell refinement: XSCANS (Siemens, 1999); data reduction: XSCANS (Siemens, 1999); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1997); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major disorder component of the OH group is shown.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the hydrogen-bonded (dashed lines) network. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x − 1, y, z; (iii) 2 − x, −y, 1 − z.]
[Figure 4] Fig. 4. The packing structure of compound (II), showing the hydrogen bonds (long-dashed lines). Both disorder components for the OH funtionality are shown, the bonds of the minor component as short-dashed lines. [Symmetry code: (i) x + 1/2, −y + 3/2, 1 − z.]
(I) N,N'-bis(2-nitrobenzyl)propane-1,3-diammonium dichloride monohydrate top
Crystal data top
C17H22N4O42+·2Cl·H2OZ = 2
Mr = 435.30F(000) = 456
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Melting point: 493 K
a = 8.630 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.449 (4) ÅCell parameters from 100 reflections
c = 11.629 (4) Åθ = 4.7–12.4°
α = 116.353 (17)°µ = 0.36 mm1
β = 92.09 (2)°T = 297 K
γ = 98.82 (2)°Irregular, colourless
V = 1010.2 (6) Å30.5 × 0.5 × 0.4 mm
Data collection top
Siemens P4
diffractometer
3585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
2θ/ω scansh = 1111
Absorption correction: ψ scan
(XSCANS; Siemens, 1999)
k = 1313
Tmin = 0.845, Tmax = 0.867l = 1515
8783 measured reflections3 standard reflections every 97 reflections
4456 independent reflections intensity decay: 5.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.255P]
where P = (Fo2 + 2Fc2)/3
4456 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H22N4O42+·2Cl·H2Oγ = 98.82 (2)°
Mr = 435.30V = 1010.2 (6) Å3
Triclinic, P1Z = 2
a = 8.630 (3) ÅMo Kα radiation
b = 11.449 (4) ŵ = 0.36 mm1
c = 11.629 (4) ÅT = 297 K
α = 116.353 (17)°0.5 × 0.5 × 0.4 mm
β = 92.09 (2)°
Data collection top
Siemens P4
diffractometer
3585 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1999)
Rint = 0.072
Tmin = 0.845, Tmax = 0.8673 standard reflections every 97 reflections
8783 measured reflections intensity decay: 5.0%
4456 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
4456 reflectionsΔρmin = 0.36 e Å3
261 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92967 (5)0.19295 (5)0.60161 (5)0.05788 (15)
Cl20.73437 (7)0.56226 (5)0.66732 (6)0.07018 (17)
O10.75377 (18)0.09680 (16)0.90725 (16)0.0685 (4)
O20.63727 (18)0.11416 (12)0.75271 (12)0.0574 (3)
O30.12907 (17)0.08952 (15)0.05791 (15)0.0744 (5)
O40.37590 (17)0.14445 (15)0.05984 (15)0.0721 (4)
N10.70942 (17)0.16290 (15)0.85994 (15)0.0479 (3)
N20.61736 (14)0.29843 (12)0.66152 (12)0.0355 (3)
H2B0.65540.37190.65370.043*
H2C0.69940.25960.66480.043*
N30.12250 (14)0.21687 (12)0.38934 (12)0.0380 (3)
H3B0.15350.29590.38990.046*
H3C0.06460.22950.45530.046*
N40.25480 (17)0.06289 (16)0.09298 (14)0.0518 (4)
C10.74305 (18)0.30714 (17)0.93572 (15)0.0437 (4)
C20.8494 (2)0.3581 (2)1.04487 (18)0.0583 (5)
H2A0.89560.30171.06730.070*
C30.8866 (2)0.4923 (2)1.12013 (19)0.0672 (6)
H3A0.95780.52781.19460.081*
C40.8191 (2)0.5737 (2)1.08579 (19)0.0645 (6)
H4A0.84510.66511.13690.077*
C50.7124 (2)0.52238 (17)0.97581 (17)0.0518 (4)
H5A0.66790.57970.95360.062*
C60.67083 (17)0.38687 (16)0.89835 (15)0.0407 (3)
C70.54753 (17)0.33851 (16)0.78538 (15)0.0409 (3)
H7A0.47380.26320.78110.049*
H7B0.48910.40830.79760.049*
C80.50655 (17)0.20662 (15)0.54548 (15)0.0396 (3)
H8A0.46590.12670.55290.048*
H8B0.56310.18150.47000.048*
C90.37071 (17)0.26646 (15)0.52676 (15)0.0407 (3)
H9A0.40960.34500.51660.049*
H9B0.31340.29240.60180.049*
C100.26260 (17)0.16554 (15)0.40802 (15)0.0398 (3)
H10A0.31930.14330.33280.048*
H10B0.22950.08520.41660.048*
C110.02403 (18)0.12455 (16)0.26619 (16)0.0441 (4)
H11A0.00490.03590.25960.053*
H11B0.08070.12190.19480.053*
C120.13034 (18)0.16457 (16)0.25564 (15)0.0410 (3)
C130.1514 (2)0.29375 (18)0.32730 (19)0.0528 (4)
H13A0.06730.35680.38400.063*
C140.2919 (2)0.3317 (2)0.3175 (2)0.0580 (5)
H14A0.30130.41970.36620.070*
C150.4186 (2)0.2412 (2)0.23670 (19)0.0555 (5)
H15A0.51370.26730.22920.067*
C160.40387 (19)0.1124 (2)0.16738 (17)0.0502 (4)
H16A0.49020.04930.11410.060*
C170.26222 (18)0.07583 (17)0.17609 (15)0.0422 (3)
O50.7863 (2)0.0754 (2)0.34435 (18)0.0750 (4)
H5B0.865 (4)0.116 (4)0.354 (4)0.162 (17)*
H5C0.809 (4)0.004 (2)0.413 (3)0.124 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0485 (2)0.0672 (3)0.0571 (3)0.0205 (2)0.01804 (19)0.0237 (2)
Cl20.0824 (4)0.0470 (3)0.0901 (4)0.0021 (2)0.0162 (3)0.0419 (3)
O10.0725 (9)0.0708 (9)0.0839 (10)0.0217 (7)0.0084 (8)0.0519 (8)
O20.0809 (9)0.0431 (7)0.0471 (7)0.0107 (6)0.0071 (6)0.0200 (5)
O30.0582 (8)0.0676 (9)0.0658 (9)0.0128 (7)0.0081 (7)0.0021 (7)
O40.0558 (8)0.0591 (8)0.0763 (10)0.0081 (6)0.0136 (7)0.0162 (7)
N10.0487 (7)0.0507 (8)0.0544 (8)0.0120 (6)0.0153 (6)0.0313 (7)
N20.0320 (5)0.0352 (6)0.0417 (6)0.0059 (5)0.0071 (5)0.0197 (5)
N30.0357 (6)0.0343 (6)0.0428 (7)0.0021 (5)0.0019 (5)0.0180 (5)
N40.0467 (7)0.0550 (9)0.0426 (7)0.0048 (6)0.0042 (6)0.0146 (6)
C10.0413 (8)0.0493 (9)0.0412 (8)0.0060 (6)0.0110 (6)0.0217 (7)
C20.0529 (10)0.0787 (13)0.0470 (10)0.0066 (9)0.0051 (7)0.0337 (9)
C30.0579 (11)0.0843 (15)0.0408 (9)0.0060 (10)0.0010 (8)0.0186 (10)
C40.0604 (11)0.0572 (11)0.0472 (10)0.0065 (9)0.0124 (8)0.0034 (9)
C50.0524 (9)0.0438 (9)0.0490 (9)0.0075 (7)0.0144 (7)0.0120 (7)
C60.0373 (7)0.0433 (8)0.0370 (7)0.0051 (6)0.0109 (6)0.0146 (6)
C70.0355 (7)0.0439 (8)0.0424 (8)0.0088 (6)0.0102 (6)0.0179 (6)
C80.0388 (7)0.0386 (8)0.0405 (8)0.0069 (6)0.0038 (6)0.0173 (6)
C90.0380 (7)0.0365 (8)0.0468 (8)0.0048 (6)0.0016 (6)0.0193 (6)
C100.0377 (7)0.0390 (8)0.0444 (8)0.0058 (6)0.0041 (6)0.0208 (6)
C110.0386 (7)0.0412 (8)0.0454 (8)0.0031 (6)0.0008 (6)0.0153 (7)
C120.0393 (7)0.0453 (8)0.0404 (8)0.0070 (6)0.0051 (6)0.0214 (6)
C130.0526 (9)0.0462 (9)0.0560 (10)0.0094 (7)0.0014 (8)0.0204 (8)
C140.0641 (11)0.0567 (11)0.0612 (11)0.0237 (9)0.0131 (9)0.0297 (9)
C150.0458 (9)0.0784 (13)0.0588 (11)0.0228 (9)0.0128 (8)0.0417 (10)
C160.0397 (8)0.0704 (12)0.0468 (9)0.0075 (7)0.0030 (6)0.0333 (8)
C170.0418 (8)0.0496 (9)0.0364 (7)0.0055 (6)0.0040 (6)0.0216 (7)
O50.0707 (10)0.0792 (12)0.0814 (11)0.0018 (8)0.0074 (8)0.0483 (10)
Geometric parameters (Å, º) top
O1—N11.210 (2)C7—H7A0.9700
O2—N11.214 (2)C7—H7B0.9700
O3—N41.208 (2)C8—C91.500 (2)
O4—N41.210 (2)C8—H8A0.9700
N1—C11.459 (2)C8—H8B0.9700
N2—C81.476 (2)C9—C101.507 (2)
N2—C71.4865 (19)C9—H9A0.9700
N2—H2B0.9000C9—H9B0.9700
N2—H2C0.9000C10—H10A0.9700
N3—C101.472 (2)C10—H10B0.9700
N3—C111.477 (2)C11—C121.492 (2)
N3—H3B0.9000C11—H11A0.9700
N3—H3C0.9000C11—H11B0.9700
N4—C171.461 (2)C12—C131.384 (2)
C1—C21.373 (3)C12—C171.385 (2)
C1—C61.385 (3)C13—C141.366 (3)
C2—C31.365 (3)C13—H13A0.9300
C2—H2A0.9300C14—C151.365 (3)
C3—C41.359 (4)C14—H14A0.9300
C3—H3A0.9300C15—C161.360 (3)
C4—C51.382 (3)C15—H15A0.9300
C4—H4A0.9300C16—C171.366 (3)
C5—C61.383 (2)C16—H16A0.9300
C5—H5A0.9300O5—H5B0.91 (4)
C6—C71.495 (2)O5—H5C0.89 (3)
O1—N1—O2122.73 (17)N2—C8—H8A109.1
O1—N1—C1118.49 (17)C9—C8—H8A109.1
O2—N1—C1118.78 (16)N2—C8—H8B109.1
C8—N2—C7114.56 (11)C9—C8—H8B109.1
C8—N2—H2B108.6H8A—C8—H8B107.8
C7—N2—H2B108.6C8—C9—C10108.96 (13)
C8—N2—H2C108.6C8—C9—H9A109.9
C7—N2—H2C108.6C10—C9—H9A109.9
H2B—N2—H2C107.6C8—C9—H9B109.9
C10—N3—C11111.58 (12)C10—C9—H9B109.9
C10—N3—H3B109.3H9A—C9—H9B108.3
C11—N3—H3B109.3N3—C10—C9111.12 (13)
C10—N3—H3C109.3N3—C10—H10A109.4
C11—N3—H3C109.3C9—C10—H10A109.4
H3B—N3—H3C108.0N3—C10—H10B109.4
O3—N4—O4123.50 (17)C9—C10—H10B109.4
O3—N4—C17118.28 (14)H10A—C10—H10B108.0
O4—N4—C17118.18 (15)N3—C11—C12112.05 (13)
C2—C1—C6122.48 (17)N3—C11—H11A109.2
C2—C1—N1116.31 (18)C12—C11—H11A109.2
C6—C1—N1121.21 (15)N3—C11—H11B109.2
C3—C2—C1119.4 (2)C12—C11—H11B109.2
C3—C2—H2A120.3H11A—C11—H11B107.9
C1—C2—H2A120.3C13—C12—C17115.50 (16)
C4—C3—C2119.7 (2)C13—C12—C11121.68 (15)
C4—C3—H3A120.1C17—C12—C11122.81 (15)
C2—C3—H3A120.1C14—C13—C12122.14 (17)
C3—C4—C5120.84 (19)C14—C13—H13A118.9
C3—C4—H4A119.6C12—C13—H13A118.9
C5—C4—H4A119.6C15—C14—C13120.42 (19)
C4—C5—C6120.8 (2)C15—C14—H14A119.8
C4—C5—H5A119.6C13—C14—H14A119.8
C6—C5—H5A119.6C16—C15—C14119.22 (18)
C5—C6—C1116.69 (17)C16—C15—H15A120.4
C5—C6—C7117.72 (17)C14—C15—H15A120.4
C1—C6—C7125.53 (15)C15—C16—C17119.95 (17)
N2—C7—C6112.00 (12)C15—C16—H16A120.0
N2—C7—H7A109.2C17—C16—H16A120.0
C6—C7—H7A109.2C16—C17—C12122.74 (16)
N2—C7—H7B109.2C16—C17—N4116.24 (15)
C6—C7—H7B109.2C12—C17—N4120.99 (15)
H7A—C7—H7B107.9H5B—O5—H5C103 (3)
N2—C8—C9112.56 (13)
C8—N2—C7—C6158.61 (14)N1—C1—C6—C73.7 (2)
C7—N2—C8—C962.25 (18)C5—C6—C7—N2102.98 (16)
N2—C8—C9—C10179.01 (12)C1—C6—C7—N279.87 (19)
C8—C9—C10—N3176.86 (13)N3—C11—C12—C1322.1 (2)
C11—N3—C10—C9174.09 (13)N3—C11—C12—C17156.81 (15)
C10—N3—C11—C12170.94 (13)C17—C12—C13—C141.7 (3)
O1—N1—C1—C212.4 (2)C11—C12—C13—C14179.40 (18)
O2—N1—C1—C2168.12 (15)C12—C13—C14—C151.0 (3)
O1—N1—C1—C6167.59 (15)C13—C14—C15—C160.9 (3)
O2—N1—C1—C611.9 (2)C14—C15—C16—C172.0 (3)
C6—C1—C2—C30.1 (3)C15—C16—C17—C121.3 (3)
N1—C1—C2—C3179.85 (15)C15—C16—C17—N4176.74 (16)
C1—C2—C3—C40.5 (3)C13—C12—C17—C160.5 (2)
C2—C3—C4—C50.4 (3)C11—C12—C17—C16179.42 (16)
C3—C4—C5—C60.4 (3)C13—C12—C17—N4178.48 (16)
C4—C5—C6—C11.0 (2)C11—C12—C17—N42.6 (2)
C4—C5—C6—C7176.44 (15)O3—N4—C17—C16151.53 (18)
C2—C1—C6—C50.8 (2)O4—N4—C17—C1626.3 (2)
N1—C1—C6—C5179.14 (13)O3—N4—C17—C1226.6 (3)
C2—C1—C6—C7176.34 (15)O4—N4—C17—C12155.57 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl20.902.113.0043 (17)170
N2—H2C···Cl10.902.273.0976 (16)153
N2—H2C···O20.902.322.773 (2)111
N3—H3B···Cl2i0.902.132.9890 (17)159
N3—H3C···Cl1ii0.902.253.1142 (17)161
O5—H5B···Cl1iii0.91 (4)2.24 (2)3.141 (2)173 (4)
O5—H5C···Cl10.89 (3)2.35 (2)3.213 (2)165 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y, z+1.
(II) 2-hydroxy-N,N'-bis(2-nitrobenzyl)propane-1,3-diammonium dichloride top
Crystal data top
C17H22N4O52+·2ClF(000) = 904
Mr = 433.29Dx = 1.384 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 73 reflections
a = 7.075 (2) Åθ = 3.9–11.6°
b = 15.844 (8) ŵ = 0.35 mm1
c = 18.554 (6) ÅT = 298 K
V = 2079.8 (14) Å3Irregular, colourless
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
2729 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
2θ/ω scansh = 84
Absorption correction: ψ scan
(XSCANS; Siemens, 1999)
k = 1818
Tmin = 0.739, Tmax = 0.934l = 2222
6209 measured reflections3 standard reflections every 97 reflections
3692 independent reflections intensity decay: 10.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.84P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3692 reflectionsΔρmax = 0.36 e Å3
259 parametersΔρmin = 0.30 e Å3
8 restraintsAbsolute structure: Flack (1983), with 1557 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (11)
Crystal data top
C17H22N4O52+·2ClV = 2079.8 (14) Å3
Mr = 433.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.075 (2) ŵ = 0.35 mm1
b = 15.844 (8) ÅT = 298 K
c = 18.554 (6) Å0.4 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
2729 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1999)
Rint = 0.089
Tmin = 0.739, Tmax = 0.9343 standard reflections every 97 reflections
6209 measured reflections intensity decay: 10.2%
3692 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.30 e Å3
3692 reflectionsAbsolute structure: Flack (1983), with 1557 Friedel pairs
259 parametersAbsolute structure parameter: 0.03 (11)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.00591 (15)0.56475 (9)0.50575 (6)0.0737 (4)
Cl20.01826 (16)0.85474 (9)0.62691 (7)0.0797 (4)
O10.2619 (9)0.3278 (2)0.6517 (2)0.1179 (19)
O20.3090 (6)0.4599 (2)0.63676 (18)0.0773 (10)
O40.2676 (6)0.8259 (2)0.77899 (18)0.0822 (11)
O50.1602 (8)0.8900 (3)0.8701 (2)0.1102 (15)
N10.2874 (7)0.3883 (3)0.6130 (2)0.0708 (11)
N20.4296 (4)0.5762 (2)0.52583 (19)0.0505 (8)
H2D0.42090.60130.48240.061*
H2E0.31140.56600.54150.061*
N30.4213 (4)0.85546 (19)0.64045 (16)0.0450 (7)
H3C0.29950.84730.65260.054*
H3D0.42330.88020.59680.054*
N40.2207 (6)0.8900 (3)0.80974 (19)0.0606 (10)
C10.2910 (6)0.3757 (3)0.5361 (2)0.0540 (11)
C20.1787 (7)0.3110 (3)0.5091 (3)0.0668 (13)
H2B0.10330.27900.53970.080*
C30.1813 (8)0.2956 (3)0.4367 (3)0.0723 (14)
H3B0.10710.25240.41780.087*
C40.2917 (8)0.3428 (3)0.3914 (3)0.0735 (14)
H4A0.29280.33180.34220.088*
C50.4009 (7)0.4068 (3)0.4193 (3)0.0661 (13)
H5A0.47580.43840.38820.079*
C60.4028 (5)0.4257 (2)0.4919 (2)0.0515 (10)
C70.5309 (6)0.4946 (2)0.5176 (3)0.0609 (12)
H7A0.58540.47860.56360.073*
H7B0.63350.50170.48340.073*
C80.5237 (6)0.6345 (2)0.5766 (2)0.0522 (10)
H8A0.64890.64810.55880.063*
H8B0.53770.60710.62310.063*
C90.4120 (6)0.7145 (3)0.5858 (2)0.0526 (10)
H9AA0.38240.74130.53950.063*0.785 (8)
H9AB0.27660.70760.59510.063*0.215 (8)
C100.5164 (6)0.7728 (2)0.6356 (2)0.0498 (9)
H10A0.52330.74760.68320.060*
H10B0.64450.78060.61820.060*
C110.5092 (7)0.9132 (3)0.6936 (2)0.0538 (10)
H11A0.61930.93960.67210.065*
H11B0.55110.88090.73500.065*
C120.3735 (6)0.9805 (2)0.7180 (2)0.0483 (10)
C130.3818 (7)1.0591 (3)0.6873 (2)0.0634 (12)
H13A0.46641.06840.64980.076*
C140.2692 (9)1.1245 (3)0.7103 (3)0.0761 (15)
H14A0.27981.17730.68870.091*
C150.1420 (8)1.1123 (3)0.7645 (3)0.0743 (15)
H15A0.06331.15620.77890.089*
C160.1304 (7)1.0359 (3)0.7974 (3)0.0642 (12)
H16A0.04771.02770.83570.077*
C170.2421 (6)0.9712 (2)0.7734 (2)0.0488 (10)
O3A0.2431 (5)0.6877 (2)0.6240 (2)0.0612 (13)0.785 (8)
H3AA0.14920.68860.59540.092*0.785 (8)
O3B0.468 (3)0.7513 (14)0.5147 (8)0.120 (8)*0.215 (8)
H3BA0.41600.79930.50950.180*0.215 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0372 (5)0.1164 (10)0.0676 (6)0.0028 (7)0.0023 (6)0.0293 (7)
Cl20.0397 (5)0.1011 (9)0.0982 (9)0.0019 (6)0.0001 (6)0.0194 (8)
O10.202 (6)0.067 (2)0.085 (3)0.014 (3)0.021 (3)0.025 (2)
O20.102 (3)0.060 (2)0.070 (2)0.001 (2)0.010 (2)0.0083 (17)
O40.130 (3)0.0524 (18)0.0646 (19)0.000 (2)0.016 (2)0.0101 (17)
O50.162 (4)0.098 (3)0.070 (2)0.006 (3)0.043 (3)0.011 (2)
N10.083 (3)0.060 (3)0.070 (3)0.001 (2)0.012 (2)0.012 (2)
N20.0364 (16)0.0436 (18)0.072 (2)0.0009 (15)0.0023 (15)0.0049 (17)
N30.0407 (16)0.0467 (18)0.0476 (17)0.0005 (15)0.0001 (14)0.0010 (15)
N40.073 (3)0.061 (2)0.049 (2)0.004 (2)0.0086 (19)0.0022 (19)
C10.050 (2)0.045 (2)0.067 (3)0.002 (2)0.009 (2)0.005 (2)
C20.067 (3)0.044 (2)0.089 (4)0.008 (2)0.006 (3)0.003 (3)
C30.070 (3)0.048 (3)0.099 (4)0.010 (2)0.010 (3)0.021 (3)
C40.078 (3)0.060 (3)0.083 (3)0.000 (3)0.005 (3)0.020 (3)
C50.055 (3)0.058 (3)0.085 (3)0.003 (2)0.014 (2)0.016 (3)
C60.0384 (19)0.044 (2)0.072 (3)0.0025 (18)0.000 (2)0.009 (2)
C70.040 (2)0.046 (2)0.097 (3)0.0024 (19)0.003 (2)0.011 (2)
C80.043 (2)0.047 (2)0.067 (2)0.002 (2)0.008 (2)0.0042 (19)
C90.044 (2)0.048 (2)0.066 (3)0.0015 (19)0.004 (2)0.010 (2)
C100.042 (2)0.048 (2)0.059 (2)0.0005 (19)0.009 (2)0.0043 (18)
C110.048 (2)0.059 (2)0.055 (2)0.002 (2)0.002 (2)0.0094 (19)
C120.053 (2)0.046 (2)0.045 (2)0.0064 (19)0.0034 (19)0.0060 (19)
C130.074 (3)0.051 (3)0.065 (3)0.010 (3)0.001 (2)0.004 (2)
C140.104 (4)0.039 (2)0.086 (4)0.003 (3)0.017 (4)0.000 (2)
C150.084 (4)0.063 (3)0.077 (3)0.017 (3)0.020 (3)0.025 (3)
C160.062 (3)0.067 (3)0.064 (3)0.010 (2)0.003 (2)0.016 (3)
C170.056 (2)0.047 (2)0.043 (2)0.001 (2)0.000 (2)0.0034 (18)
O3A0.042 (2)0.057 (2)0.084 (3)0.0094 (18)0.016 (2)0.009 (2)
Geometric parameters (Å, º) top
O1—N11.212 (5)C8—C91.503 (6)
O2—N11.226 (5)C8—H8A0.9700
O4—N41.211 (5)C8—H8B0.9700
O5—N41.198 (5)C9—O3A1.453 (5)
N1—C11.440 (6)C9—O3B1.495 (10)
N2—C81.478 (5)C9—C101.501 (6)
N2—C71.486 (5)C9—H9AA0.9800
N2—H2D0.9000C9—H9AB0.9800
N2—H2E0.9000C10—H10A0.9700
N3—C101.476 (5)C10—H10B0.9700
N3—C111.482 (5)C11—C121.504 (6)
N3—H3C0.9000C11—H11A0.9700
N3—H3D0.9000C11—H11B0.9700
N4—C171.460 (6)C12—C131.370 (6)
C1—C61.388 (6)C12—C171.394 (6)
C1—C21.390 (6)C13—C141.375 (7)
C2—C31.366 (7)C13—H13A0.9300
C2—H2B0.9300C14—C151.364 (8)
C3—C41.370 (7)C14—H14A0.9300
C3—H3B0.9300C15—C161.357 (7)
C4—C51.375 (7)C15—H15A0.9300
C4—H4A0.9300C16—C171.369 (6)
C5—C61.381 (6)C16—H16A0.9300
C5—H5A0.9300O3A—H9AB0.6655
C6—C71.497 (6)O3A—H3AA0.8501
C7—H7A0.9700O3B—H3BA0.8501
C7—H7B0.9700
O1—N1—O2122.5 (4)H8A—C8—H8B108.0
O1—N1—C1118.6 (4)O3A—C9—O3B139.7 (10)
O2—N1—C1118.8 (4)O3A—C9—C10106.5 (4)
C8—N2—C7113.1 (3)O3B—C9—C10100.0 (9)
C8—N2—H2D109.0O3A—C9—C8103.9 (3)
C7—N2—H2D109.0O3B—C9—C895.1 (10)
C8—N2—H2E109.0C10—C9—C8109.2 (3)
C7—N2—H2E109.0O3A—C9—H9AA112.2
H2D—N2—H2E107.8C10—C9—H9AA112.2
C10—N3—C11113.4 (3)C8—C9—H9AA112.2
C10—N3—H3C108.9O3B—C9—H9AB117.3
C11—N3—H3C108.9C10—C9—H9AB116.2
C10—N3—H3D108.9C8—C9—H9AB116.0
C11—N3—H3D108.9H9AA—C9—H9AB89.7
H3C—N3—H3D107.7N3—C10—C9111.0 (3)
O5—N4—O4122.6 (4)N3—C10—H10A109.4
O5—N4—C17117.9 (4)C9—C10—H10A109.4
O4—N4—C17119.5 (3)N3—C10—H10B109.4
C6—C1—C2122.2 (4)C9—C10—H10B109.4
C6—C1—N1121.1 (4)H10A—C10—H10B108.0
C2—C1—N1116.7 (4)N3—C11—C12111.7 (4)
C3—C2—C1118.7 (5)N3—C11—H11A109.3
C3—C2—H2B120.7C12—C11—H11A109.3
C1—C2—H2B120.7N3—C11—H11B109.3
C2—C3—C4120.8 (5)C12—C11—H11B109.3
C2—C3—H3B119.6H11A—C11—H11B107.9
C4—C3—H3B119.6C13—C12—C17115.5 (4)
C3—C4—C5119.5 (5)C13—C12—C11119.5 (4)
C3—C4—H4A120.2C17—C12—C11124.9 (4)
C5—C4—H4A120.2C12—C13—C14122.1 (5)
C4—C5—C6122.1 (5)C12—C13—H13A118.9
C4—C5—H5A118.9C14—C13—H13A118.9
C6—C5—H5A118.9C15—C14—C13120.2 (5)
C5—C6—C1116.6 (4)C15—C14—H14A119.9
C5—C6—C7118.3 (4)C13—C14—H14A119.9
C1—C6—C7125.0 (4)C16—C15—C14119.9 (5)
N2—C7—C6112.1 (3)C16—C15—H15A120.1
N2—C7—H7A109.2C14—C15—H15A120.1
C6—C7—H7A109.2C15—C16—C17119.1 (5)
N2—C7—H7B109.2C15—C16—H16A120.4
C6—C7—H7B109.2C17—C16—H16A120.4
H7A—C7—H7B107.9C16—C17—C12123.1 (4)
N2—C8—C9111.2 (3)C16—C17—N4116.8 (4)
N2—C8—H8A109.4C12—C17—N4120.2 (4)
C9—C8—H8A109.4C9—O3A—H3AA109.5
N2—C8—H8B109.4H9AB—O3A—H3AA76.6
C9—C8—H8B109.4C9—O3B—H3BA109.5
C8—N2—C7—C6156.9 (4)C1—C6—C7—N285.8 (5)
C7—N2—C8—C9177.5 (3)N2—C8—C9—O3A68.7 (4)
N2—C8—C9—C10178.0 (3)N2—C8—C9—O3B75.5 (10)
C8—C9—C10—N3174.4 (3)O3A—C9—C10—N374.0 (4)
C11—N3—C10—C9175.2 (3)O3B—C9—C10—N375.3 (10)
C10—N3—C11—C12158.2 (3)N3—C11—C12—C1398.6 (5)
O1—N1—C1—C6148.2 (5)N3—C11—C12—C1785.0 (5)
O2—N1—C1—C632.2 (7)C17—C12—C13—C140.6 (7)
O1—N1—C1—C231.3 (7)C11—C12—C13—C14176.1 (4)
O2—N1—C1—C2148.3 (5)C12—C13—C14—C150.9 (8)
C6—C1—C2—C31.0 (7)C13—C14—C15—C161.9 (8)
N1—C1—C2—C3178.5 (4)C14—C15—C16—C172.6 (7)
C1—C2—C3—C40.2 (7)C15—C16—C17—C122.4 (7)
C2—C3—C4—C50.2 (8)C15—C16—C17—N4178.7 (4)
C3—C4—C5—C60.3 (7)C13—C12—C17—C161.3 (6)
C4—C5—C6—C11.1 (7)C11—C12—C17—C16175.2 (4)
C4—C5—C6—C7178.1 (4)C13—C12—C17—N4179.8 (4)
C2—C1—C6—C51.4 (6)C11—C12—C17—N43.7 (6)
N1—C1—C6—C5178.1 (4)O5—N4—C17—C1624.0 (6)
C2—C1—C6—C7178.2 (4)O4—N4—C17—C16157.4 (5)
N1—C1—C6—C71.3 (6)O5—N4—C17—C12154.9 (5)
C5—C6—C7—N297.4 (5)O4—N4—C17—C1223.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl2i0.902.193.060 (4)163
N2—H2E···Cl10.902.343.109 (3)143
N3—H3C···Cl20.902.303.120 (3)151
N3—H3D···Cl1i0.902.153.037 (3)167
O3A—H3AA···Cl10.852.803.422 (4)132
O3B—H3BA···Cl1i0.852.242.95 (2)140
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H22N4O42+·2Cl·H2OC17H22N4O52+·2Cl
Mr435.30433.29
Crystal system, space groupTriclinic, P1Orthorhombic, P212121
Temperature (K)297298
a, b, c (Å)8.630 (3), 11.449 (4), 11.629 (4)7.075 (2), 15.844 (8), 18.554 (6)
α, β, γ (°)116.353 (17), 92.09 (2), 98.82 (2)90, 90, 90
V3)1010.2 (6)2079.8 (14)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.360.35
Crystal size (mm)0.5 × 0.5 × 0.40.4 × 0.2 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1999)
ψ scan
(XSCANS; Siemens, 1999)
Tmin, Tmax0.845, 0.8670.739, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
8783, 4456, 3585 6209, 3692, 2729
Rint0.0720.089
(sin θ/λ)max1)0.6500.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.05 0.055, 0.145, 1.04
No. of reflections44563692
No. of parameters261259
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.360.36, 0.30
Absolute structure?Flack (1983), with 1557 Friedel pairs
Absolute structure parameter?0.03 (11)

Computer programs: XSCANS (Siemens, 1999), SHELXTL-Plus (Sheldrick, 1997) and Mercury (Macrae et al., 2006).

Selected torsion angles (º) for (I) top
C8—N2—C7—C6158.61 (14)C8—C9—C10—N3176.86 (13)
C7—N2—C8—C962.25 (18)C11—N3—C10—C9174.09 (13)
N2—C8—C9—C10179.01 (12)C10—N3—C11—C12170.94 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl20.902.113.0043 (17)170.2
N2—H2C···Cl10.902.273.0976 (16)153.1
N3—H3B···Cl2i0.902.132.9890 (17)159.0
N3—H3C···Cl1ii0.902.253.1142 (17)161.3
O5—H5B···Cl1iii0.91 (4)2.24 (2)3.141 (2)173 (4)
O5—H5C···Cl10.89 (3)2.35 (2)3.213 (2)165 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y, z+1.
Selected torsion angles (º) for (II) top
C8—N2—C7—C6156.9 (4)C8—C9—C10—N3174.4 (3)
C7—N2—C8—C9177.5 (3)C11—N3—C10—C9175.2 (3)
N2—C8—C9—C10178.0 (3)C10—N3—C11—C12158.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl2i0.902.193.060 (4)163.1
N2—H2E···Cl10.902.343.109 (3)143.2
N3—H3C···Cl20.902.303.120 (3)151.1
N3—H3D···Cl1i0.902.153.037 (3)167.4
O3A—H3AA···Cl10.852.803.422 (4)131.8
O3B—H3BA···Cl1i0.852.242.95 (2)140.1
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds