Download citation
Download citation
link to html
The title complex, [PdCl2(C21H26N2)(C18H15P)], shows slightly distorted square-planar coordination around the PdII metal centre. The Pd—C bond distance between the N-heterocyclic ligand and the metal atom is 2.028 (5) Å. The dihedral angle between the two trimethyl­phenyl ring planes is 36.9 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107021622/gd3106sup1.cif
Contains datablocks IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021622/gd3106IVsup2.hkl
Contains datablock IV

CCDC reference: 652501

Comment top

There are relatively few homogeneous transition metal catalysts where both steric and electronic effects can be finely controlled by small changes of ligand structure within the series. N-Heterocyclic carbenes (NHCs), in conjunction with widely used phosphines, have broadened the scope for the screening of ligands for desired properties (Bourissou et al. 2000; Türkmen et al. 2006). NHC ligands in metal complexes are known to have electronic similarities with trialkylphosphines but appear to be stronger coordinating ligands which undergo little to no dissociation from the metal in solution (Lappert, 1975). In contrast with most metal–carbene complexes which have found extensive application in organic synthesis and which incorporate the carbene moiety into the organic product (Zaragoza Dörwald, 1998), NHCs act as non-participating ligands in catalytic processes and are not consumed (Bourissou et al. 2000; Türkmen et al. 2006). Here, we describe the preparation and characterization of the title palladium–NHC complex, (IV) (see scheme).

A trans coordination of the carbene group and one phosphine group to the PdII centre is found in the crystal structure of (IV), as shown in Fig. 1. The coordination of the ligands is not exactly planar, the deviations of ligating atoms Cl1, Cl2, P1 and C1 from the plane through these atoms and the Pd atom being 0.074 (1), 0.079 (1), -0.070 (1) and -0.078 (2) Å, respectively. The dihedral angle between the Pd1/Cl1/Cl2/P1/C1 coordination plane, formed by the slightly distorted square-planar coordination of the PdII metal centre, and the carbene ring is 74.90 (17)°, as reported for similar N-heterocyclic carbene complexes (Gökçe, Gülcemal et al., 2006; Gökçe, Günay et al., 2006). The Pd—C bond distance between the N-heterocyclic ligand and the metal atom is 2.028 (5) Å, comparable with that in other palladium(II)–NHC complexes (Gökçe et al., 2004; Liu et al., 2003; Magill et al., 2001).

The bond angles at the Pd atom involving trans pairs of substituents deviate from the expected value of 180°, being 173.87 (15)° for the C1—Pd1—P1 angle and 175.71 (6)° for the Cl1—Pd—Cl2 angle, and this distortion of the bond angles at Pd may be attributed to steric interaction between the Cl atoms and the aromatic rings. There are two short intramolecular C—H···Cl contacts (Table 2), both of them involving methyl groups at the 2-position.

Although both C—N bonds in the NHC ring of (IV) are single bonds, their distances are different (Table 1), as observed in similar complexes (Karabıyık et al., 2006; Karabıyık, Kılınçarslan, Aygün, Çetinkaya & Büyükgüngör, 2007; Karabıyık, Kılınçarslan, Aygün, Çetinkaya & García-Granda, 2007; Gökçe et al., 2004; Gökçe, Gülcemal et al., 2006 OR Gökçe, Günay et al., 2006?). The bond distances between the carbene C atom bonded to Pd and the N atoms in the NHC ring are shorter than the other C—N bond distances (Table 1). This is possibly indicative of a greater partial double-bond character due to partial electron donation by N to the carbene C atom donor (Herrmann et al., 2001; Fröhlich et al., 1997). Theoretical study also indicates that the stability of these carbenes is due to electron donation from the nitrogen lone pairs into the formally vacant p(π) orbital of the carbene C atom (Karabıyık et al., 2005). The Pd—P bond distance is also similar to those reported previously (Aupers et al., 2000; McCrindle et al., 2000; Gökçe et al., 2004).

Original text was fragmented, with incomplete sentences and paragraphs. Please check that it has been rephrased and rearranged correctly. Please also ensure that all references are cited unambiguously

Related literature top

For related literature, see: Aupers et al. (2000); Bourissou et al. (2000); Fröhlich et al. (1997); Gökçe et al. (2004); Gökçe, Gülcemal, Aygün, Çetinkaya & Büyükgüngör (2006); Gökçe, Günay, Aygün, Çetinkaya & Büyükgüngör (2006); Herrmann et al. (2001); Karabıyık, Kılınçarslan, Aygün, Çetinkaya & Büyükgüngör (2005, 2006, 2007); Karabıyık, Kılınçarslan, Aygün, Çetinkaya & García-Granda (2007); Lappert (1975); Liu et al. (2003); Magill et al. (2001); McCrindle et al. (2000); Türkmen et al. (2006); Zaragoza (1998).

Experimental top

A suspension of the salt (III), prepared as indicated in the scheme (0.17 g, 0.5 mmol), and sodium hydride (0.17 g, 0.75 mmol) in tetrahydrofuran (10 ml) was heated under reflux for 4 h. The mixture was cooled to ambient temperature and the volatiles were removed. To the residue was added [PdCl2(PPh3)]2 (0.22 g, 0.25 mmol) and then toluene (5 ml). The mixture was heated under reflux for 4 h, after which it was cooled to ambient temperature and hexane (10 ml) was added. The resulting cream precipitate was collected by filtration and recrystallized from CH2Cl2–Et2O (Ratio?) (yield 0.28 g, 75%; m.p 545–547 K). IR (Medium?): ν(NCN) = 1457 cm-1; analysis calculated for C39H41Cl2N2PPd: C 62.79, H 5.54, N 3,75; found: C, 61.63, H 5,55, N 3.75%; 1H NMR (CDCl3, δ, p.p.m.): 2.41 (s, 12H, ortho-CH3), 2.53 (s, 6H, para-CH3), 4.00 (s, 4H, Im—H4,5), 7.30–7.16 (m, 19H, Ar, PPh3); 13C NMR (CDCl3, δ, p.p.m.): 19.5 (ortho-CH3), 21.4 (para-CH3), 51.45 (Im—C4,5), 127.7 (d, JC—P = 9.9 Hz, m-C PC6H5), 129.4 (Ar), 129.9 (d, JC—P = 2.3 Hz, p-C PC6H5), 130.7 (d, JC—P = 43.5 Hz, ipso-C PC6H5), 135.2 (d, JC—P = 10.7 Hz, o-C PC6H5), 135.6, 137.6, 138.0 (Ar), 197.2 (d, 2JC—P = 185.3 Hz, C–Pd); 31P (CDCl3, δ, p.p.m.): 20.88.

Refinement top

H atoms were treated as riding atoms, with C—H distances of 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms and 0.97 Å for methylene H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H, or 1.5Ueq(C) for methyl H. CH3 groups were allowed to rotate freely around the C—C bond.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CRYSDA (Beurskens et al., 1999); data reduction: REFLEX (García-Granda et al., 1999; Lehman & Larsen, 1974; Grant & Gabe, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
trans-[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2- ylidene]dichlorido(triphenylphosphine-κP)palladium(II) top
Crystal data top
[PdCl2(C21H26N2)(C18H15P)]F(000) = 1536
Mr = 746.01Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.418 (3) Åθ = 10–15°
b = 13.8020 (17) ŵ = 0.74 mm1
c = 14.982 (6) ÅT = 293 K
β = 91.90 (5)°Plate, yellow
V = 3599.7 (16) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
5215 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 1.2°
ω/2θ scansh = 021
Absorption correction: analytical
(Katayama, 1986)
k = 017
Tmin = 0.760, Tmax = 0.782l = 1818
7676 measured reflections3 standard reflections every 60 min
7060 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0884P)2 + 4.1023P]
where P = (Fo2 + 2Fc2)/3
7060 reflections(Δ/σ)max = 0.005
410 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[PdCl2(C21H26N2)(C18H15P)]V = 3599.7 (16) Å3
Mr = 746.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.418 (3) ŵ = 0.74 mm1
b = 13.8020 (17) ÅT = 293 K
c = 14.982 (6) Å0.30 × 0.20 × 0.10 mm
β = 91.90 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5215 reflections with I > 2σ(I)
Absorption correction: analytical
(Katayama, 1986)
Rint = 0.034
Tmin = 0.760, Tmax = 0.7823 standard reflections every 60 min
7676 measured reflections intensity decay: 0.9%
7060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.10Δρmax = 0.75 e Å3
7060 reflectionsΔρmin = 0.93 e Å3
410 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.74873 (2)0.56490 (3)0.31448 (2)0.03120 (14)
Cl10.65122 (8)0.65212 (10)0.37476 (9)0.0470 (3)
Cl20.85270 (9)0.48125 (12)0.26254 (10)0.0558 (4)
P10.74802 (8)0.45245 (9)0.42941 (8)0.0356 (3)
N10.8056 (2)0.7157 (3)0.1847 (3)0.0407 (10)
N20.7018 (3)0.6434 (4)0.1367 (3)0.0474 (12)
C10.7520 (3)0.6513 (4)0.2052 (3)0.0366 (11)
C20.7919 (4)0.7570 (5)0.0946 (4)0.0551 (16)
H2A0.83500.74460.05680.066*
H2B0.78300.82630.09750.066*
C30.7215 (4)0.7050 (5)0.0606 (4)0.0613 (11)
H3A0.68040.75010.04560.074*
H3B0.73220.66630.00850.074*
C110.8646 (3)0.7544 (4)0.2441 (4)0.0422 (12)
C120.8444 (3)0.8236 (4)0.3071 (4)0.0469 (13)
C130.9026 (4)0.8602 (5)0.3647 (4)0.0544 (15)
H130.89000.90390.40910.065*
C140.9781 (4)0.8326 (5)0.3566 (4)0.0556 (16)
C150.9965 (4)0.7701 (5)0.2900 (5)0.0615 (18)
H151.04790.75490.28280.074*
C160.9412 (3)0.7279 (4)0.2322 (4)0.0474 (13)
C170.7639 (4)0.8592 (5)0.3127 (5)0.0643 (18)
H17A0.74790.88790.25680.096*
H17B0.76140.90680.35930.096*
H17C0.73070.80590.32580.096*
C181.0408 (5)0.8732 (7)0.4192 (5)0.082 (2)
H18A1.08920.87110.39020.123*
H18B1.04410.83510.47270.123*
H18C1.02890.93910.43390.123*
C190.9639 (4)0.6604 (6)0.1599 (5)0.0663 (18)
H19A0.99780.69320.12060.099*
H19B0.91890.63930.12670.099*
H19C0.98980.60520.18580.099*
C210.6355 (3)0.5811 (4)0.1327 (3)0.0438 (13)
C220.6434 (4)0.4855 (5)0.1051 (4)0.0544 (15)
C230.5771 (4)0.4291 (5)0.1005 (4)0.0623 (18)
H230.58120.36420.08450.075*
C240.5061 (4)0.4653 (6)0.1185 (4)0.0622 (19)
C250.5006 (4)0.5608 (6)0.1424 (4)0.0619 (18)
H250.45250.58630.15390.074*
C260.5643 (4)0.6209 (5)0.1500 (4)0.0507 (14)
C270.7193 (5)0.4447 (6)0.0785 (5)0.077 (2)
H27A0.71880.37550.08540.116*
H27B0.75960.47180.11590.116*
H27C0.72790.46060.01730.116*
C280.4352 (5)0.4013 (7)0.1099 (5)0.097 (3)
H28A0.39120.43660.12900.145*
H28B0.44250.34480.14650.145*
H28C0.42730.38210.04870.145*
C290.5551 (5)0.7269 (5)0.1745 (5)0.074 (2)
H29A0.55310.76540.12110.111*
H29B0.59800.74700.21190.111*
H29C0.50850.73530.20590.111*
C310.8278 (3)0.4733 (4)0.5080 (3)0.0415 (12)
C320.8333 (4)0.4261 (6)0.5906 (4)0.0690 (19)
H320.79840.37760.60390.083*
C330.8911 (5)0.4514 (7)0.6532 (5)0.085 (3)
H330.89400.42060.70840.102*
C340.9436 (4)0.5217 (7)0.6334 (5)0.081 (3)
H340.98200.53860.67510.097*
C350.9393 (4)0.5665 (6)0.5524 (5)0.071 (2)
H350.97510.61390.53910.085*
C360.8818 (3)0.5422 (5)0.4891 (4)0.0519 (15)
H360.88000.57300.43380.062*
C410.7532 (3)0.3307 (4)0.3822 (4)0.0463 (13)
C420.7051 (4)0.3110 (5)0.3094 (4)0.0618 (16)
H420.67400.35990.28530.074*
C430.7026 (6)0.2190 (6)0.2718 (5)0.084 (2)
H430.66910.20560.22370.101*
C440.7493 (6)0.1490 (6)0.3059 (6)0.091 (3)
H440.74760.08710.28120.110*
C450.7995 (5)0.1683 (5)0.3768 (6)0.079 (2)
H450.83250.12010.39820.095*
C460.8011 (4)0.2587 (5)0.4162 (5)0.0587 (16)
H460.83400.27110.46510.070*
C510.6656 (3)0.4433 (4)0.5016 (3)0.0397 (11)
C520.6093 (4)0.3743 (5)0.4916 (4)0.0613 (17)
H520.61340.32760.44720.074*
C530.5470 (4)0.3722 (6)0.5454 (5)0.077 (2)
H530.50890.32580.53580.093*
C540.5407 (4)0.4384 (5)0.6132 (4)0.0623 (17)
H540.49900.43630.65040.075*
C550.5961 (4)0.5070 (5)0.6253 (5)0.0680 (19)
H550.59300.55100.67210.082*
C560.6570 (4)0.5118 (5)0.5684 (5)0.0642 (18)
H560.69270.56160.57500.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0329 (2)0.0357 (2)0.02520 (19)0.00034 (16)0.00433 (13)0.00267 (15)
Cl10.0464 (7)0.0502 (7)0.0451 (7)0.0098 (6)0.0136 (6)0.0027 (6)
Cl20.0534 (8)0.0620 (9)0.0534 (8)0.0160 (7)0.0203 (7)0.0048 (7)
P10.0401 (7)0.0383 (7)0.0284 (6)0.0008 (5)0.0015 (5)0.0043 (5)
N10.041 (2)0.051 (3)0.030 (2)0.007 (2)0.0004 (18)0.0098 (19)
N20.051 (3)0.062 (3)0.028 (2)0.017 (2)0.0051 (19)0.014 (2)
C10.036 (3)0.039 (3)0.035 (3)0.001 (2)0.003 (2)0.003 (2)
C20.060 (4)0.063 (4)0.042 (3)0.008 (3)0.003 (3)0.025 (3)
C30.0700.0660.047 (3)0.027 (3)0.011 (3)0.027 (3)
C110.043 (3)0.043 (3)0.040 (3)0.004 (2)0.001 (2)0.006 (2)
C120.049 (3)0.048 (3)0.044 (3)0.002 (3)0.005 (2)0.011 (3)
C130.067 (4)0.055 (3)0.042 (3)0.010 (3)0.005 (3)0.003 (3)
C140.062 (4)0.066 (4)0.039 (3)0.019 (3)0.006 (3)0.013 (3)
C150.041 (3)0.079 (5)0.064 (4)0.005 (3)0.002 (3)0.027 (4)
C160.043 (3)0.048 (3)0.052 (3)0.002 (2)0.006 (2)0.009 (3)
C170.064 (4)0.063 (4)0.067 (4)0.002 (3)0.018 (3)0.008 (3)
C180.083 (5)0.104 (6)0.058 (4)0.041 (5)0.016 (4)0.012 (4)
C190.047 (3)0.088 (5)0.065 (4)0.004 (3)0.018 (3)0.005 (4)
C210.048 (3)0.056 (3)0.027 (2)0.011 (3)0.007 (2)0.007 (2)
C220.059 (4)0.066 (4)0.038 (3)0.007 (3)0.005 (3)0.006 (3)
C230.090 (5)0.052 (4)0.044 (3)0.017 (4)0.011 (3)0.005 (3)
C240.066 (4)0.085 (5)0.036 (3)0.033 (4)0.006 (3)0.011 (3)
C250.048 (3)0.093 (5)0.044 (3)0.013 (3)0.005 (3)0.007 (3)
C260.056 (4)0.062 (4)0.034 (3)0.005 (3)0.006 (2)0.005 (3)
C270.084 (5)0.078 (5)0.070 (5)0.006 (4)0.003 (4)0.022 (4)
C280.093 (6)0.130 (7)0.066 (5)0.069 (6)0.014 (4)0.023 (5)
C290.079 (5)0.069 (5)0.074 (5)0.013 (4)0.013 (4)0.001 (4)
C310.046 (3)0.042 (3)0.037 (3)0.013 (2)0.003 (2)0.005 (2)
C320.075 (5)0.086 (5)0.045 (4)0.008 (4)0.009 (3)0.012 (3)
C330.099 (6)0.097 (6)0.056 (4)0.038 (5)0.036 (4)0.023 (4)
C340.060 (4)0.111 (7)0.070 (5)0.031 (5)0.027 (4)0.041 (5)
C350.041 (3)0.085 (5)0.086 (5)0.004 (3)0.002 (3)0.042 (4)
C360.037 (3)0.066 (4)0.052 (3)0.005 (3)0.003 (2)0.013 (3)
C410.056 (3)0.046 (3)0.037 (3)0.002 (3)0.011 (2)0.003 (2)
C420.079 (5)0.057 (4)0.049 (4)0.001 (3)0.001 (3)0.001 (3)
C430.126 (7)0.068 (5)0.059 (4)0.018 (5)0.015 (5)0.028 (4)
C440.144 (9)0.050 (4)0.082 (6)0.013 (5)0.038 (6)0.016 (4)
C450.109 (6)0.043 (4)0.089 (6)0.020 (4)0.033 (5)0.006 (4)
C460.067 (4)0.050 (3)0.061 (4)0.013 (3)0.012 (3)0.006 (3)
C510.048 (3)0.043 (3)0.029 (2)0.000 (2)0.004 (2)0.009 (2)
C520.052 (4)0.081 (5)0.052 (4)0.019 (3)0.009 (3)0.008 (3)
C530.057 (4)0.092 (6)0.083 (5)0.026 (4)0.015 (4)0.003 (5)
C540.052 (4)0.085 (5)0.051 (4)0.000 (3)0.015 (3)0.013 (4)
C550.083 (5)0.062 (4)0.061 (4)0.004 (4)0.034 (4)0.003 (3)
C560.066 (4)0.063 (4)0.065 (4)0.020 (3)0.028 (3)0.011 (3)
Geometric parameters (Å, º) top
Pd1—C12.028 (5)C25—C261.387 (9)
Pd1—Cl12.2915 (15)C25—H250.9300
Pd1—Cl22.3047 (15)C26—C291.519 (9)
Pd1—P12.3185 (14)C27—H27A0.9600
P1—C311.814 (5)C27—H27B0.9600
P1—C411.827 (6)C27—H27C0.9600
P1—C511.831 (5)C28—H28A0.9600
N1—C11.333 (6)C28—H28B0.9600
N1—C111.439 (7)C28—H28C0.9600
N1—C21.478 (6)C29—H29A0.9600
N2—C11.331 (6)C29—H29B0.9600
N2—C211.440 (7)C29—H29C0.9600
N2—C31.471 (7)C31—C361.374 (8)
C2—C31.495 (8)C31—C321.399 (8)
C2—H2A0.9700C32—C331.397 (10)
C2—H2B0.9700C32—H320.9300
C3—H3A0.9700C33—C341.372 (13)
C3—H3B0.9700C33—H330.9300
C11—C121.396 (8)C34—C351.361 (12)
C11—C161.401 (8)C34—H340.9300
C12—C131.404 (8)C35—C361.397 (9)
C12—C171.491 (8)C35—H350.9300
C13—C141.377 (9)C36—H360.9300
C13—H130.9300C41—C421.380 (9)
C14—C151.365 (9)C41—C461.384 (8)
C14—C181.523 (9)C42—C431.390 (9)
C15—C161.400 (9)C42—H420.9300
C15—H150.9300C43—C441.353 (12)
C16—C191.492 (9)C43—H430.9300
C17—H17A0.9600C44—C451.379 (12)
C17—H17B0.9600C44—H440.9300
C17—H17C0.9600C45—C461.381 (10)
C18—H18A0.9600C45—H450.9300
C18—H18B0.9600C46—H460.9300
C18—H18C0.9600C51—C521.372 (8)
C19—H19A0.9600C51—C561.388 (8)
C19—H19B0.9600C52—C531.372 (9)
C19—H19C0.9600C52—H520.9300
C21—C261.388 (8)C53—C541.374 (10)
C21—C221.391 (9)C53—H530.9300
C22—C231.393 (9)C54—C551.360 (10)
C22—C271.503 (10)C54—H540.9300
C23—C241.369 (10)C55—C561.385 (8)
C23—H230.9300C55—H550.9300
C24—C251.370 (10)C56—H560.9300
C24—C281.520 (9)
C1—Pd1—Cl192.89 (15)C25—C24—C28121.2 (8)
C1—Pd1—Cl288.76 (15)C24—C25—C26122.2 (7)
Cl1—Pd1—Cl2175.71 (6)C24—C25—H25118.9
C1—Pd1—P1173.87 (15)C26—C25—H25118.9
Cl1—Pd1—P192.10 (6)C25—C26—C21117.8 (6)
Cl2—Pd1—P186.50 (6)C25—C26—C29120.3 (6)
C31—P1—C41110.5 (3)C21—C26—C29121.9 (6)
C31—P1—C51103.1 (2)C22—C27—H27A109.5
C41—P1—C51102.4 (2)C22—C27—H27B109.5
C31—P1—Pd1110.69 (19)H27A—C27—H27B109.5
C41—P1—Pd1109.08 (18)C22—C27—H27C109.5
C51—P1—Pd1120.58 (17)H27A—C27—H27C109.5
C1—N1—C11126.7 (4)H27B—C27—H27C109.5
C1—N1—C2111.9 (4)C24—C28—H28A109.5
C11—N1—C2120.9 (4)C24—C28—H28B109.5
C1—N2—C21125.9 (4)H28A—C28—H28B109.5
C1—N2—C3112.8 (4)C24—C28—H28C109.5
C21—N2—C3121.3 (4)H28A—C28—H28C109.5
N2—C1—N1108.9 (4)H28B—C28—H28C109.5
N2—C1—Pd1122.7 (4)C26—C29—H29A109.5
N1—C1—Pd1128.1 (4)C26—C29—H29B109.5
N1—C2—C3103.5 (4)H29A—C29—H29B109.5
N1—C2—H2A111.1C26—C29—H29C109.5
C3—C2—H2A111.1H29A—C29—H29C109.5
N1—C2—H2B111.1H29B—C29—H29C109.5
C3—C2—H2B111.1C36—C31—C32118.5 (6)
H2A—C2—H2B109.0C36—C31—P1119.4 (4)
N2—C3—C2102.9 (5)C32—C31—P1122.0 (5)
N2—C3—H3A111.2C33—C32—C31120.3 (8)
C2—C3—H3A111.2C33—C32—H32119.8
N2—C3—H3B111.2C31—C32—H32119.8
C2—C3—H3B111.2C34—C33—C32120.1 (8)
H3A—C3—H3B109.1C34—C33—H33119.9
C12—C11—C16121.8 (5)C32—C33—H33119.9
C12—C11—N1118.7 (5)C35—C34—C33119.7 (7)
C16—C11—N1119.3 (5)C35—C34—H34120.1
C11—C12—C13118.0 (5)C33—C34—H34120.1
C11—C12—C17121.5 (5)C34—C35—C36120.9 (8)
C13—C12—C17120.5 (6)C34—C35—H35119.6
C14—C13—C12121.2 (6)C36—C35—H35119.6
C14—C13—H13119.4C31—C36—C35120.4 (7)
C12—C13—H13119.4C31—C36—H36119.8
C15—C14—C13119.1 (6)C35—C36—H36119.8
C15—C14—C18120.1 (7)C42—C41—C46119.6 (6)
C13—C14—C18120.8 (7)C42—C41—P1116.7 (5)
C14—C15—C16122.8 (6)C46—C41—P1123.7 (5)
C14—C15—H15118.6C41—C42—C43120.7 (7)
C16—C15—H15118.6C41—C42—H42119.7
C15—C16—C11116.8 (6)C43—C42—H42119.7
C15—C16—C19121.1 (6)C44—C43—C42119.3 (8)
C11—C16—C19122.1 (6)C44—C43—H43120.4
C12—C17—H17A109.5C42—C43—H43120.4
C12—C17—H17B109.5C43—C44—C45120.7 (7)
H17A—C17—H17B109.5C43—C44—H44119.6
C12—C17—H17C109.5C45—C44—H44119.6
H17A—C17—H17C109.5C44—C45—C46120.6 (8)
H17B—C17—H17C109.5C44—C45—H45119.7
C14—C18—H18A109.5C46—C45—H45119.7
C14—C18—H18B109.5C45—C46—C41119.1 (7)
H18A—C18—H18B109.5C45—C46—H46120.4
C14—C18—H18C109.5C41—C46—H46120.4
H18A—C18—H18C109.5C52—C51—C56117.3 (5)
H18B—C18—H18C109.5C52—C51—P1123.7 (4)
C16—C19—H19A109.5C56—C51—P1118.9 (4)
C16—C19—H19B109.5C53—C52—C51121.7 (7)
H19A—C19—H19B109.5C53—C52—H52119.1
C16—C19—H19C109.5C51—C52—H52119.1
H19A—C19—H19C109.5C52—C53—C54120.4 (7)
H19B—C19—H19C109.5C52—C53—H53119.8
C26—C21—C22121.8 (5)C54—C53—H53119.8
C26—C21—N2118.5 (5)C55—C54—C53119.2 (6)
C22—C21—N2119.5 (5)C55—C54—H54120.4
C21—C22—C23117.1 (6)C53—C54—H54120.4
C21—C22—C27122.0 (6)C54—C55—C56120.4 (7)
C23—C22—C27120.8 (6)C54—C55—H55119.8
C24—C23—C22122.6 (6)C56—C55—H55119.8
C24—C23—H23118.7C55—C56—C51120.9 (6)
C22—C23—H23118.7C55—C56—H56119.5
C23—C24—C25118.4 (6)C51—C56—H56119.5
C23—C24—C28120.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl10.962.653.606 (7)174
C27—H27B···Cl20.962.693.582 (8)155

Experimental details

Crystal data
Chemical formula[PdCl2(C21H26N2)(C18H15P)]
Mr746.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.418 (3), 13.8020 (17), 14.982 (6)
β (°) 91.90 (5)
V3)3599.7 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(Katayama, 1986)
Tmin, Tmax0.760, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
7676, 7060, 5215
Rint0.034
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.161, 1.10
No. of reflections7060
No. of parameters410
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.93

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CRYSDA (Beurskens et al., 1999), REFLEX (García-Granda et al., 1999; Lehman & Larsen, 1974; Grant & Gabe, 1978), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Pd1—Cl12.2915 (15)N1—C11.333 (6)
Pd1—Cl22.3047 (15)N1—C111.439 (7)
Pd1—P12.3185 (14)N1—C21.478 (6)
P1—C311.814 (5)N2—C11.331 (6)
P1—C411.827 (6)N2—C211.440 (7)
P1—C511.831 (5)N2—C31.471 (7)
C1—Pd1—Cl192.89 (15)C31—P1—C51103.1 (2)
C1—Pd1—Cl288.76 (15)C41—P1—C51102.4 (2)
Cl1—Pd1—Cl2175.71 (6)C31—P1—Pd1110.69 (19)
C1—Pd1—P1173.87 (15)C41—P1—Pd1109.08 (18)
C31—P1—C41110.5 (3)C51—P1—Pd1120.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl10.962.653.606 (7)174
C27—H27B···Cl20.962.693.582 (8)155
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds